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1. Introduction45

The growing prevalance of Computational Fluid Dynamics (CFD) across engineering disciplines continues to

drive research towards more efficient and robust numerical methods [1]. Most methods employed in industry in-

volve spatial discretization of the governing equations, followed by temporal discretization realized through time-

integrators. Implicit time-integrators are known for their unconditional stability [2] but can be expensive and memory-

intensive, particularly for high-order methods [3]. On the other hand, the computational efficiency of explicit time-

integrators is restricted by stability-induced limits on their maximum step-size ∆tmax. In practice, ∆tmax is estimated

by a heuristic condition of the form [4, 5, 6, 7, 8]:

∆t = C
h

∥ψ∥
. (1)

where h is an approximated characteristic length-scale, ∥ψ∥ is the physical rate of information propagation of the46

problem, and C is a constant whose value is tuned (usually by trial-and-error on a case-to-case basis) to obtain47
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∆t ≈ ∆tmax. Since ∥ψ∥ is known from the state of the problem, it is h that causes the constant C to differ from one48

problem to another. In other words, if h is computed correctly, then (1) will yield ∆tmax for a fixed value of C which49

will be independent of the case.50

The constant C is typically referred to as the “CFL-number”, even though it is used in the context of both con-51

vective [6, 7, 8] and diffusive [9] problems. As seen above, the brunt of mispredicted h is borne by the CFL-number.52

For cases where h is underpredicted, large values of C are needed to run close to the stability limit. Conversely, for53

cases where h is overpredicted, C needs to be lowered for stability. This is particularly critical for problems utilizing54

local timestepping (LTS) [10]. In these scenarios, misprediction of h in even a small subset of the computational55

domain can drastically affect overall rate of advancement in time. This is because one needs to lower the value56

of C (which is typically shared over the domain) to satisfy the stability constraint in those cells, thereby reducing57

the LTS in all other cells much below their actual stable LTS. This has a significant impact on the performance of58

convergence-acceleration techniques such as p-multigrid, where locally-timestepped matrix-free explicit smoothers59

such as Runge-Kutta (RK) are recommended for their excellent scaling properties at high orders [3]. Therefore,60

strong variation in C is undesirable, as it requires trial-and-error to find its optimum value. Since the exact value of61

the length-scale depends on the wavenumber of the input signal that is potentially captured by the mesh, it is infea-62

sible to predict it exactly for complex cases, where the signal is a superposition of several wavenumbers. However,63

with a reasonable approximate estimation, one can limit the variation of C due to wavenumber-superposition to an64

acceptable range. In typical industrial simulation software it is common to use C in the range of 0.1 to 1 for explicit65

time-integration schemes.66

How then does one go about estimating a representative length-scale? Since it is connected with the space-67

component of the discretized system of equations, it must be tied to the computational mesh. In traditional finite-68

volume (FV) and finite-element (FE) methods for instance, for a problem of dimension D in space, it is common to69

estimate h as the smallest radius of the D-spheres that inscribe mesh-elements [11]. Another popular measure for70

FV and FE methods is the ratio of the D-volume and D-semi-area. The overarching idea behind these estimation71

strategies is finding an appropriate geometric measure that characterizes the shortest discrete length inside each mesh-72

element. We refer to such a length-scale as geometric length-scale hg.73

High-order (HO) methods such as the discontinuous-Galerkin (DG) method or flux-reconstruction (FR) method74

represent the solution inside each mesh-element by a piecewise-discontinuous polynomial of order p, which is con-75

stituted by data located at multiple points per element. Across the last three decades, studies have demonstrated the76

so-called “p-dependence of CFL-number” for HO methods, i.e. with increasing p, a decrease is observed in the max-77

imum value of C for which the time-integrator is stable [4, 5, 6, 11, 12, 13]. As we have seen earlier, if all quantities78

are chosen aptly C must always approach 1 from the lower limit. The fact that C “decreases” with increasing p points79

towards an underestimation of the length-scale h. Thus, “p-dependence of CFL-number” is actually a misnomer for80

the real issue, which is the p-dependence of the length-scale. We refer to this new p-dependent length-scale as hp.81

Studies analyzing the p-dependence of C can be reformulated as the following question: “how to correctly estimate82
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hp as a function of the geometric length-scale hg and p?”, i.e.83

hp B hp

(
hg, p

)
. (2)84

Early work on estimating hp for HO-methods was limited to one-dimensional (1D) unsteady linear advection with85

explicit time-marching. Cockburn and Shu [4] proved formally that, for a p-order spatial DG discretization paried86

with a k-stage (k + 1)-order Runge-Kutta (RK) integrator (where k = p), choosing hp = hg/ (2p + 1) ensured stability87

for p ∈ [0, 2]. This estimate was shown to give stable results for higher p in 1D and was within 5% of its actual limit88

value [5], leading to its widespread usage [7]. For diffusion problems, Gassner et al. [12] proposed scaling hg (whose89

definition is left open) by a factor of β∗/ (2p + 1)2, where β∗ is yet another scaling factor that varies from 1.5 to 0.1390

for p ranging from 1 to 5 respectively.91

In higher spatial dimensions, Toulorge et al. [11] proposed the shortest height of a triangular element as a mea-92

sure for hg for 2D advection problems. For a given p, this measure generalized well for triangles of varied skewness93

and across RK-schemes with different stages and orders of accuracy. Nevertheless, the strong dependence of C on94

p remained. In [11], this was characterized as a function of p by curve-fitting. Chalmers and Krivodonova [14]95

use the cell-width in the direction of the characteristic velocity as the definition of hg, and use a scaling-factor of96

1/
[
(2p + 1)

(
1 + 4/ (p + 2)2

)]
to compute hp from it. While the predicted timestep is within 5% of the actual max-97

imum stable timestep, variation in C is still more than an order of magnitude between p = 1 and p = 10. For98

tensor-product elements (quadrilaterals and hexahedrons), Watkins et al. [15] maximize the non-dimensional convec-99

tive and diffusive timesteps, subject to the stability constraint of having all eigenvalues of the stability polynomial100

below 1. To convert these to their physical form (∆tcon and ∆tdif), they directly use the distances between flux-points101

on opposite faces as an estimate for hp. Finally, their harmonic mean is used to compute the global timestep estimate102

for the mixed advection-diffusion problem. This is the first study that uses a direct geometric definition of hp instead103

of scaling hg with a function of p, albeit not exceeding p = 3.104

In summary, we see that most efforts at estimating hp for arbitrary orders and meshes have a common approach:105

estimate hg using different techniques, and scale it with a factor that is a function of p (and other parameters, such as106

D). Several procedures have been proposed for each of the two components to fit the predicted hp to yield maximum107

timesteps for the model problems at hand. However, the methods show large variation in C. For the few instances108

where hp is directly computed from the polynomial-discretization of the mesh, it has not been demonstrated to work109

for p > 3. The absence of generality in estimating length-scales has led to alternate approaches to predicting the110

timestep. Trias and Lehmkuhl [16] estimate the spectral radii of the convective and diffusive operators. However,111

this is under the condition that the convective operator be skew-symmetric and the diffusive operator be symmetric112

positive-definite. Loppi et al [10] propose the use of a proportional-integral-derivative (PID) controller based on113

an estimate of the cell-wise truncation error to control local-timesteps. In our experience the parameters of the114

PID-controller are sensitive to the quality of the mesh, particularly for direct convergence to steady-state (i.e. not115

dual time-stepping). Thus, these alternate approaches also have limitations on their generalization. Instead, can the116

approach of estimating length-scales for HO-methods be made more generalizable?117
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Recall that the representative length-scale is tied to the spatial discretization. For HO-methods, this includes118

the mesh-cells as well as the physical location of polynomial-nodes inside them. It is clear from existing methods119

of estimating hp that, for arbitrarily irregular mesh-cells and polynomial-orders, scaling the geometric characteristic120

length hg by a function of p is insufficient in capturing information about the physical location of polynomial-nodes121

in each mesh-cell. In this paper, we attempt to estimate hp directly from the cell-local polynomial-discretization of122

the mesh and flow-quantities. The nature of their relationship is identified through a von-Neumann analysis (VNA)123

framework based on the flux-reconstruction method. The VNA framework supports 2− and 3−dimensional meshes124

with arbitrary skewness and stretching. Using this framework, separate analyses are done for the advection equation125

and the diffusion equation. These result in distinct definitions of length-scales for the advective and diffusive timesteps126

as hcon
p and hdif

p respectively. The resulting length-scale estimation strategy greatly reduces the p-dependence of the127

length-scale and scales well for polynomial-orders as high as 10, with minimal influence on C. It also extends well to128

the density-based Reynolds-averaged Navier-Stokes (RANS) system of equations.129

This paper is organized as follows: Section 2 briefly introduces the flux-reconstruction method. Section 3 is

dedicated to the novel length-scale strategy: first, in Sub-section 3.1 we outline a VNA framework V using the

flux-reconstruction method on meshes with varying skewness. Given a mesh M with polynomial-order p, and an

input signal of normalized wavenumber k̂ at angle θ, V outputs the maximum stable timestep ∆tmax |M,p,k̂,θ for that

configuration. This timestep, together with the characteristic velocity, gives us the ideal length-scale hideal |M,p,k̂,θ for

that configuration. By visualizing the variation of hideal across a number of configurations of M, p, k̂ and θ, we uncover

a consistent trend in this variation, which is then be converted into an optimal strategy Sopt. This is done in separate

analyses of the two-dimensional advection-equation (Sub-section 3.2) and diffusion-equation (Sub-section 3.3), from

which we propose a new length-scale estimation strategy with distinct definitions of the convective and diffusive

length-scales. To test the effectiveness of the proposed strategy, we pose the following question in Sub-section 3.4:

