PVlite

A simulator of PV systems applications

User's manual

Javier Muñoz Cano Instituto de Energía Solar Universidad Politécnica de Madrid *PVlite,* version 2.3 <u>https://blogs.upm.es/javiermunoz/</u>

Author: Javier Muñoz Cano. Instituto de Energía Solar. Universidad Politécnica de Madrid.

Department address:

Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada.

ETSI Diseño Industrial (ETSIDI).

C/ Ronda de Valencia, 3.

28012 Madrid (Spain).

Tel: +34 91 06 77567 Email: javier.munoz@upm.es

Copyright © 2024 Javier Muñoz Cano. All rights reserved.

1 Introduction	4
1-1 Overview	4
1-2 Installation and execution	4
2 Input data	5
2-1 Introduction	5
2-2 Site	6
2-3 Meteo	7
2-4 PVgen	8
2-5 Inverter	9
2-6 Wiring	11
2-7 Battery	11
2-8 Load	12
2-9 Genset	13
2-10Wind	14
2-11 Pumping	15
2-12Options	19
3 Simulation results	
3-1 Introduction	
3-2 Output variables	
3-2-1 Astronomical variables	
3-2-2 Meteorological variables	21
3-2-3 PV system	
3-3 Sankey diagrams	27
4 Simulation exercises	
4-1 Introduction	
4-2 Exercise 1	
4-3 Exercise 2	
4-4 Exercise 3	
4-5 Exercise 4	
4-6 Exercise 5	
References	

INDEX

1 Introduction

1-1 Overview

This guide describes how to install, execute and use PVlite. The guide also describes what are the required input data (chapter 2) and simulation results (chapter 3). Chapter 4 includes some simulation exercises for advanced users, which can write their own programs using PVlite scripts. Models and algorithms implemented in PVlite are described in [1]

PVlite is written in standard Matlab language. The source code is essentially a large script, divided in several subscripts. A version for Octave is also available. Previous developed versions of this simulator (IESPRO, SISIFO, and IESPRO2) were very structured, but this light version has few functions to facilitate the reading of the code and the access to nearly all the variables calculated by the program from the workspace.

1-2 Installation and execution

First, download Matlab© or Octave versions of PVlite from <u>https://blogs.upm.es/javiermunoz/</u> and unzip the file into any folder.

Second, open Matlab© or Octave, select the previous folder in the program path, and run the script *pvlite* from the command line

>> pvlite

The program will ask for selecting an input data file, which contains the required data to perform a simulation. PVlite has not a graphical user interface and the required input data is read from an excel sheet (*.xlsx).

Several examples of input data templates with the name "inputdata_application.xlsx" are available in the unzipped folder, which can be selected for simulation. To save your own projects, just edit one of these files and save it with a different name.

2-1 Introduction

As mentioned above, PVlite has not graphical interfaces and the input data is read from an excel sheet, which has the tabs indicated in Table 1. Next sections detail the input parameters included in each one of these tabs.

Tab	Input data
Site	Geographical data of the site
Meteo	Meteorological data
PVgen	Characteristics of the PV generator and mounting structures
	(static or solar trackers).
Inverter	Characteristics and power efficiency of the inverter.
Wiring	Power losses in both DC and AC wiring.
Battery	Capacity and regulation thresholds of the battery.
Load	Energy consumption and daily load profile.
Genset	Characteristics of the generator set and fuel consumption
	curve.
Wind	Characteristics of the wind turbine and power curve.
Pumping	Characteristics of the water source and the centrifugal
	motorpump.
Options	Simulation options.

Table 1. Tabs of the excel sheet.

2-2 Site

This tab contains the geographical data of the location, which is specified by the parameters given in Table 2. Besides the geographical coordinates of latitude and longitude, the altitude of the site is required for calculating the air mass.

The standard longitude is required for calculating the solar hour when typical meteorological years (TMY) are selected for simulation, which use as reference the official (clock) time.

GEOGRAPHICAL DATA				
Parameter	Value	Units	Description	
Latitude	40,7	Degree	Latitude of the location, positive in the Northern Hemisphere and negative in the Southern Hemisphere.	
Longitude	-3,7	Degree	Longitude of the location, negative towards West and positive towards East.	
Altitude	667	Meter	Altitude of the location over sea level.	
StandardLongitude	0	Degree	Standard longitude (multiple of 15°). Negative towards West and positive towards East.	

Table 2. Geographical parameters (data for Madrid).

2-3 Meteo

PVlite simulates with time series of horizontal irradiances and temperatures, which are selected using the parameters indicated in Table 3. The *InputData* parameter allows select between monthly average values or hourly values coming from TMY files. The *TimeSeries* indicates the mathematical method for generating the synthetic time series when monthly averages are selected (*InputData* = 1, 2 or 4).

Table 3. Selection of the meteorological input data.

