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Abstract In this work we introduce the development of a three–phase incompressible Navier–Stokes/Cahn–
Hilliard numerical method to simulate three–phase flows, present in many industrial operations. The
numerical method is then applied to successfully solve oil transport problems, such as those found
in the oil and gas industry. The three–phase model adopted in this work is a Cahn–Hilliard diffuse
interface model, which was derived by Boyer and Lapuerta [1]. The Cahn–Hilliard model is coupled
to the kinetic–energy stable incompressible Navier–Stokes equations model derived by Manzanero et
al. [2]. The spatial discretization uses a high–order discontinuous Galerkin spectral element method
which yields highly accurate results in arbitrary geometries. An implicit–explicit (IMEX) method is
adopted as temporal scheme for the Cahn–Hilliard equation, while Runge–Kutta 3 (RK3) is used for
the Navier–Stokes equations. The developed numerical tool is validated with a manufactured solution
test case and used to simulate multiphase flows in pipes, including and a three–phase T–shaped pipe
intersection.

Keywords Navier–Stokes · Cahn–Hilliard · Computational fluid dynamics · High–order methods ·
Discontinuous Galerkin · Three–phase flows · Oil and gas transport.

1 Introduction

The transportation of hydrocarbons from the reservoir to the processing facilities is characterized
by the modification on flowing pressure and temperature conditions. These changes in operational
conditions lead to a transition from typical one–phase behavior to a more complex multiphase flow
with different number of phases present along the production system (wells, flowlines, export lines,...).
The vast majority of the reservoirs present fluids which evolve into a mixture of liquid crude oil,
natural gas and water. In case flowing bottom whole pressures at the near well location are below
certain values, even sand particles or fines can be dragged and produced with the stream, leading to
a more complex flow.
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The physical phenomena associated with hydrocarbon multiphase flow transport (e.g., change in
the flow pattern or phase change) will impact the production process or even lead to safety issues
(e.g., liquid overflooding in process facilities due to an underestimation of liquid surges caused by slug
flow). Therefore, an accurate prediction of the flow distribution and behaviour is mandatory to ensure
reliable and continuous transport of the production fluid. In the last years, numerical techniques for
simulating multiphase flows have reached a high level of maturity, which have led to their widespread
use in many industries, such as energy, automotive or aerospace. This is due both to the improvements
in multiphase flow models and the increase in computational power with HPC facilities (which, at the
same time, limits its application in daily or routine engineering analysis). The petroleum industry can
take advantage from high fidelity multiphase flow simulation tools to minimize the cost of production
system design as well as to support the optimization of its operation.

In the oil and gas industry, multiphase flows are usually modelled with one–dimensional (1D)
simulations tools (e.g. OLGA®, Pipesim® or LedaFlow®1). These models rest on a large number of
experimental databases, which results in accurate results with a low computational cost [3]. However
these 1D modeling tools are limited as they cannot capture some physical details, specially where
three–dimensional effects are important. This means that resolving fast transient phenomena (e.g.,
slug flow) still presents limitations in current 1D modeling tools [4]. A different approach is followed
by multiphase flow simulation based on Computational Fluid Dynamics (CFD), that permits detailed
three-dimensional (3D) simulations of immiscible fluids including effects of pressure, temperature
and liquid-gas heat and mass transfer. The main objectives of these simulations is to provide detailed
qualitative and quantitative evaluation of flow assurance issues, such as erosion or slugging, supporting
designers and operators to solve flow problems or to extend the life of the flow lines.

Interface capturing methods are among the simplest approaches to treat multiphase flows in CFD.
In these models, the governing equations are the continuity and momentum equations for a divergence-
free velocity field, in conjunction with a convective equation that tracks the interface. Among interface
capturing methods, such as Volume of Fluid (VOF) [5] or Level Set [6]; Diffuse Interface (DI) methods
(also known as phase field methods) [7, 8, 9] provide a useful alternative that does not seem to suffer
from problems with either mass conservation or the accurate computation of surface tension. Although
there are examples of three phase flows (or in general, N-phase flows, with N greater or equal than 3)
with Level Set or VOF methods [10, 11, 12, 13, 14, 15, 16, 17, 18], most of the work in three phase
flows is based on DI methods [1, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. In this paper we focus in
the phase field approach.

