
An integrated haptic-audio human-machine interface for environmental
exploration in absence of visual clues

Edoardo Catenaro, Politecnico di Milano, Fabio Izzi, Technische Universiteit Delft

I. INTRODUCTION

Human-computer interaction is an emerging feature of
modern society. Thanks to ongoing advancements in Elec-
tronics and Computer Science, mechatronics systems with an
incredible powerful computational capacity (such as personal
computers, smartphones, tablets) are nowadays available for
an increasing fraction of the world population [1]. Even
if a large variety of human-machine interfaces have been
commercialized over the last years (touch screens, eye-
trackers, EEG-based controllers, etc.) graphical user inter-
faces (GUIs) undoubtedly represent a dominant paradigm.
By relying massively on visual perception, the usage of
GUIs has set a large gap between users with and without
visual impairments; the latter group being strongly penalized
in terms of efficiency and accuracy in the usage of such
products [1]. Visual impairment is a major health issue:
according to an estimation of the World Health Organization,
more than 39 million people were blind in the 2010 [2].
Paradoxically, people suffering of blindness or other optical
diseases would benefit even more than healthy users from the
usage of mobile smart-devices, since the intrinsic capacity of
the latter in providing compensatory information about the
surrounding environment. Different solutions have been pro-
posed to improve interaction between visually impaired users
and electronic applications. One of the most explored pro-
tocols considers the design of audio user interfaces (AUIs).
Typical successful applications of this approach are text-to-
speech softwares or instrumentation for color identification
feeding audio-outputs to the users [1], [3]–[5]. An important
limitation for these systems, however, is that audio feedback
by external speakers might generate uncomfortable social
situations, while the usage of earphones is not always con-
venient and/or ergonomic. An alternative interesting solution
is to provide information by means of haptic signals and
different research groups have started to explore similar
interfaces [1], [3]–[5]. Tactile and proprioceptive receptors
covers the totality of the human body, making almost infi-
nite possibilities for creative designs. Eventually, a similar
approach allows more reserved human-machine interactions,
i.e. silent and perceived only by the user. The drawback
of haptic transmission of information is that richness and
clearness of the message is noticeably reduced if compared
to audio feedbacks. In out project we decide to merge the
advantages of AUI and Haptic communication protocols in
order to improve the perception of the external environment
for visually impaired people. In this regards, a hybrid Audio-
Tactile human machine interface was designed. Its working

principle was consist in a instrumented gloves, used by the
subject in order to explore and reach information of the
external environment. In this regards, a simple proof-of-
concept experiment is conducted: the flexion of one finger is
used to rotate a sonar, while flexing the middle finger makes
the computer to convert angle of the sonar and measured
distance (sonar to external environment) into a speech-based
message. Eventually, a vibration motor provide an instant
haptic signal to the user whether the sonar perceived an
object at a distance lower than 10 cm (simulating thus a likely
impact). Additionally, a GUIs is made in order to verify
that the audio data is compatible with those actually sensed
measured. The structure of this report is organized as follows:
in section II the experimental setup/protocol, hardware and
software are presented; in section III the achieved results
are described; in section IV discussion and conclusion are
offered. Finally, in appendix A and B it is possible to find
the full code, used in Arduino and Processing.

II. METHODS

A. Protocol

The scope of the system is to detect the distance between a
manually controlled hinge and the external environment and
to provide audio-feedback (angular position and measured
distance) when required by the user. Furthermore, in case of
a perceived imminent “impact”, i.e. when a object is detected
to a distance less than 10 cm, a small actuator is used to
provide a vibration-based alarm to the user. A radar-like GUI
is displayed on the screen in order to compare information
measured with those converted in audio format.