METEOROLOGICAL INPUT DATA						
Parameter	Value	Units Description				
InputData	1	 Meteorological input data. Options: 1-Monthly averages from the table below. 2-Monthly averages obtained from PVGIS TMY. 3-Hourly values from PVGIS TMY. 4-Monthly averages obtained from USA-TMY3 5-Hourly values from USA-TMY3. 				
TimeSeries	1	Synthetic method for generating the times series when monthly averages are selected as input data. Options: 1-Mean days 2-Aguiar				

	Gdm0	Tmm	TMm	The program simulates with data of
Month	[Wh/m ²]	[ºC]	[ºC]	this table when $InputData = 1$ is
January	2080	3	10	selected. Where:
February	3130	3,1	12,7	
March	4690	5,3	16,3	<i>Gdm</i> 0 is the monthly average of
April	5600	6,2	17,8	daily global horizontal irradiation, Wh/m ²
May	6640	10,2	22	
June	7670	15,1	29	<i>Tmm</i> is the monthly average of
July	8030	17	31,7	minimum daily temperature, ^o C
August	7000	16,5	31,2	
September	5370	13,3	26,1	TMm is the monthly average of
October	3700	10,4	20,2	maximum daily temperature, ^o C
November	2390	6,1	13,3	
December	1910	3,4	10	

2-4 PVgen

This tab contains the characteristics of the PV generator and the type of mounting structure, as described in Table 4. The mounting structure is selected with the parameter Mounting, which allows to choose between two static structures and three sun trackers. Depending on the selected mounting structure, additional parameters should be indicated below.

In the case of the delta static structure, the PV generator is composed by two strings, one oriented toward the Est and the other one oriented toward the West. Each string has its own structure with the same inclination regarding the horizontal and a nominal PV power equal to PVnom/2.

PV GENE	ERAT	OR		
Parameter	Value	Units	Description	
PVnom	5	kWp	Nominal PV power.	
CVPT	0,5	%· ^⁰ C ⁻¹	Coefficient of Variation of PV module Power with Temperature (absolute value).	
NOCT	48	<u>⁰</u> C	Nominal Operation Cell Temperature	
Rth	0,035	^⁰ C·m²/W	Thermal resistance. This parameter is calculated as [NOCT-20]/800, but other values can be chosen depending on the mounting and ventilation of PV modules.	
Mounting st	ructure			
Mounting	1		Type of mounting structure. Options: 1-Static: ground or roof. 2-Static: delta. 3-Tracker: One axis N-S horizontal. 4-Tracker: One axis vertical (azimutal). 5-Tracker: Two axis.	
Static ground	d or roo	f (Mount	ing=1)	
Inclination	35	Degree	Inclination of the modules regarding the horizontal, from 0° to 90°.	
Orientation	0	Degree	Orientation of the modules towards the Equator. Zero towards the South in the Northern Hemisphere (North in the Southern Hemisphere), negative towards the East, and positive towards the West.	

Table 4.	Characteristics	of the PV	generator.
----------	-----------------	-----------	------------

Static delta (Mounting=2)

Inclination	45	Degree	Inclination	of	the	modules	regarding	the
			horizontal,	from	ı 0º to	90º. The sa	ame for East	and
			West struct	rures	5.			

Azimutal tracking (Mounting=4)

Inclination 40 *Degree* Inclination of the modules regarding the horizontal, from 0° to 90° .

2-5 Inverter

This tab indicates the characteristics of the inverter: nominal power (*PInom*), maximum power (*PImax*), and the power efficiency curve (see Table 5). This inverter is the same for any application simulated by PVlite. Hence, the indicated parameters are those of grid-connected inverter, a stand-alone battery inverter or the variable-frequency drive (VFD) of a water pumping system.

The power efficiency curve can be specified by model parameters k0, k1 and k2, which can be calculated introducing in the script "InverterEfficiency.m" (or "Octave_InverterEfficiency.m" in Octave) the points of the power efficiency curve of the inverter. This script also calculates two yearly energy efficiencies of the inverter, which are usually provided by the manufacturers.

The European η_{EUR} is calculated as

$$\eta_{\text{EUR}} = 0.03\eta_{\text{I}}(0.05) + 0.06\eta_{\text{I}}(0.1) + 0.13\eta_{\text{I}}(0.2)$$
(1)
+ 0.1 $\eta_{\text{I}}(0.3) + 0.48\eta_{\text{I}}(0.5) + 0.2\eta_{\text{I}}(1)$

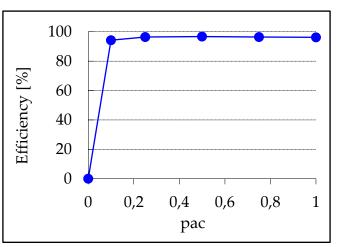
Where $\eta_{I}(p_{ac})$ is the power efficiency of the inverter at the normalized output power $p_{ac} = P_{AC}/P_{I,NOM}$, where P_{AC} is the output power and $P_{I,NOM}$ is the nominal power of the inverter (called *PInom* in the source code).

The second parameter is the yearly energy efficiency η_{CEC} , which has been proposed by the California Energy Commission (CEC). It is calculated using weighting coefficients that are more suitable for locations with higher annual irradiation:

$$\eta_{\text{CEC}} = 0.04\eta_{\text{I}}(0.1) + 0.05\eta_{\text{I}}(0.2) + 0.12\eta_{\text{I}}(0.3) + 0.21\eta_{\text{I}}(0.5) + 0.53\eta_{\text{I}}(0.75) + 0.05\eta_{\text{I}}(1)$$
⁽²⁾

These efficiencies are just informative and PVlite calculates the annual energy efficiency of the inverter $\eta_{I,a}$ from the simulated power variables as

$$\eta_{I,a} = \frac{E_{ACa}}{E_{DCa}} = \frac{\int_{Year} P_{AC} dt}{\int_{Year} P_{DC} dt}$$
(3)


Where E_{ACa} is the annual AC energy at the inverter output and E_{DCa} is the annual DC energy at the inverter input, which are calculated throughout the year, respectively, integrating the simulated AC power P_{AC} and DC power P_{DC} of the inverter.