In DI methods, a phase–field function that describes the N–phase system is defined. The sharp
fluid interface is replaced by a smooth transition layer that connects the two immiscible fluids. The
free–energy, which represents the effect of the surface tension between the different fluids, is used
to characterize the system. The free–energy presents two terms whose effect tend to mix the fluids
and separate the fluids respectively [30, 31]. The evolution of the phase–field function in our work is
modelled by means of the convective Cahn–Hilliard (CH) equation [32]. The use of the CH equation
for the evolution of the phase–field function permits an accurate computation of the surface tension
and the simulation of phase separation processes. In particular, in this work we use the model of
Boyer et al. [1] to describe the three–phase system coupled to the incompressible Navier–Stokes (iNS)
equations with variable density and artificial (or pseudo) compressibility [33]. A review of alternative

1 OLGA®/ Pipesim® are registered trademarks of Schlumberger Inc. and LedaFlow® is a registered trademark
of Kongsberg A/S.



High–order DG approximation for a three–phase iNS/CH model 3

iNS/CH models can be found in [34].

The three–phase model is numerically approximated in space with a high–order Discontinuous
Galerkin Spectral Element Method (DGSEM) [35] that uses the Symmetric Interior Penalty (SIP)
method [36, 37, 38, 39, 40]. The DGSEM has been used in the past to discretize multiphase (two phase)
flows [41, 42, 43, 44, 45], and it is popular for its arbitrary order of accuracy [46, 35], low dissipative and
dispersive errors [47, 48, 49, 50], the representation of arbitrary three–dimensional complex geometries
through the use of unstructured meshes with curvilinear elements [51], efficient mesh adaptation
techniques [52, 53, 54] and the design of provably stable schemes [55, 56, 57, 58, 59, 2, 44]. Previously,
three component Cahn–Hilliard models have been discretized by means of the finite element method
[20], local discontinuous Galerkin method [60] or spectral element method [61]. The DGSEM has been
used in the past to discretize the two component Cahn–Hilliard equation [59] and the three component
Cahn–Hilliard equation [62]. To the authors’ knowledge, this is the first implementation of the three
component Cahn–Hilliard model [63] coupled with the Navier–Stokes equations in a discontinuous
Galerkin framework.

Finally, for the discretization of time of the Cahn–Hilliard equation we consider a first–order
IMplicit–EXplicit (IMEX) time integrator. The linear fourth order spatial operator of the Cahn–
Hilliard equation is solved implicitly while the non–linear second order spatial operator is treated
explicitly. The solution of the fully–discrete system involves the solution of one linear system for
each of the Cahn–Hilliard equations (two for the three phase system). As detailed in [62], the two
linear systems are decoupled such that the Jacobian matrices are constant in time and identical
for both Cahn–Hilliard equations. Therefore this method permits a resolution in which only one
LU factorization is performed for the two equations. The Navier–Stokes equations are solved by
means of a third order low–storage explicit Runge–Kutta RK3 method [64]. Therefore the low–order
temporal approximation is used exclusively to approximate the diffusive contribution of the Cahn–
Hilliard equation. The diffusive contribution of the Cahn–Hilliard equation is an artifact tailored by
its authors to engineer diffuse interfaces and phase separation, and it is not directly connected to
the macroscopic physical characteristics of interest of the flow, such as the density or the viscosity.
Therefore, the use of a lower order scheme is not incompatible with the use of a high–order scheme
in the Navier–Stokes equations. In the Navier–Stokes equations, however, the use of a high–order
method has the advantage of a lower numerical dissipation, which prevents turbulent flow structures
to quickly diffuse back into the flow. It is important to note that the interfaces produced by the
Cahn–Hilliard will not be numerically diffused by the lower–order approximation, since the chemical
free energy controls the sharpening back the interface .

The numerical method presented in this work has been successfully used to compute the flow to
predict erosion and corrosion in oil and gas pipes [65].

The rest of this work is organized as follows: we write the governing equations in Sec. 2, and
we construct its DG approximation and the IMEX time discretization in Sec. 3. Finally, we present
numerical experiments for the two–phase and three–phase version of the model in Sec. 4.