B. Hardware

The system is composed by two main hardware compo-
nents: (1) a processing platform capable of perceiving the
external environment; (2) an instrumented glove as user-
computer interface. The platform is composed by an Arduino
UNO, which is the control and information-processing unit,
a servo-motor (Micro Motor Servo SG90) and a sonar
(Ultrasonic Sensor HC-SR04) attached to the latter. The
glove is equipped with two flexo-sensors (Spectra Symbol
002 17 2), which are individually connected to the fore-
finger and middle finger, and a vibrator motor (HTC One
M8) which provides haptic feedback - vibrations - at the
wrist level. A detail depiction of sensors-actuator-controller
connections (breadboard) is described in fig. 1. Fig. 2 and
fig. 3 show the physical hardware implementation. Notice
that the ergonomics of the instrumented glove was improved
by adding layer of soft material and cardboard.

Fig. 1. Used hardware Fritzing
sheme

Fig. 2. physical hardware implementation

Fig. 3. physical hardware implementation

C. Software - Control Architecture

1) Arduino Code: The Arduino code controls all the sen-
sors and actuators previously described. The Arduino script
(Appendix A), after initializing all the needed variables,
is structured in two parts. (1) SETUP: the objective of
this part (from line 28 to 36) is to activate the required
pin connections highlighting their related input or output
behavior; (2) LOOP: this part of the script is cyclically
executed. First of all (between lines 43 and 59) accord-
ing to the Flexo-sensors resistance variations measurement
(due to the forefinger and middle-finger movements), we
compute the bending angles. This is done by applying the
computational methods (“resistance-to-angle”), as described
in the flexo-sensor datasheet [6]. Then, from line 62 to 65,
if the angular position increment between two consecutive
algorithm iterations is greater than 10 degrees (in absolute
value), we use a function of the servo library to apply a servo-
motor rotation imposed by the bending angle of the first
Flexo-sensor(forefinger). In other words, we used a mapping
between the finger angle to a range of motion of the servo-
motor between 0 (sonar directed totally on the right) to 180
degrees (sonar directed totally on the left). The 10 degrees
threshold, instead, represents a simple hard-coded solution to
filter unintended sensor rotation due to muscular noise - small
involuntary contractions - in the user finger. This specific
value was reached by a trial-and-error approach aimed to
optimal noise reduction. Once the angular position of the
Servo motor (and of the Sonar sensor) is reached, we call a
function called ”calculateDistance()” in order to receive the
distance of the closest obstacle (along the sensor direction)
measured by the Sonar sensor (line 68). From line 71
to 77, we use the distance value found in the last step to
alarm the user about an imminent obstacle. As matter of
facts, when the distance previously obtained is smaller than
10 cm, we activate the vibration actuator. Finally, the lines
between 80 and 93 are aimed to create a communication
between Arduino and Processing software through the serial
port. We build up a protocol in order to easily identify each
information sent by Arduino and received by Processing: the
first sent value is the angular position of the Servo-motor
(and of the Sonar sensor) which is ended by ”,” .The second
is the distance measured by the sonar sensor which is ended
by ”!”. The third is a boolean value related to bending angle
of the second Flexo-sensor (middle-finger) which is equal to
1 only if the angle is bigger than 70 degrees (second trigger
held) and zero otherwise. The end of the data package is
then indicated by ”.”.

2) Processing Code: The main aspects of the processing
code are: (1) Extract the information from the serial port
about (a) middle-finger state (1 or 0), (b) angle of the servo-
sensor system and (c) detected distance; (2) Convert state
of the middle finger to a request for audio feedback; (3)
When requested, convert information of servo angle and
measured distance in the form of speech; (4) Display the
same information by a graphical interface in order to check
the accuracy of the algorithm.

The first part is based on the simple communication
protocol that was already explained above. The ”,” and ”!”
are used as two separate indexes, which are then used to
separate angle, distance and triggering-action value. This is
done by the function ”serialEvent” (see lines 61-80).