This tab also allows to introduce the power efficiency points on the bottom table by selecting the option InverterCurve = 2. In this case, the program calculates internally the parameters k0, k1 and k2.

Inverter			
Parameters	Value	Units	Description
PInom	5	kW	Nominal output power of the inverter.
PImax	5	kW	Maximum output power of the inverter.
InverterCurve Model parameters	1	-	 Specification of the power efficiency curve. Options: 1. Model parameters (k0, k1 and k2). 2. Points of the power efficiency curve (the program calculates k0, k1 and k2 using the power efficiency points indicated in the table).
k0	0,01	_	No-load inverter losses.
k1	0,05	-	Linear inverter losses.
k2	0,08	-	Joule inverter losses.

Table 5.	Characteristics of	the inverter.

Points of the power efficiency curve				
pac	Efficiency			
	[%]			
0	0			
0,1	94,2			
0,25	96,4			
0,5	96,7			
0,75	96,4			
1	96,2			

2-6 Wiring

This tab indicates the power wiring losses in DC side (in the PV generator circuit) and AC side (between the inverter and the AC loads).

These losses are specified by the parameters *WDC* and *WAC* (Table 6) as a percentage of, respectively, the nominal power of the PV generator, *PVnom*, and the nominal power of the inverter, *PInom*.

Wiring			
Parameter	Value	Units	Description
WDC	1	%	DC wiring losses
WAC	1	%	AC wiring losses

Table 6. Specification of wiring losses.

2-7 Battery

The battery is modelled as an ideal storage (100% efficient) with a given capacity *CBAT*, in kWh. Besides, for stand-alone PV systems, there are two regulation thresholds called *SOCmax* and *SOCmin*.

SOCmax is the maximum permitted state of charge (SOC). When the SOC reaches this level, the PV generator is disconnected from the system. By default, SOCmax = 1 (fully charged battery).

SOCmin is the minimum permitted state of charge. When the SOC decreases until this level, the inverter and the AC loads are disconnected from the system. By default, SOCmin = 0 (fully discharged battery).

Using these parameters, the useful capacity of the battery C_U is given by:

$$C_{\rm U} = (SOC_{\rm max} - SOC_{\rm min})C_{\rm BAT}$$

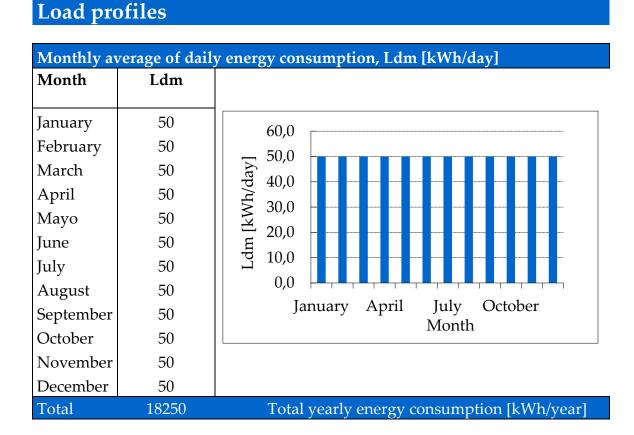
Battery (Stand-alone PV systems)ParameterValueUnitsDescriptionCBAT150kWhBattery capacitySOCmax1-Maximum state of charge.SOCmin0-Minimum state of charge.

-	D	
Table 7.	Battery	model.

(4)

2-8 Load

The energy consumption monthly average of daily consumption is indicated by the parameter *Ldm*, in kWh, which can be different for each month (see Table 8).


The daily variation of the power consumption is assumed to be the same for all the days of the year, and it is specified by 24 hourly load factors F(h), see Table 9, which indicates the fraction of *Ldm* consumed during each hour:

$$P_{LOAD}(h) = F(h) \cdot L_{dm}$$
 (h = 1, 2, ...24) (5)

A warning message appears if the sum of these 24 hourly factors is not the unity. Besides, the user must ensure that the maximum power of the inverter (*PImax*) is higher than the peak load demand, which is given by

$$P_{l,max} \ge max \left(F(h)\right) \cdot L_{dm} \tag{6}$$

If the last condition is not fulfilled the simulation will be stopped.

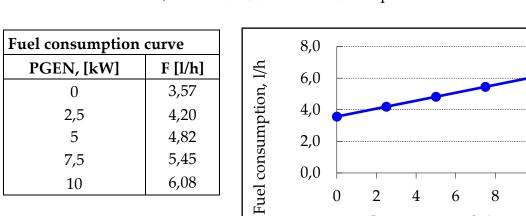
Table 8. Monthly energy consumption.

12

Normalised daily load profile				
Hour, h	F(h)	F(h) indicates the fraction of daily energy consumed during the hour h.		
1	0,058	(For a constant load profile write F(h)=1/24)		
2	0,032	0.200		
3	0,018	£ ^{0,200}		
4	0,015	(i) Hourly fraction Hourly (ii) (ii) (iii)		
5	0,014			
6	0,018	u 0,100		
7	0,034	É 0,050		
8	0,030	пор		
9	0,019			
10	0,017	0 4 8 12 16 20 24		
		Hour		

Table 9. Daily load profile.