2 Governing equations

In this work, we couple the three–phase Cahn–Hilliard model of Boyer et al. [1, 62] to the incompress-
ible Navier–Stokes equations with artificial compressibility [2]. We define the concentration of phase j
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as the relative volume occupied by that phase. Thus, for three–phase flows we have that

c1 + c2 + c3 = 1. (1)

Henceforth, without loss of generality, we consider that the concentrations of phases 1 and 2 can freely
vary, and we compute the concentration of phase 3 from (1). For phases 1 and 2, the concentration is
computed from the Cahn–Hilliard equation,

ci,t + ∇⃗ · (ciu⃗) = M0
Σi

∇⃗ ·
(

∇⃗µi

)
, i = 1, 2, (2)

where u⃗ = (u, v, w) is the velocity field, M0, is the mobility and µi is the chemical potential of phase i,

µi = 12
ε

Σifi − 3
4εΣi∇⃗2ci, i = 1, 2, 3, (3)

with

fi = ΣT

3Σi

3∑
j=1
j ̸=i

(
1

Σj

[
∂F σ

0
∂ci

− ∂F σ
0

∂cj

])
, 3

ΣT
= 1

Σ1
+ 1

Σ2
+ 1

Σ3
. (4)

The chemical potentials are algebraically constrained [1],
µ1
Σ1

+ µ2
Σ2

+ µ3
Σ3

= 0, (5)

where Σi and ε are positive constants called spreading factors and interface width, respectively. The
spreading factors are computed from the interfacial tension between the two phases,

Σi = σij + σik − σjk, (i, j, k) cyclical. (6)

Finally, as in [1], the chemical free–energy F σ
0 is a polynomial function on the concentrations,

F σ
0 = σ12c2

1c2
2 + σ13c2

1c2
3 + σ23c2

2c2
3 + c1c2c3 (Σ1c1 + Σ2c2 + Σ3c3) . (7)

The density (and all the thermodynamic variables) is computed from the concentration of the
three phases,

ρ (c1, c2, c3) = ρ1c1 + ρ2c2 + ρ3c3 = ρ1c1 + ρ2c2 + ρ3 (1 − c1 − c2) , (8)

where ρ1,2,3 are the densities of fluids 1, 2 and 3, respectively, assumed constant in space and time.
The velocity field is given by the momentum equation,

(ρu⃗)t + ∇⃗ · (ρu⃗u⃗) = −∇⃗p +
3∑

m=1
µm∇⃗cm + ∇⃗ ·

(
η

(
∇⃗u⃗ + ∇⃗u⃗T

))
+ ρg⃗, (9)

where η is the viscosity, computed from the (constant) equilibrium phases viscosities η1,2,3 in a similar
fashion to the density (see Eq. (8)). The sum of the µm∇cm products is the phase field approximation
of the capillary pressure, and g⃗ is the gravity acceleration.

The pressure is computed with an artificial compressibility model [66, 67],

pt + ρ0c2
0∇⃗ · u⃗ = 0, (10)

with ρ0 = max (ρ1, ρ2, ρ3) and c0 the artificial compressibility sound speed. The artificial compressibil-
ity model substitutes the divergence–free condition of incompressible flows by a hyperbolic equation.
By design, it converges to the incompressible flow solution when a steady–state is reached, whereas it
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provides a suitable approximation in transient simulations. The artificial sound speed value is chosen
following a compromise between accuracy (higher values) and stiffness/time–step restriction (lower
values). Throughout this work, as recommended in [2] we adopt the value c2

0 = 103.
The governing equations (2), (9) and (10) are written as a general advection–diffusion equation,

qt + ∇ · f⃗e (q) = ∇ · f⃗v (q, ∇w) + s (q, ∇w) , (11)

with the state vector q = (c1, c2, ρu⃗, p), gradient variables w = (µ1/Σ1, µ2/Σ2, ρu⃗, p), inviscid and
viscous fluxes,

fe =



c1u c1v c1w

c2u c2v c2w

ρu2 + p ρuv ρuw

ρuv ρv2 + p ρvw

ρuw ρvw ρw2 + p

ρ0c2
0u ρ0c2

0v ρ0c2
0w

 , fv =



M0
Σ1

µ1,x
M0
Σ1

µ1,y
M0
Σ1

µ1,z
M0
Σ2

µ2,x
M0
Σ2

µ2,y
M0
Σ2

µ2,z
2ηs11 2ηs12 2ηs13
2ηs21 2ηs22 2ηs23
2ηs31 2ηs32 2ηs33

0 0 0

 (12)

and source term,

s (q, ∇w) =



0
0

ρg1 + µ1c1,x + µ2c2,x + µ3c3,x
ρg2 + µ1c1,y + µ2c2,y + µ3c3,y
ρg3 + µ1c1,z + µ2c2,z + µ3c3,z

0

 . (13)

In equation (12), s = 1
2

(
∇u⃗ + ∇u⃗T

)
is the strain tensor.