“If we use a strategy S to get h, and compute the timestep ∆t using (1), what max-value of C would we need to ensure

that ∆t = ∆tmax?”, i.e.

find Cmax : Cmax
h

∥ψ∥
= ∆tmax (3)

We consider a wide set and types of mesh-skewness, polynomial-orders and flow-physics. The proposed strategy is130

shown to generalize well on a wide variety of meshes and Peclet numbers (Pe) for p ∈ [1, 10]. The Peclet number131

is defined for unit length as the ratio of the convective transport rate and the diffusive transport rate, i.e Pe = ∥a∥ /ν.132

Generalization to dimensionD = 3 is seamless and also demonstrated for representative meshes. Section 4 extends the133

strategy to the compressible Navier-Stokes system of equations, where both the directional information propagation134

by velocity and omni-directional information propagation by the speed-of-sound are accounted for. Its robustness135

on highly skewed meshes is shown through freestream and wall-bounded flow-scenarios and varying flow-physics.136

Finally, in Section 5 we summarize the main findings and propose avenues for future work.137
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2. Flux reconstruction method138

The flux-reconstruction method was first proposed by Huynh [17] as a general formulation that can recover other139

well-known high-order methods for special choices of the ingredients. Consider the generalized hyperbolic system140

∂tU + ∇ · (Fivc + Fvsc) = S. (4)141

The system comprises ofN number of equations. The physical space Ω ∈ RD is discretized into Nc distinct cells.142

In each, the discrete solution to (4) is represented by a Lagrange polynomial of order p at (p + 1)D Gauss-solution-143

points. This solution Uδ ∈ R1×N is cell-wise-discontinuous (δ superscript denotes discrete form). Its spatial gradient144

is represented by Qδ ∈ RD×N , and Sδ ∈ R1×N represents the source-terms. The flux-reconstruction method constructs145

a semi-discrete form of (4) as146

∂tU = −∇δ ·
(
I

p+1
Fivc

δC + I
p+1
Fvsc

δC

)
+ Sδ (5)147

where Ip+1
Fivc

δC and Ip+1
Fvsc

δC are piecewise C0-continuous inviscid and viscous fluxes respectively. These are constructed148

from the discontinuous fluxes149

Fivc
δ = Fivc

(
Uδ

)
Fvsc

δ = Fvsc

(
Uδ,Qδ

)
,

(6)150

to which corrections are added to ensure that they are continuous at interfaces of cells. At the upper extreme of the151

cell in reference space, we use as correction-function the left-Radau polynomial of order p + 1. At the lower extreme152

of the cell in reference space, we use as correction-function the right-Radau polynomial of order p + 1. This choice153

corresponds to the option “g1” in [17]. These correction-functions apply in all analyses and simulations of this paper.154

The interface-values for the inviscid flux are calculated using a Riemann solver borrowed from the finite-volume155

literature, and for the viscous flux using a stabilizing viscous flux resolution method, as156

Fivc
δI = RFivc

(
UδF− ,U

δF
+

)
Fvsc

δI = RFvsc

(
UδF− ,Q

δF
− ,U

δF
+ ,Q

δF
+

)
,

(7)157

where UδF− and UδF+ are the discontinuous solution-values interpolated to the interface from the left and right respec-158

tively. Likewise, QδF− and QδF+ are the interpolated discontinuous corrected gradients. Without loss of generality, we159

use the Roe solver for the inviscid flux and the local discontinuous-Galerkin (LDG) flux [18] for the viscous flux. For160

a detailed description, the reader is referred to [19].161

We advance (5) in time using a 3rd-order Runge-Kutta (RK33) scheme [20, 21], the details of which are described162

in Appendix A. For acceleration to steady state or pseudo steady state, a local timestep is computed for each cell in the163

mesh by taking the minimum of the convective and diffusive timesteps (described later in (21) and (23)) in that cell.164

For time-accurate fully-explicit simulations, the global timestep is calculated as the minimum of the local-timesteps.165
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3. Length-scale estimation166

The ideal explicit timestep ∆tideal should be selected such that the ratio of the maximum stable timestep ∆tmax with

∆tideal equals 1, i.e.
∆tmax

∆tideal
= 1. (8)

∆tideal is the ratio of a representative length-scale hideal and the physical rate of information propagation of the problem

∥ψ∥, as [4, 5, 6, 7, 8]:

∆tideal =
hideal

∥ψ∥
. (9)

∥ψ∥ depends on the problem at hand. For example, for convection it is the characteristic velocity ∥a∥, and for diffusion

it is the kinematic viscosity per unit characteristic length ν/h. Substituting (9) in (8), we obtain the following form of

the stability-limit:
∆tmax ∥ψ∥

hideal
= 1, (10)

i.e. if the ideal representative length-scale is known, then the estimated timestep will be ideal and equal to the

maximum stable timestep ∆tmax. However, hideal is typically not known, and is not trivial to estimate. Instead, one

might find an approximate length-scale h which might or might not be close to hideal. Using this length-scale, the

approximated timestep is now ∆tapprox =
h

∥ψ∥
. The ratio of ∆tmax with ∆tapprox is no longer assured to be equal to 1 but

rather to a constant Cexact, i.e.
∆tmax ∥ψ∥

h
= Cexact, (11)

or, in other words,

∆tmax = Cexact
h

∥ψ∥
. (12)

In reality, one knows neither ∆tmax nor Cexact - only the rate of physical information propagation ∥ψ∥ and the approxi-

mate length-scale h are known. The usual process is to guess a value C, and with it compute the timestep as

∆t = C
h

∥ψ∥
. (13)

If the simulation fails, then one knows that ∆t > ∆tmax, meaning that C > Cexact. Thus, one lowers C, recomputes167

∆t using (13) and re-runs the simulation. This process is repeated until stability is achieved. Note that choosing an168

arbitrarily low value of C might guarantee stability, but leads to extremely slow advancement in time as ∆t ≪ ∆tmax.169

Therefore, one tries to estimate C ≈ Cexact to obtain ∆t ≈ ∆tmax.170

This trial-and-error process to seek C ≈ Cexact masks a more fundamental problem: the deviation of h from hideal.171

To see this, note that if h → hideal in (11), then using (10) we see that Cexact → 1 and we seek C ≈ 1. That is, if the172

value of the approximate length-scale h is close to the ideal length-scale hideal, then we can use a value of C close to173

1 independent of the problem at hand. As discussed before, existing methodologies are unable to do this for meshes174

of arbitrary skewness. Our goal is to find a length-scale definition that takes into account both the geometric and175

polynomial discretization. To extract patterns of the variation of this length-scale with mesh-skewness, p, etc., we176
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Fig. 1: Labeling for cells (top) and cell-faces (bottom) of the 5 × 5 meshes used in the two-dimensional VNA.

will assemble a VNA framework on skewed meshes (see Figure 2 for examples of the skewed meshes) for theD = 2177

linear advection-diffusion equation178

∂tu + ∇ · (F + G) = 0, (14)179

∇ =
[
∂x1 ∂x2

]
, F = u

[
a
b

]
, G = ν

[
−∂x1 u
−∂x2 u

]
.180

181

VNA has been successfully employed in the past for the dispersion-dissipation analysis [22, 23, 24] and stability-182

analysis [6, 25] of high-order methods.183

3.1. Two-dimensional von-Neumann analysis framework on skewed meshes184

We consider a 5 × 5 mesh composed of quadrilateral cells. The element being analysed is the central cell CO.185

The neighbors of CO to its left, right, bottom and top are CL, CR, CB and CT respectively. Cells further on in each186

direction are denoted by CLL, CRR, CBB and CTT. The diagonal point-neighbours of CO are CLB, CLT, CRB and CRT.187

Data belonging to a given cell is represented by a subscript, e.g. (·)O for CO. For a given cell, data at the left, right,188

bottom and top faces is denoted by subscripts of l, r, b and t respectively (see Figure 1 for details). Unit-normals at189

flux-points are denoted by n̄ and are assumed to go from left-to-right, bottom-to-top.190

The assembly of the VNA framework is detailed in Appendix B, and results in the following semi-discrete191

equation192

∂tu = POuO
δD +PLuL

δD +PRuR
δD +PBuB

δD +PTuT
δD

+PLLuLL
δD +PRRuRR

δD +PBBuBB
δD +PTTuTT

δD

+PLBuLB
δD +PLTuLT

δD +PRBuRB
δD +PRTuRT

δD,

(15)193

194

where the Pi matrix contains all operations applied on the discontinuous solution ui
δD in cell Ci. We impose initial195

solutions of the form196

u (x1, x2) = exp
(
ik̂ (x1cosθ + x2sinθ)

)
, (16)197
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3

Fig. 2: Meshes used in assessing the robustness of the proposed length-scale strategy through VNA. (top) Progressively

sheared quad-meshes with shear-angles 0◦ (Ma
1), 25◦ (Ma

2), 45◦ (Ma
3), 65◦ (Ma

4) and 85◦ (Ma
5) respectively. Meshes Ma

1 and Ma
4

are used for the analyses of Sub-section 3.2 and Sub-section 3.3. (middle) Meshes with increasing aspect-ratios 1 (Mb
1), 10

(Mb
2), 100 (Mb

3) and 1000 (Mb
4). (bottom) Meshes used in the three-dimensional VNA. Each 2D-mesh contains 5× 5 identical

cells (5 × 5 × 5 in 3D) that have been hidden for clarity of shape.