2-9 Genset


The generator set (genset) is characterized by its nominal power PGENnom, in kW. In hybrid systems with DC bus, it is assumed that the inverter is sized to supply the peak load AC demand and the genset is only connected for charging the battery, operating at its nominal power, when the state of charge *SOC* decreases below a certain minimum level (*SOCstart*). And it remains in operation until the battery recovers until a given *SOC* level *SOCstop*, which is higher than *SOCstart*. Both *SOCstart* and *SOCstop* are also indicated by the user in this tab (see Table 10).

Generator set			
Parameter	Value	Units	Description
PGENnom	10	kW	Nominal power of the genset
SOCstart	0,2	-	State of charge for connecting the
SOCstop	0,3	-	genset State of charge for disconnecting the genset

The fuel consumption, expressed in L/h, is modelled by a linear equation [1] with the default fitting parameters (b0i, b1i, b0s and b1s) indicated in Table 11, which can be modified by the user. For example, a more simple and popular model is obtained using only the coefficients b1i and b0s (and setting b0i=b1s=0).

Fuel consumption	Value	Units	Description
b0i	3,36719	(<i>l/h</i>)	Intercept coefficient 0
b1i	0,02031	(l/h)/kWnom	Intercept coefficient 1
b0s	0,25098	(<i>l/h</i>)/kW	Slope coefficient 0
b1s	-1,18E-05	(l/h)/(kWnom·kW)	Slope coefficient 1

Table 11. Default parameters for the fuel consumption model.

5,45

6,08

2-10 Wind

7,5

10

This tab contains the characteristics of the wind turbine indicated in Table 12, which is modelled using the power curve described in [1]

0,0

0

2

4

Genset power, kW

6

8

10

Table 12. Characteristics of the wind turbine.
--

Wind turb	ine		
Parameter	Value	Units	Description
PWnom	20	kW	Rated electrical power
Vnom	10	m/s	Rated wind speed
Vci	3	m/s	Cut-in wind speed
Vco	15	m/s	Cut-out wind speed
Cpeq	0,0206	$kW/(m/s)^3$	Equivalent power coefficient
Power curve		25,0	
Wind speed,	Power,	20,0	
m/s	kW	15,0	
0	0,00	A 15,0	
3	0,00	64 5,0	
4,4	1,20	0,0	
5,8	3,46	0	10 20
	••••		Wind speed, m/s

2-11 Pumping

This tab contains the parameters that describe the characteristics of the water source (well, borehole, etc.), the water tank and the motorpump. Figure 1 displays the characteristics of the water source, where it is assumed that a submerged motor pump elevates the water from the well to a water storage tank. The required parameters for simulation are indicated in Table 13, whose definitions and corresponding models are detailed in [1] The water tank capacity in m³ is specified by the parameter *WTC*. However, in this version it is assumed that all the water flow is consumed instantaneously by the users. Hence, the tank never becomes full and its capacity, from the point of view of the system, can be considered as infinite.

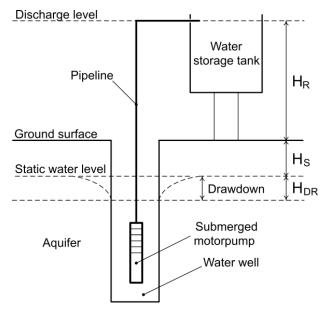


Figure 1. Characteristics of the water source.

Well/borehole	Value	Units	Description
Hs	12	т	Static head
Qtest	5	m^3/h	Constant test flow
Hdr	2	т	Drawdown at constant test flow
kw1	0,4	<i>m/(m³/h)</i>	Aquifer loss.
kw2	0	$m/(m^{3}/h)^{2}$	Well loss.
Water tank	Value	Units	Description
WTC	1000	m^3	Water tank capacity
Hr	5	т	Discharge level

Table 13. Input parameters for the water source and water tank.

The system curve $H_T(Q)$ describes the variation of the total manometric head as a function of the flow rate Q, in m³/h, and it is expressed as a third-order polynomial using the fitting coefficients k_{S0} , k_{S1} and k_{S2} .

$$H_{\rm T} = k_{\rm S0} + k_{\rm S1}Q + k_{\rm S2}Q^2 \tag{(7)}$$

Which are calculated as:

$$k_{S0} = H_S + H_R$$

$$k_{S1} = k_{w1}$$

$$k_{S2} = k_{w2} + \frac{H_{F,rated}}{Q_{rated}^2}$$
(8)

(0)

Table 14 shows the system curve parameters. Among these, the user must only indicate the value for *HF*, *rated*, which are the nominal friction losses at the rated, or nominal, flow of the pump. The remaining parameters k_{S0} , k_{S1} and k_{S2} are calculated by the excel sheet using the previous equations and the parameters given in Table 13.

Table 14.	Nominal friction losses (indicated by the user) and calculated model
	coefficients of the system curve.

System curve	Value	Units	Description
HF,rated	2	т	Friction losses at rated flow
ks0	17	т	Total static head (Hs+Hr)
ks1	0,4	<i>m/(m³/h)</i>	Specific drawdown (aquifer loss)
ks2	0,08	$m/(m^3/h)^2$	Friction plus well losses

The characteristics of the motorpump are, on the one hand, the rated, or nominal, operating point (Q_{rated} , H_{rated}) and the water density, whose default value is 998.2 kg/m³ at 20 °C.