2.1 Reduction of the model to a two–phase flow model

Constructed this way, the chemical potential satisfies an important consistency property: when one
phase is not initially present (e.g. phase 2), the chemical potential associated to that phase is zero [1],

µ2
∣∣
c2=0 = 0, (14)

and the chemical potential associated to the other two phases, which satisfy c1 + c3 = 1, reduces to
that of a two–phase model [1, 62]. We compute the chemical free–energy derivatives for c2 = 0, c1 = c,
and c3 = 1 − c,

∂F σ
0

∂c1
= 2σ13c1c2

3 = (Σ1 + Σ3) c1c2
3 = (Σ1 + Σ3) c (1 − c)2 ,

∂F σ
0

∂c2
= c1c3 (Σ1c1 + Σ3c3) = c (1 − c) (Σ1c + Σ3 (1 − c)) ,

∂F σ
0

∂c3
= 2σ13c2

1c3 = (Σ1 + Σ3) c2
1c3 = (Σ1 + Σ3) c2 (1 − c) ,

(15)

which are replaced into the chemical potential (see Eq. (3)), defining c = cj and ck = 1 − c,

µ1

∣∣∣∣ c1=c
c2=0

c3=1−c

=12Σ1
ε

(
c(1 − c)2 − c2(1 − c)

)
− 3

4Σ1ε∇2c,

= Σ1
2σ13

(
12σ13

ε

d

dc

(
c2 (

1 − c2))
− 3

2σ13ε∇2c

)
= Σ1

2σ13
µ2ph.

(16)
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The three–phase flow model also reduces to a two–phase model if one of the concentrations is not
present initially. If phase 2 is not initially present, c2(x⃗, 0) = 0, the second Cahn–Hilliard equation is

c2,t = −∇⃗ · (c2u⃗) + M0
Σ2

∇⃗2µ2 = 0, (17)

since µ2 = 0 when c2 = 0, as described in equation (14). Therefore, c2 (x⃗, t) = 0 for t > 0, and phase 2
will not show in later times. Whereas for phase 1, its Cahn–Hilliard equation is simplified to

ct + ∇ · (cu⃗) = M0
2σ13

∇2µ2ph, (18)

which corresponds to a two–phase Cahn–Hilliard model with an adjusted mobility, M0
2σ13

.
Lastly, we check that the capillary pressure term of the three–phase flow also reduces to that of a

two–phase flow. For three phases,

p⃗c = µ1∇⃗c1 + µ2∇⃗c2 + µ3∇⃗c3 = µ1∇⃗c1 + Σ3
Σ1

µ1∇⃗c1

= Σ1 + Σ3
Σ1

µ1∇⃗c1 = 2σ13
Σ1

µ1∇⃗c1 = µ2ph∇⃗c.
(19)

Therefore, we confirm that the approximation for the capillary pressure is identical in both models.
In the second line, we used the property Σi + Σj = 2σij of the spreading factors, ∇c3 = −∇c1, and
µ3/Σ3 = −µ1/Σ1 (see Eqs. (1), (5) and (6)).

We conclude that the three–phase model is a valid two–phase model if one of the three phases is
not present initially.

3 Discontinuous Galerkin method and IMEX scheme

The evolution of the three–phase flow is driven by the two Cahn–Hilliard equations (see Eq. (2)),
the momentum equation (9), and the artificial compressibility equation (10). The discretization of
the spatial differential operators is performed using a nodal Discontinuous Galerkin Spectral Element
Method (DGSEM), described in Sec. 3.1, and the discretization of the time derivatives is performed
using an IMplicit–EXplicit (IMEX) method, detailed in Sec. 3.2. The latter combines a third order
low–storage explicit Runge–Kutta RK3 method [64], and a first–order backward and forward Euler
method.

