Participación en Conjuntos Tecnológicos

Samsung Innovation Campus: Curso de Inteligencia Artificial (C31136)

El programa formativo Samsung Innovation Campus ofrece a los jóvenes la oportunidad de impulsar su aprendizaje y mejorar su empleabilidad.

Los conocimientos que conforman el núcleo del plan de estudios de Samsung Innovation Campus (SIC) se basan en tecnologías clave para la Cuarta Revolución Industrial, que incluyen Inteligencia Artificial (IA), Internet de las Cosas (IoT) o Big Data.

La formación es totalmente gratuita y se imparte en colaboración con algunas Universidades. Al finalizar el programa se entrega un certificado de aprovechamiento si se finaliza el curso con éxito.

This AI course is intended for students to learn the essential foundations of AI and gain the fundamental
data science skills through hands-on exercises.

Specific objectives

  • Understand the foundational math behind data science and machine learning: linear algebra,
    probability, and statistics.
  • Be able to do data preprocessing with the Python libraries (NumPy and Pandas) for the execution
    of optimal machine learning models and data visualization.
  • Explore supervised and unsupervised learning and be able to apply the most suitable machine
    learning algorithm.
  • Learn to process textual data to derive highquality information from text and apply new insights to
    real-world business (NLP)
  • Build and train deep neural networks, use the deep learning libraries such as TensorFlow and Keras
    to gain proficiency, as well as handle various deep learning techniques.

Access profile

  • Required:
    • Mathematics:
      • Strong foundation of algebra
      • Basic understanding of linear algebra
    • Coding Experience: Python programming
      • Be able to use Jupyter Notebook
      • Python basics: variables, conditionals, functions, and input/output
      • Python data type: basic and compound (list, tuple, dictionary, and set)
      • Mutable sequences
      • Python class
  • Recommendable:
    • Data structure (stacks, queues) and algorithm (sorting and searching) as problem solving ability in Python (Advanced Python)
    • Basic understanding of probability and statistics fundamentals

Course Contents

Chapter 1. Introduction to Artificial Intelligence

  • Unit 1. The Concept of Artificial Intelligence
  • Unit 2. Applications of Artificial Intelligence
  • Unit 3. Techniques in Artificial Intelligence
  • Unit 4. Artificial Intelligence: Trends and Markets
  • Unit 5. Course Roadmap

Chapter 2. Math for Data Science

  • Unit 1. Introduction
  • Unit 2. Basic Math for Data Science
  • Unit 3. Understanding Data Science: Vectors
  • Unit 4. Understanding Data Science: Matrix
  • Unit 5. Understanding Deep Learning: Derivatives
  • Quiz

Chapter 3. NumPy Arrays for Optimized Numerical Computation & Pandas for Exploratory Data Analysis

  • Unit 1. NumPy Array Data Structure for Optimal Computational Performance
  • Unit 2. Optimal Data Exploration Through Pandas
  • Unit 3. Pandas Data Preprocessing for Optimal Model
  • Unit 4. Data Visualization For Various Data Scales
  • Quiz

Chapter 4. Probability and Statistics

  • Unit 1. Understanding of Probability
  • Unit 2. Understanding of Statistics I
  • Unit 3. Understanding of Statistics II
  • Unit 4. Statistical Hypothesis Testing
  • Quiz

Chapter 5. Machine Learning – Supervised Learning

  • Unit 1. Machine Learning Based Data Analysis
  • Unit 2. Supervised Learning Model for Numerical Prediction
  • Unit 3. Supervised Learning Model for Classification
  • Unit 4. Decision Tree
  • Unit 5. Naïve Bayes Algorithm
  • Unit 6. KNN Algorithm
  • Unit 7. SVM Algorithm
  • Unit 8. Ensuring Algorithms
  • Quiz

Chapter 6. Machine Learning – Unsupervised Learning

  • Unit 1. Unsupervised Learning Machine Learning Algorithm
  • Unit 2. Hierarchical Clustering
  • Unit 3. Non-Hierarchical Clustering
  • Unit 4. Linear Factor Model for Dimensionality Reduction
  • Quiz

Chapter 7. Natural Language Processing and Language Models for Text Mining

  • Unit 1. Text Mining
  • Unit 2. Text Preprosessing
  • Unit 3. Language Models
  • Unit 4. Natural Language Processing with Keras
  • Quiz

Chapter 8. Neural Network and Deep Learning

  • Unit 1. Understanding Neural Network
  • Unit 2. Basics of TensorFlow
  • Unit 3. Deep Learning Metods using TensorFlow Structure and Keras
  • Quiz

Chapter 9. Various Deep Learning Techniques: Deep Learning Techniques for Video and Language Intelligence

  • Unit 1. CNN for Computer Vision
  • Unit 2. RNN for Sequential Data Modeling
  • Unit 3. Generative Adversarial Neural Network to Create Non-Existent Images
  • Quiz

Chapter 10. Starting an AI Project

  • Project Preparation
  • Design Thinking

Chapter 11. AI Capstone Project Tutorial

  • Using a Ready-Made CNN Model
  • AI Application Cases

During the capstone project, student’s project activities take more time than lecture
itself. Please expect up to 80 hours to complete the whole project.

Título de la ActividadSamsung Innovation Campus de Big Data (C31040)
Entidad OrganizadoraServicio de Formación Permanente
Vicerrectorado de Estrategia y Ordenación Académica
ECTS reconocidos3 ECTS
Duración240 horas
ModalidadPresencial
Lugar de imparticiónETSI Sistemas Informáticos
Fecha de imparticiónPendiente de confirmar
Plazas ofertadas22
Contactoformacion.permanente@upm.es
Importe de la actividad