On the other hand, the user must introduce several points of the motorpump performance curves, which can be obtained from manufacturer datasheet:

- The head-flow curve H(Q), at nominal speed.
- Power curves $P_1(Q)$ and $P_2(Q)$, at nominal speed.
- Motor efficiency $\eta_M(P_2)$.

For example, Figure 2 and Figure 3 display examples of these curves, which are included by default in the input template.

Pump curve		
Q [m ³ /h]	H [m]	30
0,012	24,75	
1,025	23,67	<u>E</u> 20
2,013	22,21	
3,003	20,73	10
4,019	18,69	0
4,976	15,85	0 2 4 6 8
6,005	11,44	Q [m³/h]

Power curves		
P1, nominal curve o	f the power at the	motor input, kW
Q [m³/h]	P1 [kW]	0,6
0,012	0,253	
1,025	0,336	5 0,5
2,013	0,414	
3,003	0,481	§ 0,3
4,019	0,53	₽1 - P1 - P1
4,976	0,553	₽ 0,1 - P2 - P2
6,005	0,549	
P2, nominal curve o	f shaft power, kW	
Q [m³/h]	P2 [kW]	$Q[m^{3}/h]$
0,012	0,098	
1,025	0,176	
2,013	0,248	
3,003	0,309	
4,019	0,352	
4,976	0,371	
6,005	0,368	

Figure 2. Example of pump curve H-Q and powers of a motorpump.

Motor power efficiency			80	
P2 [kW]	Efficiency [%]		70	
0	0	[%]	60	
0,098	38,6		50 40	
0,176	52,4	iene	40 30	7
0,371	67,2	Efficiency	20	
0,5	71		10	/
0,7	73		0	· · · · · · · · · · · · · · · · · · ·
0,9	72		() 0,5 1 Shaft power, P2 [kW]

Figure 3. Example of the power efficiency curve of the motor.

Finally, the user must specify the parameters indicated in Table 15. The nominal power of the motor P2rated, the nominal speed RPMnom, the minimum speed for water cooling RPMcool, and the maximum speed RPMmax. If the operating speed is lower than RPMcool, the system stops. And, if the speed is higher than RPMmax, the power is limited to avoid surpass this maximum speed.

Table 15. Other motor parameters.

Motor	Value	Units	Description
P2rated	0,75	kW	Rated shaft power
RPMnom	2900	rpm	Rated speed
RPMcool	70	%	Minimum speed, relative to the rated speed, for water cooling.
RPMmax	120	%	Maximum speed, relative to the rated speed.

2-12 Options

This tab allows the selection of several options and models for simulation, which are displayed in Table 16. The equations of the available models are described in [1]

Simulation options				
Parameter	Value	Units	Description	
Application	1	-	PV application.	
			Options:	
			1. Grid-connected	
			2. Stand-alone PV system	
			3. Hybrid DC bus	
			4. Hybrid AC bus (Work in progress)	
			5. Water pumping	
Soiling and	1	-	Degree of soiling on the PV generator	
incidence losses			under normal incidence.	
			Options:	
			1. Clean (0%)	
			2. Low (2%)	
			3. Medium (3%)	
			4. High (8%)	
Diffuse model	2	-	Diffuse sky model	
			Options:	
			1. Isotropic	
			2. Anisotropic (Hay)	
			3. Anisotropic (Perez)	
Diffuse fraction	1	-	Monthly diffuse fraction:	
			Options:	
			1. Page	
			2. Collares-Pereira	
			3. Erbs	
			4. Macagnan	
Ground reflectance	0,2	-	Ground reflectance (0 to 1)	
Simulation step	600	S	Simulation step (60 to 3600 seconds)	

Table 16. Simulation options

3-1 Introduction

This document describes the list of output variables available in the Matlab workspace after performing a simulation. Besides these variables, at the end of each simulation, the program displays as result a Sankey diagram using a function called drawSankey [2]

3-2 Output variables

PVlite generates as main result the time series of different simulated variables, which are matrices of *Nsteps* rows and *Ndays* columns, where *Nsteps* is the number of simulation steps per day and *Ndays* = 365. Each column represents the daily variation of the simulated variable, being the first column January 1 and the last one December 31. Besides, PVlite integrates the previous matrices to obtain daily parameters (1x365 arrays), which are themselves integrated to provide monthly parameters (1x12 arrays) and, finally, yearly parameters (1x1 or single variables).

3-2-1 Astronomical variables

Table 17.	Astronomical	variables.
-----------	--------------	------------

Variable	Unit	Definition	Size
Ео	-	Eccentricity correction factor of the earth's	1x365
		orbit	
delta	rad	Solar declination	1x365
ET	rad	Equation of time	1x365
WS	rad	Sunrise angle	1x365
Hours	h	Clock time	Nstepsx365
W	rad	Solar hour (true solar time)	Nstepsx365
tetazs	rad	Solar zenith angle	Nstepsx365
gammas	rad	Solar altitude	Nstepsx365
fis	rad	Solar azimuth angle	Nstepsx365
BOd0	Wh∙m ⁻²	Daily extraterrestial horizontal irradiation	1x365

3-2-2 Meteorological variables

3-2-2-1 Radiation on the horizontal surface

Variable	Unit	Definition
G0	W∙m ⁻²	Global
B0	"	Beam
D0	"	Diffuse

Table 18. Horizontal irradiances (Nstepsx365 matrices).