3.1 Spatial discretization using the DGSEM

The system of equations (11) is approximated in space with a high–order discontinuous Galerkin
method. The computational domain Ω is tessellated in non–overlapping hexahedral elements e. Both
the solution and the geometry are approximated by order N polynomials, and thus the elements
can be curvilinear. We establish a transfinite mapping as in [51, 59] that transforms the unit cube
E = [−1, 1]3 (known as the reference element) to an arbitrarily–shaped hexahedral element e (see
Fig. 1). Thus, we work on the refence space (ξ, η, ζ) where the reference element E is defined, and
then its coordinates are related to the physical space with the mapping (x, y, z) = X⃗ (ξ, η, ζ).
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Fig. 1 Elements geometrical transformation from the reference element E = [−1, 1]3 to their final shape and
position on the physical space. The transformation uses a transfinite order N mapping X⃗

(
ξ⃗
)

. The tensor product
Gauss–Lobatto points are also transformed

We define a set of tensor product Gauss–Lobatto (GL) points (ξi, ηj , ζk)N
i,j,k=0 [35], which we use

to approximate the solution by order N polynomials,

q
∣∣
e

≈ IN (q) = Q =
N∑

i,j,k=0

Qijk(t)li (ξi) lj (ηj) lk (ζk) , (20)

where Qijk are the nodal coefficients, and li are the Lagrange interpolating polynomials. The GL
points also define quadrature rules that approximate the integrals on the reference element,

⟨f , g⟩E ≈ ⟨F , G⟩E,N =
N∑

i,j,k=0

wijkFijkGijk, (21)

where wijk = wiwjwk are the tensor product quadrature weights [35].
We define the covariant and contravariant basis to relate the derivatives in the reference (∇ξ) and

physical (∇) spaces,

a⃗i = ∂X⃗

∂ξi
, a⃗i = ∇ξi = a⃗j × a⃗k

J
, J = a⃗1 · (⃗a2 × a⃗3) , (i, j, k) cyclic, (22)

which allow us to compute the gradient of a scalar and the divergence of a vector as,

J∇wi = M∇ξwi, J∇ · f⃗i = ∇ξ ·⃗̃fi, ⃗̃fi = MT f⃗i, M =
(
Ja⃗ξ, Ja⃗η, Ja⃗ζ

)
. (23)

Discretely, the mapping is approximated with the order N interpolation (see Eq. (20)), which
is then differentiated to get the discrete covariant basis and Jacobian, J . The contravariant basis,
however, is computed using a curl form [51],

J ai
n = −x̂i · ∇ξ × IN (Xl∇ξXm) , i, n = 1, 2, 3, (n, m, l) cyclic, (24)

to fulfill the discrete metric identities [51], key to ensure the free–stream preservation (i.e. the deriva-
tive of a constant is zero) on curvilinear grids.

To construct the scheme we first cast the PDE (11) as a second order system introducing the
auxiliary variable g⃗ = ∇w, and transform the operators to the reference space,

Jqt + ∇ξ ·⃗̃fe (q) = ∇ξ ·⃗̃fv (q, g⃗) + Js (q, g⃗) ,
J g⃗ = M∇ξw.

(25)
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Next, we multiply equation (25) by two order N polynomial arbitrary test functions, integrate
over the reference element E, and apply the Gauss law on the inviscid and viscous fluxes, and on the
gradient of w,

⟨Jqt, ϕ⟩E +
∫

∂e

ϕT
(⃗

fe − f⃗v

)
· dS⃗ −

〈⃗̃
fe, ∇ξϕ

〉
E

= −
〈⃗̃

fv, ∇ξϕ
〉

E
+ ⟨Js, ϕ⟩E ,

⟨J g⃗, φ⃗⟩E =
∫

∂e

wT φ⃗ · dS⃗ −
〈
w, ∇ξ · ⃗̃φ

〉
E

.
(26)

Now we replace the polynomial ansatz. The functions are approximated by polynomials, and the
integrals by quadratures. As a result of the disconnection between adjacent elements, the solution can
be discontinuous across the inter–element faces, and the fluxes at the surface integrals are not defined.
Thus, we use a uniquely defined numerical flux at the surface integrals, f⃗ ≈ f⃗⋆ (qL, qR) that depend
on the two neighbouring states,

⟨J Qt, ϕ⟩E,N +
∫

∂e,N
ϕT

(
F⃗⋆

e − F⃗⋆
v

)
· dS⃗ −

〈
⃗̃Fe, ∇ξϕ

〉
E,N

= −
〈

⃗̃Fv, ∇ξϕ
〉

E,N
+ ⟨J S, ϕ⟩E,N ,〈

J G⃗, φ⃗
〉

E,N
=

∫
∂e,N

W⋆,T φ⃗ · dS⃗ −
〈
W, ∇ξ · ⃗̃φ

〉
E,N .