The second part is made by introducing a if-cycle which
convert the flex motion of the user middle finger into a
”mouse click”-like action. This is coded between line 48 and
59 of the Appendix B. Notice that, the algorithm is made in
such a way that a single (and not continuous) audio feedback
is given when the middle finger is flexed (state = 1). In order
to trigger a new ”reading”, the user must first move the finger
back to its neutral state (flexion less then 70 degrees).

Text-to-speech action is made by adapting a previous
library from [7]. In summary, it define a static class which
allows to trigger the built-in ”say” (text-to-speech) command
of a Macintosh. Additionally, it allows to choose different
tonality and speed of speech (by properly defining the two
variable ”voiceIndex” and ”voiceSpeed”). This can be found
between line 181 and 240 of Appendix B. Then in line
79 a string containing the text to be read by the computer
is constantly updated with the system information above
described.

Part of the Processing code is aimed to the design of a
visual interface. This let us check whether the Audio signal
was consistent with the measured data. The graphic interface
represents a simple radar screen, based on a library retrieved
in [8]. The script is based on four functions: (1) ”drawRadar”
(which draw the radar display); (2) ”drawText” (which draws
the text and angular-distance information from the servo
motor and sensor); (3) ”drawLine” (which draws the radar
line according to the servo angle); (4) ” drawObject” (which
color the radar line of red starting from the distance of
a detected object). Notice that we limited the range of
detectable object by the visual interface to 40 cm (even if
our sensor can provide information for farther entities). All
these functions can be find in the lines between 83 and 177
of Appendix B.

III. RESULTS

As it is possible to see from the movie attached to this
pdf file, the system worked correctly: the servo rotation
was properly mapped to the flexion of the forefinger (in
a continuous mapping approach); the graphic interface cor-
rectly visualize the system state; the speech information were
consistent with those displayed and were triggered once per
each flexion of the middle finger; the vibro-tactile feedback
was well received by the user only when a distance of less the
10 cm was detected. Furthermore, unintended sensor rotation
due to innate inability of human to maintain body segments
perfectly steady - in this case muscular noise in the forefinger
- were minimal.

IV. DISCUSSION AND CONCLUSION

The results obtained are shows that the thought device has
the potential to tackle the interface issues described in the
introduction part. However, it is important to remark a set

of limitations encountered. First, even if we try to optimize
as possible the glove ergonomics, issues in wearing it still
remains. Future applications should present more reliable
and intuitive wear in-off solution. Secondly, we limited the
exploration of the external environment to 1 degrees of
freedom problem, i.e. static rotation of a sensor. To allowing
a human to be able to orientate him/herself in a complex
environment, this system provide to limited information.
However, the goal here was to provide a proof-of-concept
experiment in order to test our haptic-audio feedback con-
cept. In this regards, the solution provide very satisfactory
results. Finally, the text-to-speech algorithm relies on the
use of a Macintosh, since it is based on its built-in terminal
function “say” (for more detail see [7]). Regardless of these
limitations, our instrumented glove and sonar sensor shows
that the usage of a haptic-based interface for interact with
electronics might be an interesting approach for those people
that can not rely on vision, and that this protocol can work
in harmony with more rich signal such as audio feedback.
Future work should be aimed to convert the software into
a smartphone application, allowing a mobile version of
the fixed platform. Additionally, decoupling the glove and
the processing platform could be done by implementing a
wireless connection, here not explored because of the time
constraints. Richness of information could be achieved by
implementing a parallel sensor (for instance one sensor for
each shoulder and one glove per each hand), so that stereo-
exploration of the external environment might be feasible.
However, exploring mobile solutions requires also to deal
with important aspects such as user-induced vibrations (such
as during walking) and power supplies.