Table 19.	Daily parameters	(1x365 a	rrays).
-----------	------------------	----------	---------

Variable	Unit	Definition
KTd	-	Daily clearness index
KDd	-	Daily diffuse fraction
G0d	Wh∙m ⁻²	Daily global horizontal irradiation
B0d	Wh∙m ⁻²	Daily beam horizontal irradiation
D0d	Wh·m ⁻²	Daily diffuse horizontal irradiation

Table 20. Monthly parameters (1x12 arrays).

Variable	Unit	Definition
Gdm0	Wh∙m ⁻²	Monthly average of daily global
		horizontal irradiation (input data)
G0m	Wh∙m ⁻²	Global horizontal irradiation
B0m	"	Beam horizontal irradiation
D0m	"	Diffuse horizontal irradiation

Table 21. Yearly parameters (1x1).

Variable	Unit	Definition
G0a	Wh∙m ⁻²	Global horizontal irradiation
B0a	"	Beam horizontal irradiation
D0a	"	Diffuse horizontal irradiation

3-2-2-2 Radiation on the inclined surface

Variable	Unit	Definition
G	W⋅m ⁻²	Global (G=B+D+R)
В	"	Beam
Bn	11	Normal beam component
D	"	Diffuse (Diso+Dcir+Dhor)
Diso	11	Isotropic diffuse component
Dcir	11	Circumsolar diffuse component
Dhor	"	Horizon diffuse component (Perez model)
R	11	Reflected
Gef	11	Global effective (including dust and incidence effects,
		Gef=Bef+Def+Ref)
Bef	11	Beam effective
Def	11	Diffuse effective
Ref	11	Reflected effective

Table 22. In-plane irradiances (Nstepsx365 matrices).

Variable	Unit	Definition			
Gm	Wh∙m ⁻²	Global irradiation			
Gefm	"	Global effective irradiation			
Bm	"	Beam irradiation			
Dm	"	Diffuse irradiation			

Table 24. Yearly parameters (1x1).

Variable	Unit	Definition			
Ga	Wh∙m ⁻²	Global irradiation			
Gefa	"	Global effective irradiation			
Ва	"	Beam irradiation			
Da	"	Diffuse irradiation			

3-2-2-3 Temperatures

Variable Unit		Definition	
Та	<u>°</u> C	Ambient temperature	
Tc	<u>°</u> C	Cell temperature	

Table 25. Ambient and cell temperatures (Nstepsx365 matrices).

3-2-3 PV system

3-2-3-1 Powers

Table 26. Powers, in kW (Nstepsx365 matrices).

Variable	Definition	PV application
PPV0	Ideal effective PV power (including angle	All
	of incidence and dust losses).	
PPV1	PPV0 less temperature losses	All
PPV2	PPV1 less DC wiring losses	All
PPV3	PPV2 less power losses caused by inverter	All
	clipping, battery disconnection, etc.	
PPV	Final available PV power (PPV=PPV3).	All
PDC	Power at the inverter input	All
PAC0	Power at the inverter output	All
PAC1	PAC0 less AC wiring losses	All
PAC	Final AC power	All
PLOAD	Load power consumption	All excepting
		pumping systems
PGRID	Grid power (positive, if it is injected or	Grid-connection
	exported to the grid and negative, if it is	
	consumed from the grid).	
PGRIDI	Power injected in the grid	Grid-connection
PGRIDC	Power consumed from the grid	Grid-connection
PSELF	Self-consumed power	Grid-connection
PBAT	Battery power (positive for battery	Stand-alone and
	charging and negative if the battery is	hybrid systems
	discharging)	
PGEN	Genset power	Hybrid systems
PWIND	Wind power	Hybrid systems

P1	Input electrical power to the motor	Pumping systems
P2	Mechanical output power of the motor (shaft power)	Pumping systems
PH	Hydraulic power (PH=PH0+PH1+PH2)	Pumping systems
PH0	Hydraulic power required to overcome the static head.	Pumping systems
PH1	Additional hydraulic power required by aquifer losses (linear losses)	Pumping systems
PH2	Additional hydraulic power required by friction and well losses (quadratic losses)	Pumping systems

3-2-3-2 Energies

Daily, monthly and yearly energies are obtained by the integration of the all powers indicated in the previous section and expressed in kWh.

The names of these energies are created using the following convention. First, the initial P (of power) is replaced by E (of energy). Second, one of the suffixes "d", "m" or "a" is added after the name to indicate, respectively, a daily, monthly or annual energy. For example:

Daily PV energy (1x365 array).
Monthly PV energy (1x12 array).
Annual PV energy (single variable).

3-2-3-3 Figures of merit, energy efficiencies and energy losses

Table 27. Figures of merit (daily values). For monthly and yearly values, change the final d by m or a, respectively.

Variable	Unit	Definition	PV application	
LLHd	-	Loss of load hours	Stand-alone and	
		(Fraction of time without	hybrid systems	
		electricity service to the loads)		
PRd	-	Performance ratio	All	
		PRd=EACd/(PVnom*Gd/1000)		
PRHd	-	Hydraulic performance ratio	Pumping	
		PRHd=EHd/(Pvnom*Gd/1000)	systems	
SCd	%	Daily self-consumption	Grid-connection	
		(SCd=100*ESELFd/EACd)		
SSd	%	Self-sufficiency	Grid-connection	
		(SSd=100*ESELFd/ELOADd)		

Variable	Unit	Definition	PV
			application
LLPa	-	Loss of load probability	Stand-alone
		(Fraction of energy not supplied to the	and hybrid
		load. If the load power consumption is	systems
		constant, LLPa=LLHa).	
Yr	Hours	Reference yield	All
		(Yr=Ga/1000)	
Ya	Hours	Array yield	All
		(Ya=EPVa/PVnom)	
Yf	Hours	Final yield	All
		(Yf=EACa/PVnom)	
LCa	%	Capture losses	All
		(LCa=100*(Yr-Ya)/Yr)	
LSa	%	System losses	All
		(LSa=100*(Ya-Yf)/Yr)	

Table 28. Figures of merit (only yearly values).