(27)

Lastly, we enhance the robustness of this implementation by using a split–form scheme [68, 55].
To do so, we apply again the Gauss law on the inviscid fluxes,

⟨J Qt, ϕ⟩E,N +
∫

∂e,N
ϕT

(
F⃗⋆

e − F⃗e − F⃗⋆
v

)
· dS⃗ +

〈
D

(
⃗̃Fe

)
, ϕ

〉
E,N

= −
〈

⃗̃Fv, ∇ξϕ
〉

E,N
+ ⟨J S, ϕ⟩E,N ,〈

J G⃗, φ⃗
〉

E,N
=

∫
∂e,N

W⋆,T φ⃗ · dS⃗ −
〈
W, ∇ξ · ⃗̃φ

〉
E,N ,

(28)

where D
(

F⃗e

)
is a split–form approximation of the divergence ∇ξ · ⃗̃Fe that uses a two–point flux F⃗#

e ,

D
(

F⃗e

)
ijk

= 2
N∑

m=0

(
Dim

⃗̃Fe (Qijk, Qmjk) + Djm
⃗̃Ge (Qijk, Qimk) + Dkm

⃗̃He (Qijk, Qijm)
)

, (29)

with Dij = l′
j (ξi). For this work, we adapt the two–point flux derived in [2] for the incompressible

Navier–Stokes to the system solved herein. For the last four equations we simply copy the two–point
flux from [2], and then we perform the product of the averages for the first two equations:

F⃗#
e =



{{c1}} {{u}} {{c1}} {{v}} {{c1}} {{w}}
{{c2}} {{u}} {{c2}} {{v}} {{c2}} {{w}}

{{ρ}} {{u}}2 + {{p}} {{ρ}} {{u}} {{v}} {{ρ}} {{u}} {{v}}
{{ρ}} {{u}} {{v}} {{ρ}} {{v}}2 + {{p}} {{ρ}} {{v}} {{w}}
{{ρ}} {{u}} {{w}} {{ρ}} {{v}} {{w}} {{ρ}} {{w}}2 + {{p}}

ρ0c2
0 {{u}} ρ0c2

0 {{v}} ρ0c2
0 {{w}}

 , ⃗̃F#
e,i = {{M}} F⃗#

e,i, (30)

where the brackets represent the average between the two states,

{{u}} = ui + um

2 . (31)

The approximation of the equations is completed with the approximation of the chemical po-
tentials, which are the first two gradient variables w1, w2. To do so, we proceed as in the PDE: we
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cast the definition of the chemical potentials introducing auxiliary variables g⃗c,i = ∇ci, we transform
the differential operators to the reference space, we construct weak forms within the elements, and
integrate the volume terms with differential operators to get,

⟨J µi, ϕ⟩E,N =
〈

J 12
ε

ΣiFi, ϕ

〉
E,N

− 3
4εΣi

∫
∂e,N

ϕ
(

G⃗⋆
c,i

)
· dS⃗ + 3

4εΣi

〈
⃗̃Gc,i, ∇⃗ξϕ

〉
E,N

,〈
J G⃗c,i, φ⃗

〉
E,N

=
∫

∂e,N
C⋆,T

i φ⃗ · dS⃗ −
〈

Ci, ∇⃗ξ · ⃗̃φGc

〉
E,N

.
(32)

From the concentration field (C1, C2), we compute the chemical potentials (µ1, µ2), which are
then introduced in the gradient variables W, to compute their gradient G⃗, and the state vector
time derivative Qt. In the next sections, we describe the computation of the numerical fluxes for
inter–element and physical boundary faces.