V. APPENDIX A: ARDUINO FULL-CODE

1 # i n c l u d e <Servo . h>
2

3 / / D e f i n e s T i r g and Echo p i n s o f t h e U l t r a s o n i c Se ns o r
4 c o n s t i n t t r i g P i n = 8 ;
5 c o n s t i n t echoP in = 7 ;
6

7 l ong d u r a t i o n ;
8 i n t d i s t a n c e ;
9 i n t degree MOUVEMENT PIN int ;

10 i n t deg ree VOICE PIN in t ;
11

12 / / C r e a t e s two i n t v a r i a b l e s one f o r t h e c u r r e n t a n g l e and one f o r t h e a n g l e o f t h e l a s t s t e p
13 i n t a n g l e c u r r = 0 ;
14 i n t a n g l e p r e c = 0 ;
15

16 Servo myServo ; / / C r e a t e s a s e r v o o b j e c t f o r c o n t r o l l i n g t h e s e r v o motor
17

18 c o n s t i n t FLEX MOUVEMENT PIN = A0 ;
19 c o n s t i n t FLEX VOICE PIN = A1 ;
20 c o n s t i n t VIBRATION PIN = 4 ;
21 c o n s t f l o a t VCC = 4.98 ; / / Measured v o l t a g e o f Ardunio 5V l i n e
22 c o n s t f l o a t R DIV = 9800.0 ; / / Measured r e s i s t a n c e o f 3 . 3 k r e s i s t o r
23 c o n s t f l o a t STRAIGHT RESISTANCE = 28500.0 ; / / r e s i s t a n c e when s t r a i g h t
24 c o n s t f l o a t BEND RESISTANCE = 60000.0 ; / / r e s i s t a n c e when f i n g e r i s c o m p l e t e l y bended
25

26

27

28 vo id s e t u p () {
29 pinMode (t r i g P i n , OUTPUT) ; / / S e t s t h e t r i g P i n as an Outpu t
30 pinMode (echoPin , INPUT) ; / / S e t s t h e echoP in as an I n p u t
31 pinMode (FLEX MOUVEMENT PIN, INPUT) ;
32 pinMode (FLEX VOICE PIN , INPUT) ;
33 pinMode (VIBRATION PIN , OUTPUT) ;
34 S e r i a l . b e g i n (9600) ;
35 myServo . a t t a c h (12) ; / / D e f i n e s on which p i n i s t h e s e r v o motor a t t a c h e d
36 }
37

38

39

40

41 vo id loop () {
42

43 / / F l e x o s e n s o r s : d e f i n i t i o n , r e s i s t a n c e v a r i a t i o n −−> a n g l e v a r i a t i o n
44

45 i n t flexADC MOUVEMENT PIN = ana logRead (FLEX MOUVEMENT PIN) ;
46 f l o a t flexV MOUVEMENT PIN = flexADC MOUVEMENT PIN * VCC / 1023.0 ;
47 f l o a t flexR MOUVEMENT PIN = R DIV * (VCC / flexV MOUVEMENT PIN − 1.0) ;
48 f l o a t angle MOUVEMENT PIN = map (flexR MOUVEMENT PIN , STRAIGHT RESISTANCE , BEND RESISTANCE , 10 , 170)

;
49 degree MOUVEMENT PIN int = i n t (angle MOUVEMENT PIN) ;
50

51 a n g l e c u r r = degree MOUVEMENT PIN int ;
52

53

54 i n t flexADC VOICE PIN = ana logRead (FLEX VOICE PIN) ;
55 f l o a t flexV VOICE PIN = flexADC VOICE PIN * VCC / 1023.0 ;
56 f l o a t flexR VOICE PIN = R DIV * (VCC / flexV VOICE PIN − 1.0) ;
57 f l o a t angle VOICE PIN = map (flexR VOICE PIN , STRAIGHT RESISTANCE , BEND RESISTANCE , 10 , 90) ;
58 degree VOICE PIN in t = i n t (angle VOICE PIN) ;
59

60

61

62 / / We a l l o w t h e Servo r o t a t i o n on ly i f t h e f i n g e r bend ing i s c l e a r : t h i s i s done i n o r d e r t o remove
o s c i l l a t i o n s i n s e r v o motor p o s i t i o n s