Table 29. Daily energy losses. For monthly and yearly values, change the final d by m or a, respectively.

Variable	Unit	Definition	PV
		Energy losses caused by:	application
LOSS_INCd	%	Angle of incidence and dust	All
LOSS_TEMd	%	Temperature	All
LOSS_WDCd	%	DC wiring	All
LOSS_SATd	%	Limitation of PV power by inverter	All
		clipping, a fully charged battery,	
		etc.	
LOSS_INVd	%	Inverter	All
LOSS_WACd	%	AC wiring	All
LOSS_MOTd	%	Motor	Pumping
LOSS_PUMPd	%	Pump	Pumping
LOSS_MPd	%	Motor pump	Pumping

Variable	Unit	Definition	PV
			application
ETAId	%	Inverter efficiency	All
ETAMd	%	Motor efficiency	Pumping
ETAPd	%	Pump efficiency	Pumping
ETAMPd	%	Motor-pump efficiency	Pumping

Table 30. Daily energy efficiencies. For monthly and yearly values, change the final d by m or a, respectively.

3-2-3-4 Other parameters

Variable	Unit	Definition	PV application	
FUEL	L/Sstep(*)	Fuel consumption (Nstepsx365	Hybrid systems	
	_	matrix)		
FUELd	L	Daily fuel consumption	Hybrid systems	
FUELm	L	Monthly fuel consumption	Hybrid systems	
FUELa	L	Yearly fuel consumption	Hybrid systems	
GENONa	Hours	Yearly tunning hours of the	Hybrid systems	
		genset		
Q	m³/step	Water flow	Pumping	
		(Nstepsx365 matrix)		
Qd	m ³	Daily water pumping	Pumping	
Qm	m ³	Monthly water pumping	Pumping	
Qa	m ³	Yearly water pumping	Pumping	
SOC	-	State of charge	Stand-alone and	
			hybrid systems	
SOCdmin	-	Daily minimum SOC	Stand-alone and	
			hybrid systems	
SOCdmax	-	Daily maximum SOC	Stand-alone and	
			hybrid systems	
SOCdavg	-	Daily average SOC	Stand-alone and	
		hybrid sy		
SOCda	-	- Yearly average of daily average Stand-al		
		SOC	hybrid systems	

Table 31. Other parameters.

(*) Sstep is the simulation step.

3-3 Sankey diagrams

Next figures show several examples of Sankey diagrams, which are displayed by PVlite after performing a yearly simulation using as input one of the excel templates available in the program folder.

Figure 4 shows a Sankey diagram of a grid-connected PV system. The input of the diagram is the reference yield, in kWh/kWp or hours, and the output is the final yield, also expressed in kWh/kWp. Besides the final yield, the diagram also displays several annual figures of merit, such as the performance ratio or the capture losses. Energy losses, indicated with vertical arrows, are relative to the reference yield and the displayed values are lower than the calculated energy losses indicated in Table 29.

Figure 5 shows the Sankey diagram of a PV pumping system, which includes other energy losses, such as those of the motor and the pump. The output of the diagram is energy at the inverter output (AC energy), which coincides with final yield, and the hydraulic energy, also expressed in kWh/kWp, which is lower than the AC energy owing to the energy losses of the motorpump. As result, the hydraulic PR (PRH) is relatively low. The diagram finally shows the specific pumping, which indicates the yearly volume of pumped water expressed in m³/kWp.

In the last example, Figure 6 shows the Sankey diagram of an hybrid PV system, where the inputs are the contributions of the PV source (90%) and the genset (10%), both expressed in kWh, which are necessary to supply a full energy service for an AC load that consumes 18250 kWh per year.

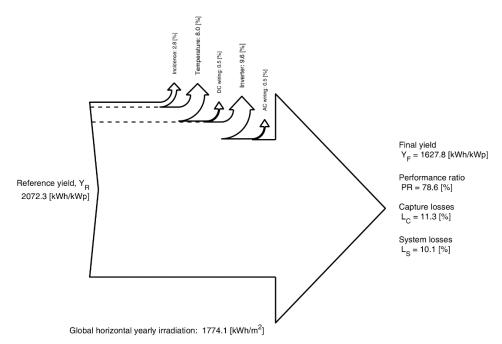
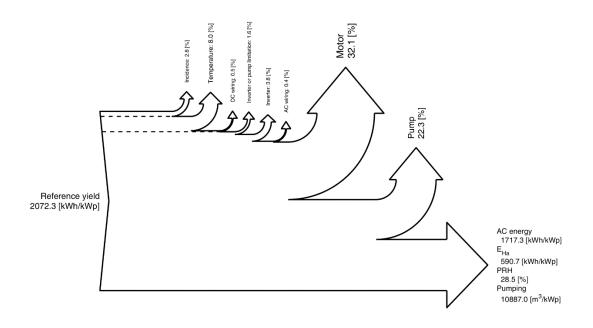
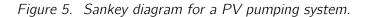




Figure 4. Sankey diagram for a grid-connected PV system.