.
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where k̂ is the normalized wavenumber and θ is the angle of incidence of the initial solution wave to the horizontal198

axis. This allows us to express the initial solution u j in any cell C j as a function of the initial solution uO in cell CO as199

u j = uOexp
(
ik̂

((
x1, j − x1,O

)
cosθ +

(
x2, j − x2,O

)
sinθ

))
. (17)200

Writing all discontinuous discrete solutions in (15) in terms of uO
δD and aggregating the resulting matrices into201

P, the semi-discrete form reduces to202

∂tu = PuO
δD. (18)203

(18) can be converted into a solution-update equation by applying a time-discretization (for instance, the RK33 scheme204

as in [6]) with some timestep ∆t as205

uO
δD,n+1 = RuO

δD,n

R = I +
∆tP
1!
+

(∆tP)2

2!
+

(∆tP)3

3!
.

(19)206

207

For a stable update of the solution, the spectral-radius of R must be less than or equal to 1 [26]. The timestep that208

fulfils this condition is referred to as ∆tmax, i.e.209

∆tmax B max(∆t) | σ (R(∆t)) < 1 (20)210

where σ (·) represents the spectral radius.211

3.2. Convective time-step trends212

In this subsection, we use the VNA framework to identify the variation-trends of the maximum convective time-

step using pure advection. We are interested in observing the variation of the length-scale h with the maximum stable

timestep ∆tmax (obtained from (20)) that keeps the CFL-number at or below 1. Typically, the convective timestep is

computed as

∆tcon = C
h

∥a∥
. (21)

Rewriting and setting C = 1 and ∆tcon = ∆tmax,213

h = ∆tmax ∥a∥ = ∆tmax

√
a2 + b2, (22)214

where a and b are the advection velocity components in the x1 and x2 coordinate-directions. These trends will uncover215

the definition of the convective length-scale hcon
p that keeps the change in C to a minimum. Pure advection is simulated216

for all angles of incidence, i.e. ν = 0 , θ ∈ [0, π]. The advection velocity components are therefore a = cosθ , b =217

sinθ. The effect of the polynomial-order is analyzed by studing a range of polynomial-orders p ∈ [1, 5]. Two 5 × 5218

grids are analyzed: Ma
1: a uniform, square grid, and Ma

4: a uniform left-leaning parallelogram grid that makes an angle219

of 65◦ with the negative x1 axis (see Figure 2).220

The trend is uncovered through Figure 3:221
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Fig. 3: Variation of optimum convective length-scale hcon
p with angle of incidence θ for range of p (lower to higher: blue

to yellow) on (i) uniform square mesh Ma
1 and (ii) skewed parallelogram mesh Ma

4. Bands indicate variation with respect to

k̂. Solid lines plot the shortest flow-direction-distance of solution-points to sub-cell diagonals (see Figure 4). These results

correspond to Sub-section 3.2 and Table 1.

(i) (ii)

(iii) (iv)

Fig. 4: (i) Schematic of sub-cells (dashed lines) in a mesh cell with p = 3. (ii) Schematic of distances in flow-direction to

sub-cell diagonal for uniform flow-direction at θ = π/6. Red arrows are candidates for length-scale (the smallest of these

is chosen as hcon
p for this cell). Yellow arrows do not participate. (iii) Similar schematic for flow with pointwise differing

flow-direction. (iv) For cases where none of the solution-points contains a candidate length, hcon
p is assigned the minimum

distance between solution-points. (v) D = 3 schematic of sub-cells. Inset shows an example of sub-cell diagonal-plane and

its use in calculating the convective length-scale candidate for a solution-point and flow-direction.
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Table 1: Ratio of theoretical convective length-scale that keeps CFL number at or below 1 (i.e. h from (22)) and the shortest

flow-direction-distance of solution-points to sub-cell-diagonals (i.e. hcon
p ). Rows indicate polynomial orders, columns indicate

minimum, maximum and mean values across k̂ and θ for meshes Ma
1 and Ma

4. These results correspond to Sub-section 3.2

and Figure 3.

Ma
1 Ma

4

min mean max min mean max

P1 1.4 1.8 2.6 1.4 1.8 2.6

P2 1.1 1.3 1.7 1.1 1.3 1.7

P3 1.0 1.2 1.5 1.0 1.2 1.5

P4 0.97 1.1 1.4 0.98 1.1 1.4

P5 0.97 1.1 1.4 0.97 1.1 1.4

• From the VNA, we obtain the maximum stable timestep for a given choice of p, k̂ and θ. We then assume a CFL222

number of 1, and back-calculate the length-scale needed to obtain this maximum stable timestep. All values of223

this length-scale for different choices of p, k̂ and θ are plotted as colored bands in Figure 3. The color of the224

band indicates the value of p, while the width of the band indicates the variation of the length-scale with respect225

to k̂. Note how the length-scale range varies with the angle of incidence θ. We are interested in finding out a226

definition of the length-scale that can capture this variation with p and θ.227

• In solid lines, we plot the minimum distance in the flow direction between any solution-point and its opposite228

sub-cell diagonal. For a schematic of this distance see Figure 4-(ii). Sub-cells are formed by connecting the229

solution-points in a regular grid in reference-space and transforming that grid into physical space. See Figure230

4-(i) for a schematic of sub-cells for D = 2, and Figure 4-(v) for D = 3. Flow-directions that do not intersect231

their corresponding sub-cell diagonals are excluded from the computation.232

• On closer inspection, we see that this distance correlates well with the variation we wish to capture. This is233

observed both for results on both the square-mesh and shear-skewed mesh, as seen in Figure 3-(i) and Figure234

3-(ii) respectively. Table 1 shows the minimum, maximum and mean values of the ratio between the theoretical235

and predicted length-scales. We see that the mean value of this ratio tends towards 1.236

The definition extends seamlessly to D = 3. Here, the length-scale is the minimum distance in the flow direction237

between any solution-point and its corresponding sub-cell diagonal-plane. This diagonal-plane is constructed by238

connecting the adjacent sub-cell-points (see the inset of Figure 4-(v) for an example). Note that, if we collapse the239

D = 3 case toD = 2 along any direction, we recover theD = 2 length-scale definition.240

We choose this definition as our definition of the convective length-scale hcon
p . We henceforth refer to this strategy241

as “GD1” (i.e. we consider the geometry of the mesh-discretization and the directional-geometry of the polynomial-242
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discretization). In the rare event that GD1 does not produce any candidates (see Figure 4-(iv)), the shortest distance243

between solution-points of that cell is chosen as hcon
p ; note that this case can only occur for p = 1.244

3.3. Diffusive time-step trends245

We conduct a similar exercise as in Sub-section 3.2 to identify variation-trends in the maximum diffusive time-

step, now using pure diffusion. We are interested in observing the variation of the length-scale h with the maximum

stable timestep ∆tmax (obtained from (20)) that keeps the CFL-number at or below 1. The diffusive timestep is typically

computed as

∆tdif = C
h2

ν
. (23)

Rewriting and setting C = 1 and ∆tdif = ∆tmax,246

h =
√
∆tmaxν. (24)247

These trends will uncover the definition of the diffusive length-scale hdif
p that keeps the change in C to a minimum.248

Meshes Ma
1 and Ma

4 are used. Convection is absent; thus a = 0 , b = 0. Kinematic viscosity ν = 1 is used. The249

parameters of the LDG viscous flux are chosen as β = 0.5 , τ = 0.1.250

Figure 5 shows the variation of maximum h (calculated using (24)) for different p at varying θ. For fixed p and251

θ, the variation with k̂ is encapsulated by the upper and lower bounds of the corresponding colored band. For both252

meshes, the change with respect to θ is negligible, which is reasonable as diffusion is omnidirectional. This property253

also points towards choosing the shortest discrete distance as the diffusive length-scale. For a given mesh-cell and254

polynomial discretization, this distance is the shortest distance between any solution-point and the cell-boundary. This255

distance is plotted as solid-lines in Figure 5 for both meshes, and shows good correlation with the maximum length-256

scale that yields a stable time-step. Table 2 shows the minimum, maximum and mean values of the ratio between257

the theoretical and predicted length-scales. We see that the mean value of this ratio tends towards 1. We therefore258

Table 2: Ratio of theoretical diffusive length-scale that keeps CFL number at or below 1 (i.e. h from (24)) and the shortest

distance between solution-points and cell-boundary (i.e. hdif
p ). Rows indicate polynomial orders, columns indicate minimum,

maximum and mean values across k̂ and θ for meshes Ma
1 and Ma

4. These results correspond to Sub-section 3.3 and Figure 5.

Ma
1 Ma

4

min mean max min mean max

P1 1.2 1.5 1.7 1.1 1.2 1.3

P2 0.91 1.3 1.6 0.89 1.2 1.4

P3 0.92 1.2 1.4 0.58 0.84 1.1

P4 1.00 1.3 1.5 0.78 1.1 1.3

P5 0.83 1.1 1.4 0.78 0.95 1.1
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Fig. 5: Variation of optimum diffusive length-scale hdif
p with initial solution orientation angle θ for range of p (lower to higher:

blue to yellow) on (i) uniform square mesh Ma
1 and (ii) skewed parallelogram mesh Ma