3.1.1 Numerical fluxes

The numerical fluxes couple the inter–element solutions through an uniquely defined value for the
surface integrals. For the inviscid Riemann solver F⃗⋆

e we compute the exact Riemann problem solution
derived in [69] for the normal velocity u⋆ and the pressure p⋆,

u⋆ =
pR − pL + ρRuRλ−

R − ρLuLλ+
L

ρRλ−
R − ρLλ+

L

, p⋆ = pR + ρRλ−
R(uR − u⋆),

c⋆
1, c⋆

2, v⋆, w⋆ =
{

c1L, c2L, vL, wL if u⋆ ⩾ 0
c1R, c2R, vR, wR if u⋆ < 0 ,

(33)

and we compute the tangential velocities v⋆, w⋆ and concentrations c⋆
1, c⋆

2 from the appropriate element
depending on the sign of u⋆. The eigenvalues λ± are λ± = (u±a)/2, with a =

√
u2 + 4ρ0c2

0/ρ. Among
the beneficial properties of this Riemann solver, we highlight that it is physical (it is the exact solution
of the Riemann problem), efficient (e.g. does not need any iterative solution) and parameter–free.

For viscous fluxes and gradient variables, F⃗⋆
v and W⋆, we use the Symmetric Interior Penalty

(SIP) method,

W⋆ = {{W}} , F⃗⋆
v =

{{
F⃗v

(
Q, ∇⃗W

)}}
+ β


M0
Σ1

Jµ1K
M0
Σ2

Jµ2K
η

min(ρ1,ρ2) Jρu⃗K
0

 n⃗L, (34)

which uses the local gradient (23) for ∇⃗W. We take the penalty parameter from [70]

β = (N + 1) (N + 2)
2h̄

, h̄ = min (VL, VR)
S

, (35)

where h̄ yields an approximated measure of the minimum element size normal to the face, VL and VR

are the volumes of the neighboring elements, and S is the area of the face. Finally, for the concentration
and its gradient we also use the SIP method,

C⋆
i = {{Ci}} , G⃗⋆

c,i =
{{

∇⃗Ci

}}
− β (Ci,Ln⃗L + Ci,Rn⃗R) . (36)
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3.2 Time discretization

The fourth order spatial derivative in the Cahn–Hilliard equation is too stiff to be solved explicitly
for arbitrary values of the mobility parameter. Unless the mobility is low enough to allow reasonable
time–steps, we use an IMplicit–EXplicit (IMEX) method to integrate in time: Navier–Stokes terms
are solved using a third–order explicit Runge–Kutta (RK3) method, the Cahn–Hilliard chemical free–
energy is solved using forward Euler and the Cahn–Hilliard interface energy is solved using backward
Euler. Low–storage Runge–Kutta schemes are widespread within the high–order methods community
since they yield high–order approximations with minimal computational storage requirements [35].
This first–order IMEX scheme was adapted from that derived in [29] in the context of N–phase flows.

This IMEX procedure has two steps, which we describe in a semi–discrete fashion (continuous in
space, discrete in time):

1. We perform the explicit RK3 step for the Navier–Stokes terms, without the contribution from the
chemical–free energy and interfacial energy in the Cahn–Hilliard equation,


c1
c2
ρu⃗

p


t

= −∇ ·


c1u⃗

c2u⃗

ρu⃗u⃗ + pI3
ρ0c2

0u⃗

 + ∇ ·


0
0

η
(
∇u⃗ + ∇u⃗T

)
0

 +


0
0

ρg⃗ +
3∑

m=1
µm∇cm

0

 .

(37)
After the RK3 time–step, the variables are called

(
ĉ1, ĉ2, ρu⃗n+1, pn+1)

, since the concentrations
need a correction step to include the chemical potential.

2. We compute a correction step on the two concentrations to solve the Cahn–Hilliard equations.
The chemical free–energy terms are solved explicitly (i.e. evaluated in cn

i ) and the stiff interfacial
energy terms implicitly (i.e. evaluated in cn+1

i ). Besides, we also introduce the stabilizing term
S0

(
cn+1

i − cn
i

)
, being S0 a constant. The stabilization term is a widely used technique to make

possible the approximation of the non-linear terms of the chemical potential explicitly, while
maintaining the higher time–step sizes of an implicit scheme. The reasoning behind the selection
of S0 is the smallest possible such that the system is stable. Throughout this work, and in other
related works [62], the value S0 = 8, which was found by trial–and–error, has provided successful
solutions. Finally, the approximation of the time derivative is ct ≈

(
cn+1

i − ĉi

)
/∆t. As a result,

the IMEX correction step for each concentration is:

cn+1
i − ĉi

∆t
= M0∇⃗2

(
12
ε

fi(cn
1 , cn

2 , cn
3 ) + S0

(
cn+1

i − cn
i

)
− 3

4ε∇⃗2cn+1
i

)
. (38)

Two decoupled linear systems for the two concentration parameters are solved. However, the
linearity of the operator produces a constant in time Jacobian, which also is identical for both
phases. These properties led us to compute the solution to the linear problem with LU factorization
(performed only once at the preprocessing) and Gauss substitution. The computational cost of
the latter is similar to an iteration in a explicit method.



