Inicio » Ciencia » Numerical serendipities in physics

Numerical serendipities in physics

A compendium of quantities that happen to have nice numbers, for no reason

Fine structure constant

Defined as \alpha := e^2/ (4\pi \varepsilon_0 \hbar c ) .
\alpha \approx \frac{1}{137}.
Intriging, since it seemed for a time that it would be precisely the inverse of an integer number.

Actually,
\alpha \approx \frac{1}{137.035999084}

pH of water

The pH scale is logarithmic and inversely indicates the activity of hydrogen ions in the solution:
pH = −\log ⁡( a_{H^+} ) \approx − \log ⁡ ( [ H^+ ] ) ,
where [H+] is the equilibrium molar concentration (mol/L) of H+ in the solution. At 25 °C, it so turns out that [H+] ≈ 10^(-7) mol / L.

Viscosity of water

It so turns out that, at 20ºC, the dynamic shear viscosity coefficient is \mu \approx 10^{-3} Pa·s. Therefore, the kinematic viscosity coefficient is \nu \approx 10^{-6} m^2/s.

Far away place in general relativity

For a minimal distance R, a uniform acceleration a is given by a = c^2/R . This would be the normal acceleration needed to keep a particle traveling at the speed of light moving on a circle of radius R. If we want a close to g, the gravitational acceleration at the Earth, we would need to go very close to 1 light year. See Susskinds’ lecture on general relativity

MagnitudeValue
Fine structure constant\alpha \approx \frac{1}{137}
pH of water[H+] \approx 10^{-7} mol / L
Viscosity of water \nu \approx 10^{-6} m²/s.
Far away place a = c^2/R \approx 1 lyr
Share

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Compartir / share

Share
Daniel Duque Campayo
Resumen de privacidad

Esta web utiliza cookies para que podamos ofrecerte la mejor experiencia de usuario posible. La información de las cookies se almacena en tu navegador y realiza funciones tales como reconocerte cuando vuelves a nuestra web o ayudar a nuestro equipo a comprender qué secciones de la web encuentras más interesantes y útiles.