4. Bands indicate variation with respect

to k̂. Solid lines plot the shortest distance between solution-points and cell-boundary. These results correspond to Sub-section

3.3 and Table 2.

choose this as the definition of the diffusive length scale hdif
p . This strategy is henceforth referred to as “GG1” (i.e. we259

consider the geometry of the mesh-discretization and the geometry of the polynomial-discretization).260

3.4. Length-scale definition tests261

Having proposed an optimal strategy, in this section we test its effectiveness by posing the following question: “If

we use a given strategy to get h, and use it to compute the timestep ∆t, what max-value of C would we need to ensure

that ∆t = ∆tmax?”, i.e.

find Cmax : Cmax ·min

hcon
p

∥a∥
,

(
hdif

p

)2

ν

 = ∆tmax (25)

The tests are done on a range of meshes with varying mesh-skewness, polynomial-orders ranging from 1 to 10 and262

Peclet numbers (Pe) ranging from 0 to∞. Note that this includes tests for pure convection (Pe = ∞) and pure diffusion263

(Pe = 0). The tests are performed in the VNA framework for θ ∈ [0, π] and k̂ ∈ [0, 2π]. For each configuration of the264

set {mesh, length-scale strategy, p,Pe, k̂, θ} we obtain the maximum stable timestep ∆tmax using (20) and subsequently265

the maximum stable CFL as266

Cmax = max

∥a∥∆tmax

hcon
p

,
ν∆tmax(
hdif

p

)2

 , (26)267

where a is the advection-speed vector. The smaller the variation in the value of Cmax across all configurations, the268

better is the strategy. The reason we focus on the CFL number C is because it is C that is exposed as a parameter to269

the user. As we have seen in the introduction, having C-variation limited between 0.1 and 1 is equvalent to having a270

∆t close to ∆tmax.271

The length-scale strategies that are studied are:272

• GD1-GG1: This is a combination of the convective and diffusive length-scale strategies derived in Sub-section273

3.2 and Sub-section 3.3. We use GD1 as the estimate for hcon
p and GG1 as the estimate for hdif

p . This strategy is274

described in a schematic in Figure 6.275
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hcon
p

hdif
p

Fig. 6: Schematic describing the cell-local length-scale calculation strategy GD1-GG1 used in this paper, here demonstrated

for a p = 2 Gauss-point discretization on an arbitrary curved quadrilateral cell. The convective length-scale hcon
p is computed

as the shortest directional-distance between any solution-point and its corresponding sub-cell-diagonal (dotted red line). The

diffusive length-scale hdif
p is computed as the normal distance between any solution-point and the nearest cell-wall (dotted

blue line).

• GS1: This strategy is a popular choice in the HO-community [4, 5, 7] - it involves computing an estimate of the276

geometric length-scale of the cell (hg), and then scaling it by the factor 1/ (2p + 1) to account for the polynomial-277

order. The geometric length-scale for quad-cells is estimated as the ratio of its area and semi-perimeter. The278

resulting length-scale estimate is used for both hcon
p and hdif

p . “GS1” therefore refers to considering the geometry279

of the mesh-discretization and scaling it with a function of the polynomial-order.280

• GS2: Mostly used for diffusion-dominated flows [7, 12], this strategy also computes hg similar to GS1, but281

scales it with the factor 1/p2. Again, the resulting length-scale estimate is used for both hcon
p and hdif

p . “GS2”282

therefore refers to considering the geometry of the mesh-discretization and scaling it with another function of283

the polynomial-order.284

• GG2: The final strategy studied here computes estimates both hcon
p and hdif

p as the shortest distance between285

the solution-points of the cell [8, 27]. Similar to GD1-GG1, this strategy takes into account the geometric and286

polynomial discretization, rather than using the scaling approach of GS1 and GS2.287

3.4.1. Effect of shear-skewness288

The first study introduces skewness in the mesh by shearing a square-mesh into a progressively sharper paral-289

lelogram shape as shown in Figure 2. This allows us to investigate the robustness of the length-scale strategy on290

non-cartesian and highly distorted cells.291

Results are presented in Figure 7, with a quantitative summary in Table 3. The first observation is that the proposed292

strategy GD1-GG1 shows minimal variation of C across all meshes, p, k̂ and θ, particularly at higher Pe. For instance293

at Pe = ∞, C-variation is limited between 1.3 and 0.2 with GD1-GG1, whereas for all other strategies it varies by two294

orders of magnitude. This points to the effectiveness of GD1-GG1 in capturing the directional dependence of ∆tmax.295

This is especially true for meshes with high skewness, where ∆tmax can vary significantly depending on the orientation296

of flow-direction with respect to the mesh-skewness. If the flow-direction is aligned closer to the long-diagonal of297
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Table 3: Minimum, average and maximum values of Cmax with different length-scale strategies at varying Pe on shear-

skewed meshes (see Sub-section 3.4.1 and Figure 7). Each set of minimum-mean-maximum values encapsulates variation

with respect to p, k̂ and θ.

Pe: 0 10−3 1 103 ∞

min mean max min mean max min mean max min mean max min mean max

GD1-GG1 0.06 0.28 0.72 0.27 0.43 0.8 0.27 0.45 1.3 0.18 0.41 1.3 0.21 0.61 1.3

GS1 0.01 0.21 1.2 0.06 0.32 1.3 0.05 0.35 2.1 0.05 1.1 9.9 0.37 2.4 49

GS2 0.05 0.68 2.0 0.07 1.1 2.1 0.07 1.1 2.1 0.32 1.7 5.2 0.42 4.9 68

GG2 0.003 0.019 0.096 0.01 0.03 0.11 0.02 0.03 0.17 0.02 0.32 2.8 0.2 0.79 14

Table 4: Minimum, average and maximum values of Cmax with different length-scale strategies at varying Pe on meshes with

high-aspect-ratio cells (see Sub-section 3.4.2 and Figure 8). Each set of minimum-mean-maximum values encapsulates

variation with respect to p, k̂ and θ.

Pe: 0 10−3 1 103 ∞

min mean max min mean max min mean max min mean max min mean max

GD1-GG1 0.11 0.6 1.5 0.21 0.97 1.6 0.44 0.98 2.4 0.25 0.89 1.6 0.07 0.59 1.3

GS1 0.008 0.17 1.2 0.011 0.27 1.3 0.047 0.27 2.1 0.047 0.53 4.2 0.079 95 3800

GS2 0.013 0.56 2.0 0.07 0.89 2.1 0.07 0.89 2.1 0.068 1.1 3.6 0.38 65 2300

GG2 0.007 0.045 0.21 0.012 0.073 0.21 0.025 0.073 0.32 0.046 0.21 2.3 0.082 65 2300

the cell, a greater ∆tmax can be afforded. However, the older strategies always make a conservative prediction of the298

length-scale, leading to very high values of C that yield ∆tmax. On the other hand, if the flow-direction is aligned299

closer to the short-diagonal, ∆tmax will be much smaller. This effect is more pronounced with cells that are highly300

skewed. For diffusion-dominated cases (Pe ≪ 1) also, GD1-GG1 generalizes better across p than the other strategies.301

3.4.2. Effect of high-aspect-ratios302

The second study analyzes the effectiveness of the proposed length-scale strategy on meshes that contain cells303

with high-aspect-ratios. Such cells are common in CFD, especially in the boundary-layer and wake. A series of304

four meshes is studied, with aspect-ratios 1, 10, 100 and 1000 respectively (see Figure 2). Results are presented in305

Figure 8, with a quantitative summary in Table 4. Again, GD1-GG1 generalizes very well across all values Pe and306

p, providing optimal C-values between the range of 0.1 and 1. In contrast, the other strategies show C-variation of307

more than three orders of magnitude, especially at high Pe. This can be explained with a similar reasoning as for308

Sub-section 3.4.1: ∆tmax is greater when the flow is aligned in the direction of elongation. The GD1-GG1 strategy309

accounts for this change, and is hence able to keep the C-variation in check. Conversely, the conservative estimate of310

the other strategies proves too restrictive higher aspect ratios. Thus, a much greater C is required to yield ∆tmax.311
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Fig. 7: Results of VNA on shear-skewed meshes (see Sub-section 3.4.1 and Table 3). Maximum CFL number Cmax in

log-scale (ordinate of each sub-plot) plotted against increasing polynomial-orders p ∈ [1, 10] (abscissa of each sub-plot). All

sub-plots share the same limits on the axes. The grey-shaded area marks the region of C ∈ [0.1, 1], which is a practically

reasonable range. Colors represent meshes (Figure 2) going from less skewed (yellow) to more skewed (blue). Color-shaded

areas depict variation of C with k̂ and θ, while color-lines plot the average values of C. Plot-rows indicate length-scale

strategies and plot-columns vary the Peclet number Pe. For details on construction of the sub-figures, see Appendix C.