63 i f (a n g l e c u r r >= 10 + a n g l e p r e c | | a n g l e c u r r <= a n g l e p r e c − 10) {
64 myServo . w r i t e (degree MOUVEMENT PIN int) ;
65 }
66

67

68 d i s t a n c e = c a l c u l a t e D i s t a n c e () ;
69

70

71 / / V i b r a t i o n s e n s o r

72 i f (d i s t a n c e < 10) {
73 d i g i t a l W r i t e (VIBRATION PIN , HIGH) ;
74 d e l a y (300) ;
75 }
76

77 d i g i t a l W r i t e (VIBRATION PIN , LOW) ;
78

79

80 / / Sends i n f o r m a t i o n t h r o u g h S e r i a l P o r t
81 S e r i a l . p r i n t (degree MOUVEMENT PIN int) ; / / Sends t h e c u r r e n t d e g r e e i n t o t h e S e r i a l P o r t
82 S e r i a l . p r i n t (” , ”) ; / / Sends a d d i t i o n c h a r a c t e r r i g h t n e x t t o t h e p r e v i o u s v a l u e needed l a t e r i n t h e

P r o c e s s i n g IDE f o r i n d e x i n g
83 S e r i a l . p r i n t (d i s t a n c e) ; / / Sends t h e d i s t a n c e v a l u e i n t o t h e S e r i a l P o r t
84 S e r i a l . p r i n t (” ! ”) ; / / Sends a d d i t i o n c h a r a c t e r r i g h t n e x t t o t h e p r e v i o u s v a l u e needed l a t e r i n t h e

P r o c e s s i n g IDE f o r i n d e x i n g
85

86

87 / / Audio f e e d b a c k
88 i f (deg ree VOICE PIN in t > 70) {
89 S e r i a l . p r i n t (” 1 ”) ;
90 S e r i a l . p r i n t (” . ”) ;
91 } e l s e {
92 S e r i a l . p r i n t (” 0 ”) ;
93 S e r i a l . p r i n t (” . ”) ;}
94

95

96 a n g l e p r e c = a n g l e c u r r ;
97

98 d e l a y (50) ;
99 }

100

101

102

103 / / F u n c t i o n which c a l c u l a t e s t h e d i s t a n c e
104 i n t c a l c u l a t e D i s t a n c e () {
105 d i g i t a l W r i t e (t r i g P i n , LOW) ;
106 d e l a y M i c r o s e c o n d s (2) ;
107 d i g i t a l W r i t e (t r i g P i n , HIGH) ;
108 d e l a y M i c r o s e c o n d s (10) ; / / S e t s t h e t r i g P i n on HIGH s t a t e f o r 10 micro s e c o n d s
109 d i g i t a l W r i t e (t r i g P i n , LOW) ;
110 d u r a t i o n = p u l s e I n (echoPin , HIGH) ; / / Reads t h e echoPin , r e t u r n s t h e sound wave t r a v e l t ime i n

m i c r o s e c o n d s
111 d i s t a n c e = d u r a t i o n *0.034 /2 ;
112 r e t u r n d i s t a n c e ;
113 }

VI. APPENDIX B: PROCESSING FULL-CODE

1 /* Arduino Radar Project
2 */
3 import processing.serial.*; // imports library for serial communication
4 import java.awt.event.KeyEvent; // imports library for reading the data from the serial port
5 import java.io.IOException;
6 Serial myPort; // defines Object Serial
7

8 String angle="";
9 String distance="";

10 String data="";
11 String trigger;
12 String noObject;
13 float pixsDistance;
14 int iAngle, iDistance, iTrigger;
15 int iTrigger_new = 0;
16 int index1=0;
17 int index2=0;
18 PFont orcFont;
19 String script ;
20 int voiceIndex = 1;
21 int voiceSpeed = 230;
22