Global horizontal yearly irradiation: 1774.1 [kWh/m²]

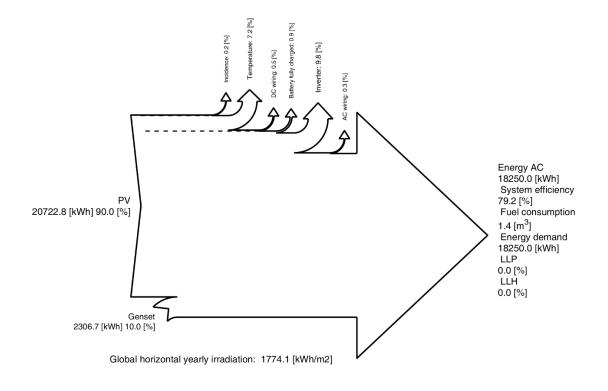
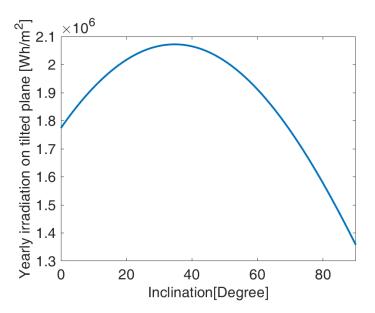


Figure 6. Sankey diagram for a hybrid PV system.


4-1 Introduction

This chapter describes several simulation exercises, which can be written by users with basic programming skills using PVlite scripts. These exercises illustrate the possibilities of PVlite for solving common problems found in the design and optimization of PV systems. The script of each exercise has the name ExerciseX.m and can be directly executed from the command line writing:

>> ExerciseX

4-2 Exercise 1

This script plots the yearly global irradiation on the tilted plane, assuming it is oriented towards the Equator, as a function of the inclination of the PV generator and also finds its optimum value. Figure 7 shows an example of the collected yearly irradiation in Madrid, whose maximum is 2072.3 kWh/m² at 35° tilt.

Figure 7. Yearly global irradiation on the tilted plane oriented towards the Equator, as a function of the inclination, in Madrid.

4-3 Exercise 2

This script plots a contour 2D map with the variation of the reference yield as a function of the inclination and orientation. Figure 8 shows and example for Madrid. As usual, large variations of the inclination and orientation cause relatively low energy collection losses regarding the optimum value.

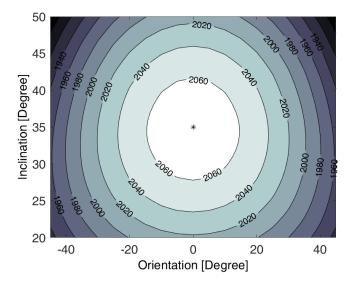


Figure 8. Reference yield of PV generator installed in Madrid as function of the orientation and inclination angles. The asterisk indicates the optimum (2072.3 kWh/kWp).

4-4 Exercise 3

This script calculates the monthly average of daily irradiations G_{dm} on tilted planes with different inclinations. Table 32 shows an example for Madrid.

Month	$G_{dm}(0)$	$G_{dm}(20,0)$	$G_{dm}(30,0)$	$G_{dm}(40,0)$	$G_{dm}(50,0)$	$G_{dm}(60,0)$
January	2080	3077	3466	3766	3967	4064
February	3130	4271	4686	4979	5141	5168
March	4690	5746	6059	6214	6207	6038
April	5600	6103	6133	6015	5751	5350
May	6640	6717	6528	6190	5715	5118
June	7670	7482	7142	6645	6006	5246
July	8030	7951	7638	7149	6500	5709
August	7000	7414	7345	7095	6669	6082
September	5370	6269	6480	6524	6398	6107
October	3700	4825	5210	5459	5565	5526
November	2390	3440	3842	4144	4339	4418
December	1910	2940	3350	3673	3898	4020

Table 32.	Monthly average of daily global irradiation G_{dm} (inclination, orientation), in
	Wh/m ² , in Madrid.

4-5 Exercise 4

This script finds the optimum inclination for a stand-alone PV generator using the worst month approach knowing the monthly averages of daily load consumption.

4-6 Exercise 5

This script plots iso-reliability LLP curves for a stand-alone PV system as a function of the PV generator and battery capacities. Figure 9 shows an example for Madrid using as input TMY PVGIS data. These curves are displayed just for illustration purposes, since the correct estimation of the LLP would require performing long-term simulations, more than 10 years, using real time series of meteorological input data.

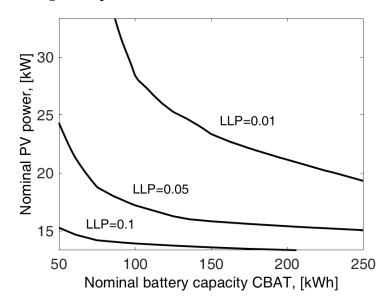


Figure 9. Iso-reliability LLP curves for Madrid using as input TMY data.

References

- [1] J. Muñoz. Modeling of solar radiation, PV components and systems in PVlite, v2.3, 2024, <u>https://blogs.upm.es/javiermunoz/</u>
- [2] James SPELLING, KTH-EGI-EKV, <u>spelling@kth.se</u>. Function drawSankey, Version: 02.11.2009.