18 Saumitra Joshi etal /Computers & Fluids (2023)

Pe
LS

0 10−3 1 103 ∞

GD1-GG1

1 10

0.1

1

1 10

0.1

1

1 10

0.1

1

1 10

0.1

1

1 10

0.1

1

GS1

1 10

0.1

1

1 10

0.1

1

1 10

0.1

1

1 10

0.1

1

1 10

0.1

1

GS2

1 10

0.1

1

1 10

0.1

1

1 10

0.1

1

1 10

0.1

1

1 10

0.1

1

GG2

1 10

0.1

1

1 10

0.1

1

1 10

0.1

1

1 10

0.1

1

1 10

0.1

1

Fig. 8: Results of VNA on meshes with high-aspect-ratio cells (see Sub-section 3.4.2 and Table 4). Maximum CFL

number Cmax in log-scale (ordinate of each sub-plot) plotted against increasing polynomial-orders p ∈ [1, 10] (abscissa of

each sub-plot). All sub-plots share the same limits on the axes. The grey-shaded area marks the region of C ∈ [0.1, 1],

which is a practically reasonable range. Colors represent meshes going from lower aspect ratio (yellow) to higher aspect

ratio (blue). Color-shaded areas depict variation of C with k̂ and θ, while color-lines plot the average values of C. Plot-rows

indicate length-scale strategies and plot-columns vary the Peclet number Pe. For details on construction of the sub-figures,

see Appendix C.
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Table 5: Minimum, average and maximum values of Cmax with different length-scale strategies at varying Pe on three-

dimensional domains (see Sub-section 3.4.3 and Figure 9). Each set of minimum-mean-maximum values encapsulates

variation with respect to p, k̂, θ and ϕ.

Pe: 1 106

min mean max min mean max

GD1-GG1 0.32 0.77 2.6 0.41 0.65 1.3

GS1 0.012 0.14 1.1 0.16 5.6 220

GS2 0.007 0.21 0.85 0.1 5.5 109

GG2 0.011 0.057 0.35 0.15 3.3 130

3.4.3. Extension toD = 3312

As stated earlier, the proposed length-scale strategy GD1-GG1 extends seamlessly to higher dimensions. This is313

shown by considering three 5 × 5 × 5 meshes with D = 3: the first is a regular cube, the second is a parallelepiped,314

and the third a cuboid with extremely thin width in the x3 (see Figure 2). In addition to azimuthal variation of the315

advection direction θ ∈ [0, π], we also vary its elevation ϕ ∈ [0, π]. To have reasonable turnaround times, Pe ∈ {1, 106}316

and p ∈ [1, 6] are used. Figure 9 shows the results of the analysis. For both Pe = 1 and Pe = 106, GD1-GG1317

outperforms the other strategies, successfully keeping C in a reasonable range for attaining ∆tmax. As expected, the318

benefit compounds for the skewed and high-aspect ratio meshes.319

Both the 2D and 3D VNA conducted in the preceeding sub-sections confirm the generality of the proposed length-320

scale computation strategy GD1-GG1.321

4. Studies on Navier-Stokes system322

In this section, we extend the length-scale estimation strategy GD1-GG1 to the Navier-Stokes system of equations.323

As discussed before, a robust timestep estimation strategy should predict a stable timestep close to and within the324

stability limit, with minimum variation in the CFL number C across a wide range of polynomial-orders, cell-quality325

and flow physics (e.g. the Reynolds number Re, the Mach number M). The typical range of CFL numbers used326

by engineers for practical industrial simulations is C ∈ [0.1, 1]; a good timestep calculator should provide stable,327

near-limit estimates without requiring the CFL number to stray too far outside these limits. We study two cases:328

the first case uses explicit timestepping on a flow in equilibrium. It covers skewed meshes, low, medium and high329

Re, subsonic and supersonic M, and high p to show the effectiveness of the proposed strategy across these wide330

variety of configurations. In Appendix D, we additionally show that no spurious oscillations are introduced when331

running near the stability limit. The second case a is steady turbulent flow past a multi-element airfoil, through which332

we demonstrate the proposed strategy for a representative external-aerodynamics case on a distorted curved mesh.333

The second case also highlights the application of the proposed strategy to local-timestepping for p-multigrid based334
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Fig. 9: Results of VNA on three-dimensional domains (see Sub-section 3.4.3 and Table 5). Maximum CFL number Cmax

in log-scale (ordinate of each sub-plot) plotted against increasing polynomial-orders p ∈ [1, 6] (abscissa of each sub-plot).

All sub-plots share the same limits on the axes. The grey-shaded area marks the region of C ∈ [0.1, 1], which is a practically

reasonable range. Colors represent meshes: square (yellow), parallelepiped (ash), and high aspect ratio (blue). Color-shaded

areas depict variation pf C with k̂ and θ, while color-lines plot the average values of C. Plot-rows indicate length-scale

strategies and plot-columns indicate varying Pe. For details on construction of the sub-figures, see Appendix C.
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convergence acceleration.335

4.1. Governing equations336

The representative system is the compressible unsteady RANS equations in conservative form for a Newtonian337

working fluid. The temperature dependence of fluid viscosity is modeled using Sutherland’s law [28]. Eddy viscosity338

is obtained using the modified Spalart-Allmaras (SA) turbulence model [29] to ensure numerical stability in the339

presence of negative values of the turbulence variable ϑ, especially with coarse spatial discretization of the boundary340

layer edge. The governing equations are cast into the following compact form:341

∂tU +
D∑
j=1

∂ j(Fivc + Fvsc) = S (27)342

where U ∈ R1×N is the solution-vector, Fivc ∈ R
D×N and Fvsc ∈ R

D×N are the inviscid- and viscous-flux-vectors343

respectively, and S ∈ R1×N is the source-term-vector. N is the number of solution-variables and D is the spatial344

dimension. More precisely:345

U =
[
ρ ρv1 ρv2 ρv3 ρE ρϑ

]T
, (28)346

347

Fivc =



ρv1 ρv2 ρv3

p + ρv1v1 ρv1v2 ρv1v3

ρv2v1 p + ρv2v2 ρv2v3

ρv3v1 ρv3v2 p + ρv3v3

ρv1H ρv2H ρv3H

ρv1ϑ ρv2ϑ ρv3ϑ


, (29)348

349

Fvsc =



0 0 0

−τ11 −τ12 −τ13

−τ21 −τ22 −τ23

−τ31 −τ32 −τ33

−v1τ11 − v2τ21 − v3τ31 − ω1 −v1τ12 − v2τ22 − v3τ32 − ω2 −v1τ13 − v2τ23 − v3τ33 − ω3

−
η
σ
∂1ϑ −

η
σ
∂2ϑ −

η
σ
∂3ϑ


, (30)350

351

S =
[
0 0 0 0 0 G − Y +K + T

]T
.352

The symbols used in the equations above are: ρ is the density, v1, v2 and v3 are the velocity-components in the three353

coordinate-directions, E is the total energy per unit mass, i.e. E = e + 1
2 (v1v1 + v2v2 + v3v3) where e is the internal354

energy. For a calorically perfect gas, e = RT
γ−1 where R is the gas constant and T is the temperature determined as355

T = γM2 p/ρ where M is the Mach number. The total enthalpy H is defined as H = E + p
ρ

where p is the pressure,356

related to energy through the ideal gas law:357

p = ρ (γ − 1)
(
E −

1
2

(v1v1 + v2v2 + v3v3)
)

(31)358
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where γ is the specific heat ratio. τi j are the components of the viscous stress tensor τ. For compressible Newtonian359

fluids:360

τi j = 2(µ + µt)S i j , S i j =
1
2

(
∂iv j + ∂ jvi

)
−

1
3
δi j (∂1v1 + ∂2v2 + ∂3v3) (32)361

where µt is the eddy viscosity and µ is the dynamic viscosity which is determined as a function of temperature through362

Sutherland’s law. The symbol ω j = (λ + λt)∂ jT is the j-th component of the heat flux vector where λ = γR
γ−1

µ
Pr is the363

molecular conductivity and λt =
γR
γ−1

µt
Prt

is the eddy conductivity. Unless specified otherwise, laminar Prandtl number364

Pr = 0.72 and turbulent Prandtl number Prt = 0.9 are used. The details of computing eddy-viscosity µt as a function365

of ρϑ, as well as those of computing the production (G), destruction (Y) and diffusion-correction (K) source-terms366

and the turbulent diffusion-coefficient η are taken as-is from [29]. The trip term (T ) is set to zero, as we are modeling367

fully turbulent flows. Distance to the airfoil-walls is approximated as the distance to the nearest discrete-point on the368

airfoil-walls.369

4.2. p-multigrid370

The semi-discrete form of (5) is accelerated to steady state using a p-multigrid full approximation scheme (FAS)371

proposed by Fidkowski et al. [30]. Standard Runge-Kutta-54 scheme is used as a smoother. Restriction of the solution372

and prolongation of the correction on the p-levels is performed using an L2 projection. To prevent limit-cycles, the373

correction from polynomial-order i − 1 to polynomial-order i is damped / under-relaxed by multiplying by a factor374

αi
i−1 ∈ (0, 1]. In all simulations, αi

i−1 = 0.9 for i < p and αi
i−1 = 0.1 for i = p. A standard sweep-pattern of375

1-2-3-4-...-p is used for the multigrid sweeps after restriction, and a similar reverse pattern of p-p − 1...-4-3-2-1 is376

used for smoothing the corrected solution after prolongation. Since we are interested in the steady-state solution,377

time-accuracy is not important. We therefore can take as large a timestep as permissible by stability limits, which can378

vary from cell-to-cell.379

4.3. Time-step calculation380

Recall the definition of the convective length-scale hcon
p from Sub-section 3.2. At a given solution-point j of cell381

i, let lcon
i j be the vector that defines it, such that

[
hcon

p

]
i j
=

∥∥∥∥lcon
i j

∥∥∥∥ (see Figure 10). Also, let l̂con
i j be the corresponding382

unit-vector. The propagation of compressibility effects through the speed of sound c, defined as383

c =
√
γp
ρ
, (33)384

is not necessarily aligned with the velocity-vector v. Since c propagates in all directions [31, 32], we consider the385

shortest distance between the solution-point and the sub-cell-diagonal (represented by the vector lsos in Figure 10) to386

define the speed of sound length-scale. Thus, considering all sub-cells (recall Figure 4) that the j-th solution-point is387

part of,
[
hsos

p

]
i j
= min

k

∥∥∥lsos
i jk

∥∥∥ where k is an index over the sub-cells. The corresponding vector and unit-vector are388

lsos
i j and l̂sos

i j .389
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lsos

lcon

v

Fig. 10: Schematic depicting the difference between the convective length-scale vector lcon and the speed-of-sound length-

scale vector lsos for a given solution-point in a given sub-cell. lcon is the convective length-scale vector in the direction of the

flow-velocity, as defined in Sub-section 3.2. lsos is the shortest possible convective length-scale vector for the given solution-

point in the given sub-cell.