23 void setup() {
24

25 size (1300, 700); // Initialization Java Window
26 smooth();
27 myPort = new Serial(this,Serial.list()[1], 9600); // starts the serial communication
28 myPort.bufferUntil('.'); // reads the data from the serial port up to the character '.'. So

actually it reads this: angle,distance and trigger.
29 orcFont = loadFont("OCRAExtended-30.vlw");
30 }
31

32 void draw() {
33

34 // Drawing a "radar" display to verify the accuracy of the audio feedback //
35 fill(98,245,31);
36 textFont(orcFont);
37 // simulating motion blur and slow fade of the moving line
38 noStroke();
39 fill(0,4);
40 rect(0, 0, width, height-height*0.065);
41 fill(98,245,31); // green color
42 // calls the functions for drawing the radar
43 drawRadar();
44 drawLine();
45 drawObject();
46 drawText();
47

48 // Detecting Audio-Trigger Signal//
49 /* Functionality Explained: two variables are used in order to let the bending action of

the middle finger
50 to work as a "mouse click". iTrigger is the signal from the device: "1" means that the user

is flexing is finger,
51 while "0" indicates no action from the user. When the user flex is finger for the first

time, an audio feeback is
52 triggered. However, to avoid that the computer continues to talk for the all duration of

figer flexion, iTrigger_new is used.
53 Thanks to the below additional condition, each time the finger is flexed only one "read" is

made by the PC. To trigger a
54 new "reading", the user needs to move his or her middle finger back to the resting position

(not flexed). */
55 if (iTrigger == 1 && iTrigger_new != iTrigger){
56 TextToSpeech.say(script, TextToSpeech.voices[voiceIndex], voiceSpeed); // This command

makes the computer to convert the text into speech
57 iTrigger_new = iTrigger;}
58 else if (iTrigger == 0 && iTrigger_new != iTrigger){

59 iTrigger_new = iTrigger;}
60 }
61

62 void serialEvent (Serial myPort) { // starts reading data from the Serial Port
63 // reads the data from the Serial Port up to the character '.' and puts it into the String

variable "data".
64 data = myPort.readStringUntil('.');
65 data = data.substring(0,data.length()-1);
66

67 index1 = data.indexOf(","); // find the character ',' and puts it into the variable "index1
"

68 index2 = data.indexOf("!"); // find the character '!' and puts it into the variable "index2
"

69 angle= data.substring(0, index1); // read the data from position "0" to position of the
variable index1 (thats the value of the angle)

70 distance= data.substring(index1+1, index2); // read the data from position "index1" to the
"index2" (thats the value of the distance)

71 trigger= data.substring(index2+1, data.length()); // read the data from position "index2"
to the end of the data (thats the triggering command)

72

73 // converts the String variables into Integer
74 iAngle = int(angle);
75 iDistance = int(distance);
76 iTrigger = int(trigger);
77

78 // The string text that is converted into speech is fed with current information about
measured distance and servo-motor angular position

79 script = angle+"degree and"+distance+"centimeter";
80 }
81

82

83 void drawRadar() {
84 pushMatrix();
85 translate(width/2,height-height*0.074); // moves the starting coordinats to new location
86 noFill();
87 strokeWeight(2);
88 stroke(98,245,31);
89 // draws the arc lines
90 arc(0,0,(width-width*0.0625),(width-width*0.0625),PI,TWO_PI);
91 arc(0,0,(width-width*0.27),(width-width*0.27),PI,TWO_PI);
92 arc(0,0,(width-width*0.479),(width-width*0.479),PI,TWO_PI);
93 arc(0,0,(width-width*0.687),(width-width*0.687),PI,TWO_PI);
94 // draws the angle lines
95 line(-width/2,0,width/2,0);
96 line(0,0,(-width/2)*cos(radians(30)),(-width/2)*sin(radians(30)));
97 line(0,0,(-width/2)*cos(radians(60)),(-width/2)*sin(radians(60)));
98 line(0,0,(-width/2)*cos(radians(90)),(-width/2)*sin(radians(90)));
99 line(0,0,(-width/2)*cos(radians(120)),(-width/2)*sin(radians(120)));