Having defined these, for a given cell Ci with the j-th index iterating over all its solution-points, the local time-step390

is computed as391

∆ti,dif = min
j

[
hdif

p

]2

i

νi j +
µt i j

ρi j

, (34a)392

∆ti,sos = min
j

[
hsos

p

]
i j

c +
∣∣∣∣vi j · l̂sos

i j

∣∣∣∣ , (34b)393

∆ti,con = min
j

[
hcon

p

]
i j

c +
∥∥∥vi j

∥∥∥ , (34c)394

∆ti = Cmin
(
∆ti,dif , ∆ti,sos , ∆ti,con

)
. (34d)395

396

This is the GD1-GG1 strategy adapted for the Navier-Stokes equations. Some important observations about the397

timestep estimator are presented below:398

• Equation (34a): Typically hdif
p < h

con
p , and thus

(
hdif

p

)2
≪ hcon

p . For low Re flows therefore, the timestep computed399

from the diffusive part is the limiting timestep. This can also be the case for high Re flows where the cell-sizes400

are very small, and/or where the eddy-viscosity attains high values. Note the presence of µt in (34a).401

• Equation (34b): For high Re flows with Mach-number M < 1, we have c > ∥v∥. Since hsos
p < hcon

p , it is the402

speed of sound that determines the limiting timestep. In this case, the maximum eigenvalue of the inviscid403

Jacobian is the sum of the speed of sound and the velocity-component in the direction of propagation [32].404

As discussed before, the stability-limiting direction of propagation of the speed-of-sound is the direction along405
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Fig. 11: An example of a mesh with highly obtuse cells used in the “Case C” tests of Sub-section 4.4.

which the distance from the j-th solution-point to any neighboring sub-cell diagonal is the shortest. Recall that406

this direction is given by l̂sos
i j . Therefore, the velocity component in this direction is given by vi j · l̂sos

i j . We take407

its absolute-value to account for the case where vi j · l̂sos
i j points opposite to l̂sos

i j .408

• Equation (34c): For high Re flows with M > 1, we have c < ∥v∥ and there is a possibility that the flow-409

velocity determines the limiting timestep. We take the entire magnitude of c in the direction of v due to the410

omnidirectional nature of c.411

For time-accurate explicit timestepping, the global timestep is computed as the minimum of all cell-local timesteps.412

Watkins et al. recommend using a harmonic mean of the convective and diffusive estimates [15]. However, we413

observed that this led to overtly conservative estimates. The performance of the proposed length-scale strategy is414

compared with the other three strategies described in Sub-section 3.4, namely GS1, GS2 and GG2. Note that, other415

than the strategy of computing hcon
p and hdif

p , no other numerics settings are changed for any of the runs. All runs use416

exactly the same numerical parameters.417

4.4. Explicit timestepping: the “do nothing” scenario418

The first test is that of a simple domain initialized with constant equilibrium values of all flow-variables and419

Riemann-invariant boundaries [33]. This case is run for p ∈ [1, 10], Re ∈ {1, 104, 108}, M ∈ {0.1, 0.5, 2}, and angle of420

incidence θ ∈ {0, π/4, π/2}. The effect of mesh-quality is assessed by studying the behavior on three series of meshes,421

each containing 5 × 5 cells:422

• Skewed meshes (Case A): similar to Sub-section 3.4.1 (see Ma
∗ series in Figure 2), the meshes are shear-skewed423

in the negative and positive directions by 60◦.424

• High-aspect-ratio meshes (Case B): similar to Sub-section 3.4.2 (see Mb
∗ series in Figure 2), the meshes are425

gradually increased in aspect-ratio as 1, 10, 100 and 1000.426
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Table 6: Minimum, average and maximum values of Cmax for the Navier-Stokes equations with different length-scale strate-

gies and mesh-skewness types (see Sub-section 4.4 and Figure 12). Each set of minimum-mean-maximum values encapsu-

lates variation with respect to p, Re, M and θ.

Skewness type: A B C

min mean max min mean max min mean max

GD1-GG1 0.41 0.85 1.9 0.36 0.77 1.7 0.78 2.1 6.4

GS1 0.044 1.1 4.8 0.05 1.1 4.2 0.02 1.4 7.8

GS2 0.071 2.1 6.4 0.074 2.4 5.5 0.14 2.6 5.5

GG2 0.025 0.53 2.7 0.002 0.26 1.1 0.045 0.62 2.3

• Meshes with obtuse angles (Case C): In some instances, mesh-cells contain corners with highly obtuse angles427

while the rest of the cell itself is of relatively good shape. This series contains meshes with gradually more428

obtuse corners. An example of such a mesh is given in Figure 11.429

Thus, for each mesh, at each p, we analyze 27 flow-scenarios across Re, M and θ. For each scenario we record Cmax,430

the maximum CFL that maintains a stable equilibrium in the domain.431

Figure 12 provides an overview of the results. Looking at the first column (Case A), GD1-GG1 generalizes well on432

the range of shear-skewed meshes for all polynomial orders. It is resilient to aforementioned changes in flow-physics433

(Re, M and θ), as indicated by the narrow colored-bands. In comparison, the other strategies show significant mesh434

and p dependence. The wider bands for the other strategies also reveal their sensitivity to flow-physics. The improved435

behavior of GD1-GG1 also extends to meshes with high aspect-ratios (Case B). For meshes with highly obtuse cells436

(Case C), the generalization is less strong for GD1-GG1 with Cmax reaching values upto 5 for the worst quality meshes.437

However, the estimates are on the conservative side, and the variation reduces as the order is increased. In any case,438

the variation is much lower in comparison to the other strategies - GS1 for instance shows variation between 0.01 and439

8. These results show the effectiveness of the proposed strategy for predicting the optimal timestep for flows governed440

by the NS-equations advanced using explicit timestepping. Additionally, in Appendix D we show that no spurious441

oscillations are introduced when running near the stability limit.442

4.5. p-multigrid with LTS on distorted curved meshes: Turbulent flow past a multi-element airfoil443

In this test, we study the effect of length-scale calculation strategy on the convergence behavior of p-multigrid with444

LTS. Since every cell is advanced in time with an independent timestep, it is paramount that the predicted cell-local445

length-scale be close to its ideal value. The case is a turbulent flow past a multi-element airfoil [34] at Re = 9 × 106,446

M = 0.2 and angle-of-attack 16◦. The walls of the airfoil are modeled as no-slip adiabatic walls, while the far-field is447

modeled as a characteristic boundary. The flow is initialized with freestream values, and accelerated to convergence.448

The mesh used is the 4th-order curved quadrilateral mesh provided in the workshop, consisting of roughly 4000449

cells. It is well suited for stress-testing the LTS computation, as it contains skewness of all types we have analyzed450



26 Saumitra Joshi etal /Computers & Fluids (2023)

Case
LS A B C

GD1-GG1
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Fig. 12: Results of equilibrium tests with the Navier-Stokes equations on cases A, B, and C from Sub-section 4.4 (quanti-

tative summary in Table 6). Maximum CFL number Cmax in log-scale (ordinate of each sub-plot) plotted against increasing

polynomial-orders p ∈ [1, 10] (abscissa of each sub-plot). All sub-plots share the same limits on the axes. The grey-shaded

area marks the region of C ∈ [0.1, 1], which is a practically reasonable range. Plot-rows indicate length-scale strategies and

plot-columns indicate the different types of mesh-skewness. Colors represent mesh-quality: good (yellow) to bad (blue).

Color-shaded areas depict variation of C with Re, M and θ, while color-lines plot the average values of C.
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Fig. 13: 4th-order curved quadrilateral mesh for the multi-element airfoil provided in the 2015 edition of the high-order

workshop [34], used in the simulations of Sub-section 4.5. Note the presence of cells with high aspect-ratio, high obtuse-

angles and shear-skewness. In some cases, the jump in size of adjacent cells reaches a factor of 50.
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Fig. 14: Pressure-coefficient distribution and convergence history of relative residuals, lift- and drag-coefficients for the

multi-element airfoil.
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in this paper - distorted cells, high aspect-ratio cells, and cells with large obtuse angles (see Figure 13). Cell-sizes451

range from 10−8 units to 102 units. We run the multi-element airfoil case for p ∈ [2, 4]. Local timesteps are computed452

using the length-scale strategy GD1-GG1. The C used is 0.4 for p ∈ [2, 4]. Convergence of residuals, lift- and drag-453

coefficients, along with pressure-coefficient distribution, is shown in Figure 14. We see that the case successfully454

executes without needing much variation of the C number, despite the presence of highly distorted cells in the mesh.455

Using higher values of C leads to divergence, indicating that the selected C is close to the stability limit. Runs with the456

other three length-scale strategies lead to unstable simulations, for any choice of C ∈ [0.1, 1]. Furthermore, absence of457

LTS heavily slows down the computation, with the residuals needing ∼ 107 V-cycles to drop two orders of magnitude.458

In comparison, for the aforementioned p-multigrid with LTS using GD1-GG1, the residuals take ∼ 80000 V-cycles to459

drop four orders of magnitude. This highlights the value of local-timestepping for faster convergence, and makes the460

correct prediction of maximum local-timesteps all the more important. The GD1-GG1 strategy achieves this where461

other strategies fail.462

We now analyze what choice of C is required for stable simulations when using the other strategies. This is done as463

follows: we know from previous analyses that GD1-GG1 yields close to the maximum possible timestep independent464

of the cell-shape and polynomial-order. If convection dominates in a given cell Ci and ci ≫ |vi|, then from (34b) we465

get466

∆ti = CGD1-GG1

[
hsos

p

]
i,GD1-GG1

ci
. (35)467

To get the same ∆ti using a different length-scale strategy denoted by the subscript S, the necessary C value in that468

cell can be determined by equating the two timesteps as469

CS,i

[
hsos

p

]
i,S

ci
= CGD1-GG1

[
hsos

p

]
i,GD1-GG1

ci
,

CS,i = CGD1-GG1

[
hsos

p

]
i,GD1-GG1[
hsos

p

]
i,S

.

(36)470

471

Similarly, for diffusion-dominated cells, the necessary C to yield the same timestep as that of GD1-GG1 in each of472

those cells would be473

CS,i = CGD1-GG1


[
hdif

p

]
i,GD1-GG1[
hdif

p

]
i,S


2

. (37)474

475

Taking CGD1-GG1 = 0.4 from earlier simulations of the multi-element airfoil, using (36) and (37) we compute in476

each cell Ci the necessary CS,i for the other three length-scale strategies - first assuming convection-dominated flow,477

and then assuming diffusion-dominated flow. The smaller the value of CS,i in cell Ci, the greater is the overprediction478

of the length-scale in that cell (and vice versa). We then create bins of CS,i, each bin spanning an order of magnitude479

(e.g. 0.1 to 0.01, 0.01 to 0.001, etc.), and count how many cells each bin contains. The results are plotted as histograms480

in Figure 15. Some important observations are discussed below:481

• Assuming convection-dominated flows in all cells, the GS1 strategy predicts the cell-local length-scale quite482

well in most of the cells. This is evident from most of the cells lying in the 1 to 0.1 bin. However, for p > 2, a483
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Fig. 15: Histograms depicting the cell-wise C required to match the LTS values of the GD1-GG1 strategy in each cell. Abcissa

contains C-bins, with each bin spanning an order of magnitude. Ordinate indicates, for a given bin, the number of cells which

require the C to be in that range so that a stable timestep can be obtained. First row of plots assumes convection-dominated

flow in all cells, showing that some cells demand 0.01 < C < 0.1. Second row of plots assumes diffusion-dominated flow in

all cells, showing potentially drastic values of C, sometimes in the range of 10−6.
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handful of cells lie in the 0.1 to 0.01 bin. This means that, to ensure stability, the global C might need to drop484

below 0.1. This might degrade the convergence in the other majority of cells.485

• The same reasoning extends to the GG2 and GS2 strategies. In addition, GS2 makes a conservative estimate in486

many cells for p > 3 (as shown by the large cell-count in the 1-to-10 bin). Thus, using C < 0.1, the convergence487

in those cells will be even more sub-optimal.488

• The situation is much more dire if we assume diffusion-dominated flows, irrespective of which of the three489

strategies is chosen. While a large majority of cells fall in the bins between 1 and 0.01, the diffusive length-490

scale is severely overpredicted in handful of cells. Thus, if diffusion comes to dominate in those cells, the global491

C value might need to be dropped to unreasonably small values.492

We thus observe a large uncertainty in the appropriate C value when using legacy length-scale estimation strate-493

gies. This is aggravated by the fact that the growth of eddy-viscosity happens gradually over the course of con-494

vergence. This means, that cells which were convection-dominated early on in the simulation might come to be495

diffusion-dominated much later. Thus, even if the C value was somehow sufficient up to that point, it might not suffice496

any longer and cause divergence. The potential wastage of time and computational resources is significant. Even497

if a stable C is found through trial-and-error for legacy strategies, the rate of convergence would be extremely poor,498

making p-multigrid with LTS infeasible. The proposed GD1-GG1 strategy mitigates this risk.499

5. Conclusion500

We propose a robust cell-local length-scale estimation strategy GD1-GG1 for the flux-reconstruction framework.501

The strategy directly uses the geometric and polynomial discretization within each cell to separately estimate the502

convective and diffusive length-scales. We theoretically demonstrate its generalization to highly skewed meshes503

(shear-skewness and high aspect-ratios) through two- and three-dimensional von-Neumann analysis on the advection-504

diffusion equation. A large parameter-space is explored by varying the wavelength of the incoming signal, the di-505

rection of propagation, and the Peclet number. The proposed method restricts the variation of the CFL-number to506

a practically reasonable range of 0.1 to 1 for polynomial-orders ranging between 1 and 10, in contrast to legacy507

strategies which show CFL-variation across orders of magnitude.508

The GD1-GG1 strategy is extended to the density-based RANS system of equations, taking into account both509

the directional behavior of the flow-velocity and the omnidirectional behavior of the speed of sound. Its robustness510

is assessed on meshes with a variety of cell-distortions (shear-skewness, high aspect-ratios, high obtuse-angles) and511

large variations in the flow-physics through the Reynolds and Mach numbers. Finally, we demonstrate its benefit512

for cases of practical interest through steady-state RANS-modeled turbulent flow over the multi-element airfoil. The513

solution is driven to steady-state using a combination of local-timestepping and p-multigrid. A high-order curved514

mesh containing highly distorted cells is used, with polynomial-orders ranging from 2 to 5. The maximum stable515

CFL-number remains fixed around 0.3 to 0.4. Through assessing the length-scale distribution of legacy strategies on516
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the same case, we highlight their lack of generality and the subsequent risks of wastage of time and computational517

resources. In conclusion, the proposed length-scale estimation strategy promises to be a useful ingredient in industry-518

grade high-order flux-reconstruction solvers by freeing engineers from having to determine the optimal CFL number519

on a case-to-case basis. It also avoids potentially expensive wastage of time and resources.520

In subsequent works, this study needs to be extended to other types of elements, such as triangles, tetrahedra,521

prisms, etc. that are widely used in industrial meshes.522
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Appendix A. Fully discrete scheme528

From Section 2 we see that the semi-discrete form (5) is a function of Uδ, Qδ and Sδ. Since the latter two can be529

computed from Uδ, we can write (5) as530

∂tU = RHS
(
Uδ

)
. (A.1)531

With a time-step ∆t, the RK33 scheme advances the solution Uδ,n to Uδ,n+1 as

Algorithm 1 RK33

k1 ← ∆tRHS
(
Uδ,n

)
k2 ← ∆tRHS

(
Uδ,n + k1

2

)
k3 ← ∆tRHS

(
Uδ,n − k1 + 2k2

)
Uδ,n+1 ← Uδ,n + 1

6 (k1 + 4k2 + k3)

532

Appendix B. Assembly of VNA matrices533

Here, we present the details of assembling the element-wise matrices that are used in the VNA of Sub-section 3.1.534

For convenience, we introduce the following standard notation for averages and jumps:535

{{·}}a,b =
(·)a + (·)b

2

[[·]]a,b = (·)a − (·)b

(B.1)536

537

Applying the flux-reconstruction discretization, we get the following semi-discrete form of the advection-diffusion538

equation (14) in CO (for readibility, subscript skipped until otherwise stated)539

∂tu = −∇δ
(
Fδ + Gδ

)
. (B.2)540

541
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Under the influence of the element Jacobian J (known), we have542

∇δ
(
Fδ + Gδ

)
=∇̂δJ−1

(
FδD + GδD

)
+ J−1

(
dF̂δC + dĜδC

)
.