100 line(0,0,(-width/2)*cos(radians(150)),(-width/2)*sin(radians(150)));
101 line((-width/2)*cos(radians(30)),0,width/2,0);
102 popMatrix();
103 }
104

105 void drawObject() {
106 pushMatrix();
107 translate(width/2,height-height*0.074); // moves the starting coordinats to new location
108 strokeWeight(9);
109 stroke(255,10,10); // red color
110 pixsDistance = iDistance*((height-height*0.1666)*0.025); // covers the distance from the

sensor from cm to pixels
111 // limiting the range to 40 cms
112 if(iDistance<40){
113 // draws the object according to the angle and the distance
114 line(pixsDistance*cos(radians(iAngle)),-pixsDistance*sin(radians(iAngle)),(width-width

*0.505)*cos(radians(iAngle)),-(width-width*0.505)*sin(radians(iAngle)));
115 }
116 popMatrix();
117 }

118

119 void drawLine() {
120 pushMatrix();
121 strokeWeight(9);
122 stroke(30,250,60);
123 translate(width/2,height-height*0.074); // moves the starting coordinats to new location
124 line(0,0,(height-height*0.12)*cos(radians(iAngle)),-(height-height*0.12)*sin(radians(iAngle

))); // draws the line according to the angle
125 popMatrix();
126 }
127

128

129 void drawText() { // draws the texts on the screen
130

131 pushMatrix();
132 if(iDistance>40) {
133 noObject = "Out of Range";
134 }
135 else {
136 noObject = "In Range";
137 }
138 fill(0,0,0);
139 noStroke();
140 rect(0, height-height*0.0648, width, height);
141 fill(98,245,31);
142 textSize(25);
143

144 text("10cm",width-width*0.3854,height-height*0.0833);
145 text("20cm",width-width*0.281,height-height*0.0833);
146 text("30cm",width-width*0.177,height-height*0.0833);
147 text("40cm",width-width*0.0729,height-height*0.0833);
148 textSize(40);
149 text("Object: " + noObject, width-width*0.875, height-height*0.0277);
150 text("Angle: " + iAngle +" ", width-width*0.48, height-height*0.0277);
151 text("Distance: ", width-width*0.26, height-height*0.0277);
152 if(iDistance<40) {
153 text(" " + iDistance +" cm", width-width*0.225, height-height*0.0277);
154 }
155 textSize(25);
156 fill(98,245,60);
157 translate((width-width*0.4994)+width/2*cos(radians(30)),(height-height*0.0907)-width/2*sin(

radians(30)));
158 rotate(-radians(-60));
159 text("30 ",0,0);
160 resetMatrix();
161 translate((width-width*0.503)+width/2*cos(radians(60)),(height-height*0.0888)-width/2*sin(

radians(60)));
162 rotate(-radians(-30));
163 text("60 ",0,0);
164 resetMatrix();
165 translate((width-width*0.507)+width/2*cos(radians(90)),(height-height*0.0833)-width/2*sin(

radians(90)));
166 rotate(radians(0));
167 text("90 ",0,0);
168 resetMatrix();
169 translate(width-width*0.513+width/2*cos(radians(120)),(height-height*0.07129)-width/2*sin(

radians(120)));
170 rotate(radians(-30));
171 text("120 ",0,0);
172 resetMatrix();
173 translate((width-width*0.5104)+width/2*cos(radians(150)),(height-height*0.0574)-width/2*sin

(radians(150)));
174 rotate(radians(-60));
175 text("150 ",0,0);
176 popMatrix();
177 }
178