(B.3)543

544

Here ∇̂δ is the gradient of the Lagrange interpolation polynomials in reference space (known). FδD is the discontinu-545

ous inviscid flux evaluated using the discontinuous solution uδD (known) and (14). GδD is the discontinuous viscous546

flux computed using gradients of the corrected solution ∇δuδC. We will return to the other terms of (B.3) shortly. The547

gradient of the corrected solution is calculated as548

∇δuδC = ∇̂δJ−1uδD + J−1dûδC, (B.4)549

where dûδC is the gradient of the solution-correction in reference space, i.e.550

dûδC =

 ĥl

(
ul
δI − ul

δF
)
+ ĥr

(
ur
δI − ur

δF
)

ĥb

(
ub
δI − ub

δF
)
+ ĥt

(
ut
δI − ut

δF
)
 . (B.5)551

Here, ul
δF, ur

δF, ub
δF, ut

δF are the interpolated discontinuous solution-values at the flux-points of the left, right, bottom552

and top faces of CO. Also, ĥl, ĥr, ĥb and ĥt are the derivatives (in reference-space) of the correction-functions asso-553

ciated with the left, right, bottom and top faces respectively of CO. These derivatives are taken along the appropriate554

coordinate-direction in reference-space out of x̂1, x̂2 and x̂3. That is, the correction-functions associated with the left555

and right faces are differentiated with respect to x̂1, those with the top and bottom faces are differentiated with respect556

to x̂2, and the remaining two with respect to x̂3. Reintroducing subscripts for clarity, the common interface values ul
δI,557

ur
δI, ub

δI, ut
δI are calculated as558

ul
δI = uOl

δI = {{u}}Ol,Lr − β[[u]]Ol,Lr,

ur
δI = uOr

δI = {{u}}Or,Rl + β[[u]]Or,Rl,

ub
δI = uOb

δI = {{u}}Ob,Bt − β[[u]]Ob,Bt,

ut
δI = uOt

δI = {{u}}Ot,Tb + β[[u]]Ot,Tb,

(B.6)559

560

where β is the upwinding parameter of the LDG viscous-flux. At this stage, we have everything to compute FδD and561

GδD for CO. These are also computed for CL, CR, CB and CT. We now turn to the remaining terms of (B.3); similar to562

(B.5), the gradients of the inviscid- and viscous-flux-corrections in reference space are calculated as563

dF̂δC =



ĥl

(
F1,l

δI − F1,l
δF
)

+ ĥr

(
F1,r

δI − F1,r
δF
) ĥl

(
F2,l

δI − F2,l
δF
)

+ ĥr

(
F2,r

δI − F2,r
δF
)

ĥb

(
F1,b

δI − F1,b
δF
)

+ ĥt

(
F1,t

δI − F1,t
δF
) ĥb

(
F2,b

δI − F2,b
δF
)

+ ĥt

(
F2,t

δI − F2,t
δF
)


, (B.7)564
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and565

dĜ
δC
=



ĥl

(
G1,l

δI −G1,l
δF
)

+ ĥr

(
G1,r

δI −G1,r
δF
) ĥl

(
G2,l

δI −G2,l
δF
)

+ ĥr

(
G2,r

δI −G2,r
δF
)

ĥb

(
G1,b

δI −G1,b
δF
)

+ ĥt

(
G1,t

δI −G1,t
δF
) ĥb

(
G2,b

δI −G2,b
δF
)

+ ĥt

(
G2,t

δI −G2,t
δF
)


. (B.8)566

The (·)
δF

terms in (B.7) and (B.8) are the interpolated discontinuous flux-values at the flux-points. For the common567

interface values of the inviscid flux, we use a simple upwind treatment as568 F1,l
δI

F2,l
δI

 = n̄l · ∂u F
(
{{u}}Ol,Lr − sgn (n̄l · ∂u F)α[[u]]Ol,Lr

)
n̄l,

F1,r
δI

F2,r
δI

 = n̄r · ∂u F
(
{{u}}Or,Rl + sgn (n̄r · ∂u F)α[[u]]Or,Rl

)
n̄r,

F1,b
δI

F2,b
δI

 = n̄b · ∂u F
(
{{u}}Ob,Bt − sgn (n̄b · ∂u F)α[[u]]Ob,Bt

)
n̄b,

F1,t
δI

F2,t
δI

 = n̄t · ∂u F
(
{{u}}Ot,Tb + sgn (n̄t · ∂u F)α[[u]]Ot,Tb

)
n̄t,

(B.9)569

570

where ∂uF is the jacobian of the inviscid flux. The common interface values of the viscous-flux are calculated using571

the LDG-flux as572 G1,l
δI

G2,l
δI

 = n̄l ·
(
{{GδF}}Ol,Lr + βn̄l

(
[[GδF]]Ol,Lr · n̄l

)
− τ[[u]]Ol,Lr n̄l

)
n̄l,

G1,r
δI

G2,r
δI

 = n̄r ·
(
{{GδF}}Or,Rl − βn̄r

(
[[GδF]]Or,Rl · n̄r

)
+ τ[[u]]Or,Rl n̄r

)
n̄r ,

G1,b
δI

G2,b
δI

 = n̄b ·
(
{{GδF}}Ob,Bt + βn̄b

(
[[GδF]]Ob,Bt · n̄b

)
− τ[[u]]Ob,Bt n̄b

)
n̄b,

G1,t
δI

G2,t
δI

 = n̄t ·
(
{{GδF}}Ot,Tb − βn̄t

(
[[GδF]]Ot,Tb · n̄t

)
+ τ[[u]]Ot,Tb n̄t

)
n̄t ,

(B.10)573

574

where τ is the jump-penalization parameter of the LDG-flux. Plugging everything back into (B.2) and rearranging575

gives the semi-discrete form576

∂tu = POuO
δD +PLuL

δD +PRuR
δD +PBuB

δD +PTuT
δD

+PLLuLL
δD +PRRuRR

δD +PBBuBB
δD +PTTuTT

δD

+PLBuLB
δD +PLTuLT

δD +PRBuRB
δD +PRTuRT

δD,

(B.11)577

578

where the Pi matrix contains all operations applied on the discontinuous solution ui
δD in cell Ci. This equation is then used in the579

main text in Sub-section 3.1.580

Appendix C. Assembly of result-plots in Section 3581

The plots used in Section 3 present an overview of the behavior of the different length-scale strategies over a wide range of582

cases involving variation of meshes, polynomial-orders, incidence-angles and trial-solution wavenumbers. Hence, they condense a583
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Fig. C.16: Steps involved in construction of the CFL-variation plots in Figure 7, Figure 8 and Figure 9. (i) For fixed choices

of mesh (Ma
5), p = p∗, θ = θ∗ and k̂ = k̂∗, the resulting Cmax is a scalar value on an abcissa of k̂. (ii) Keeping all else fixed,

k̂ is varied over its range, leading to a series of Cmax values. (iii) On a plot of θ-abcissa, at θ = θ∗, this variation of Cmax with

k̂ is collapsed into a variation-bar around the mean-value. (iv) Keeping the mesh and p fixed, this variation is plotted over

the range of θ. (v) On a plot of p-abcissa, at p = p∗, this variation of Cmax with both k̂ and θ is collapsed into a variation-bar

around the mean-value. (vi) Keeping the mesh fixed, this variation is plotted over the range of p. (vii) For better visibility, the

plot from vi is converted into a filled range-plot, with the solid-line representing the mean-values. (viii) Finally, such plots

are generated for all meshes involved in that study.

lot of information into a consumable and interpretable form. This appendix explains the steps of this condensation, with the hope584

that the reader can better grasp the extent of information encapsulated in them.585

As an example, we reconstruct in Figure C.16 the sub-plot from Figure 7 corresponding to Pe = 103 for the GS1 strategy586

(fourth column, second row). Recall, that this sub-plot shows the variation of Cmax with polynomial-orders on different shear-587

skewed meshes (represented by colors). Also recall, that the variation with k̂ and θ is captured in the width of colored band.588

• Let us begin with a single value of each parameter - we choose mesh Ma
5, p = p∗ = 2, θ = θ∗ = 80◦ and k̂ = k̂∗ = 0.6π. The589

corresponding Cmax for this configuration is a scalar value, which is plotted in (i).590

• Next, keeping the mesh, p∗ and θ∗, we obtain a scalar value of Cmax corresponding to each value of k̂ that we test - this series591

of Cmax-variation with k̂ is plotted in (ii).592

• On a plot where the abcissa is θ, this variation can be collapsed into variation around a mean-value, located at θ = θ∗. This593

is plotted in (iii)594

• Keeping the mesh and p∗ fixed, such variation can be obtained in a similar manner for other values of θ. This is plotted in595

(iv).596
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Fig. D.17: (Left) 2nd-order quadrilateral mesh with 7488 elements used for the simulations of Appendix D. (Right) Contours

of Mach-number for Re = 150 and M = 0.2.

• Continuing, on a plot where the abcissa is p, the aforementioned variation of Cmax with both k̂ and θ can be collapsed into597

variation around a mean-value, located at p = p∗. This is plotted in (v).598

• Keeping the mesh fixed, such variation can be similarly obtained for other values of p, as plotted in (vi).599

• For better visibility, the variation-bars are replaced in (vii) with a filled range-plot. The mean-values are plotted as a solid600

line.601

• Finally, such plots are generated for other meshes involved in the study, as in (viii). Different meshes are represented by602

different colors, with yellow being of highest quality and blue being of the lowest.603

This completes the generation of the sub-plot. A similar procedure is followed for the generation of other plots where variation604

is encapsulated in filled range-plots.605

Appendix D. Absence of spurious oscillations near stability limit606

To demonstrate the absence of spurious oscillations near the stability limit, we simulate flow around a cylinder in 2D at607

Re = 150 and M = 0.2 [35]. The mesh is of O-shape and comprises of 7488 second-order quadrilaterals (see Figure D.17), with608

no-slip adiabatic wall boundary-condition on the cylinder surface and characteristic boundary-condition on the outer boundaries.609

Simulations are run at p ∈ [2, 4] with C of 1.1 for p = 2, and 1 for p = 3 and p = 4. Pushing C beyond stated limits leads610

to instability and eventual blow-up. The contours of Mach-number are shown in Figure D.17. The resulting Strouhal number611

(St) is 0.18298, 0.18304 and 0.18311 respectively, which matches well with the value of 0.1831 from high-order finite-difference612

simulations by Müller [35]. Thus, we see that, within stability limits, no spurious oscillations are introduced.613
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