179 // the text to speech class //

180 import java.io.IOException;
181

182 static class TextToSpeech extends Object {
183

184 // Store the voices, makes for nice auto-complete in Eclipse
185

186 // male voices
187 static final String ALEX = "Alex";
188 static final String BRUCE = "Bruce";
189 static final String FRED = "Fred";
190 static final String JUNIOR = "Junior";
191 static final String RALPH = "Ralph";
192

193 // female voices
194 static final String AGNES = "Agnes";
195 static final String KATHY = "Kathy";
196 static final String PRINCESS = "Princess";
197 static final String VICKI = "Vicki";
198 static final String VICTORIA = "Victoria";
199

200 // novelty voices
201 static final String ALBERT = "Albert";
202 static final String BAD_NEWS = "Bad News";
203 static final String BAHH = "Bahh";
204 static final String BELLS = "Bells";
205 static final String BOING = "Boing";
206 static final String BUBBLES = "Bubbles";
207 static final String CELLOS = "Cellos";
208 static final String DERANGED = "Deranged";
209 static final String GOOD_NEWS = "Good News";
210 static final String HYSTERICAL = "Hysterical";
211 static final String PIPE_ORGAN = "Pipe Organ";
212 static final String TRINOIDS = "Trinoids";
213 static final String WHISPER = "Whisper";
214 static final String ZARVOX = "Zarvox";
215

216 // throw them in an array so we can iterate over them / pick at random
217 static String[] voices = {
218 ALEX, BRUCE, FRED, JUNIOR, RALPH, AGNES, KATHY,
219 PRINCESS, VICKI, VICTORIA, ALBERT, BAD_NEWS, BAHH,
220 BELLS, BOING, BUBBLES, CELLOS, DERANGED, GOOD_NEWS,
221 HYSTERICAL, PIPE_ORGAN, TRINOIDS, WHISPER, ZARVOX
222 };
223

224 // this sends the "say" command to the terminal with the appropriate args
225 static void say(String script, String voice, int speed) {
226 try {
227 Runtime.getRuntime().exec(new String[] {"say", "-v", voice, "[[rate " + speed + "]]" +

script});
228 }
229 catch (IOException e) {
230 System.err.println("IOException");
231 }
232 }
233

234 // Overload the say method so we can call it with fewer arguments and basic defaults
235 static void say(String script) {
236 // 200 seems like a resonable default speed
237 say(script, ALEX, 200);
238 }
239

240 }

REFERENCES

[1] Soviak, A., Borodin, A., Ashok, V., Borodin, Y., Puzis, Y., & Ramakrishnan, I. V. (2016, October). Tactile Accessibility: Does Anyone Need a Haptic
Glove?. In Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 101-109). ACM.

[2] Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. British Journal of Ophthalmology, 96(5), 614-618.
[3] Soviak, A. (2015, October). Haptic Gloves Prototype for Audio-Tactile Web Browsing. In Proceedings of the 17th International ACM SIGACCESS

Conference on Computers & Accessibility (pp. 363-364). ACM.
[4] Woniak, P., Knaving, K., Obaid, M., Carcedo, M. G., nler, A., & Fjeld, M. (2015, March). ChromaGlove: a wearable haptic feedback device for

colour recognition. In Proceedings of the 6th Augmented Human International Conference (pp. 219-220). ACM.
[5] Soviak, A. (2015, May). Haptic gloves for audio-tactile web accessibility. In Proceedings of the 12th Web for All Conference (p. 40). ACM.
[6] Flex Sensor 2.2”. (n.d.). Retrieved November 16, 2017, from https://learn.sparkfun.com/tutorials/flex-sensor-hookup-guide
[7] Frontier Nerds: An ITP Blog. (n.d.). Retrieved November 16, 2017, from http://www.frontiernerds.com/text-to-speech-in-processing
[8] 45. Arduino sonar radar con processing. (n.d.). Retrieved November 16, 2017, from https://www.progettiarduino.com/45-arduino-sonar-radar-con-

processing.html