High–order DG approximation for a three–phase iNS/CH model 11

3.3 Boundary conditions

In this section we describe the imposition of inflow, outflow, and no–slip wall boundary conditions. In
this work, we prescribe the boundary conditions weakly. Hence, we create a ghost (exterior) state with
the appropriate boundary information, and then compute the interface fluxes between the interior Qi

and exterior Qe states.

3.3.1 Inflow boundary condition

For the inflow boundary condition, we specify the inflow concentration ci,inflow(x⃗; t) and the velocity
u⃗inflow (x⃗; t). For the inviscid fluxes, we construct a ghost state,

Qe =


C1,inflow
C2,inflow

ρ (Cinflow) U⃗inflow

P

 , (39)

where we take the pressure P from the interior, and compute the interface flux from the exact Riemann
problem solution (see Eqs. (33)), F⃗⋆

e

(
Qi

e, Qe
e

)
.

We define the viscous fluxes as:

W⋆ = Wi + We

2 , F⋆
v · n⃗ =


0
0

η
(

∇U⃗ + ∇U⃗T
)

· n⃗

0

 , (40)

where we apply the Neumann boundary conditions to the chemical potential, and take the inte-
rior values for viscous stresses. In (40), we compute the gradient variables from the ghost state,
We = W (Qe).

The implementation features an automatic method for the distribution of the phases in a circular
section, given the superficial velocities and the slip velocities. The superficial velocity of each phase
is, for a given flow rate, the equivalent velocity obtained if the phase occupies the entire section,

vs,i = 1
Ainflow

∫
inflow

u⃗i · dS⃗. (41)

Furthermore, because real flow configurations feature a large ratio of the superficial velocities that
confine one of the phases to the near wall region, we allow the velocity to be discontinuous at the
interface between the phases. By doing so, we can use lower velocities for the phases with smaller
superficial velocity, so that they occupy a larger region of the cross section. The problem with a phase
being very confined to the near wall region is that it might not be well captured by the numerical
method. For the flow configuration given in Fig. 2, the concentration inflow boundary condition is

c1,inflow(x, y) = 1
2 + 1

2 tanh
(y − y12

ε

)
,

c2,inflow(x, y) = 1
2 tanh

(y − y23
ε

)
− 1

2 tanh
(y − y12

ε

)
,

(42)

and the velocities are computed from a Poiseuille flow,

uinflow = (V1,maxc1,inflow + V2,maxc2,inflow + V3,maxc3,inflow)
(

1 −
( r

R

)2
)

, (43)
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x

y

y12

´y23

1

2

3

Fig. 2 Configuration of a layered inflow. The position of the two interfaces is provided by the values y12 and y23

with the two slip velocities, which are user–input,

Vs,12 = V1,max − V2,max, Vs,23 = V2,max − V3,max. (44)

Therefore, there are five unknowns (V1,max, V2,max, V3,max, y12, and y23), and five equations: the
two slip–velocities definitions (see Eq. (44)), and the superficial velocities,

vs,i = Vi,max
Ainflow

∫
inflow

ci,inflow

(
1 −

( r

R

)2
)
dS, (45)

that are solved using a Newton–Raphson method.

3.3.2 Outflow boundary condition

The outflow boundary condition specifies the ambient pressure at the exit of the domain Po, and
applies a Neumann boundary condition to the rest of the variables. Therefore, for the inviscid fluxes
the exterior state is defined as:

Qe =


C1
C2
ρU⃗

Po

 , (46)

whereas for viscous fluxes we simply use a Neumann boundary condition for all the variables,

W⋆ = Wi, F⋆
v · n⃗ = 0. (47)

3.3.3 No–slip wall boundary condition

We construct a ghost state with the same variables as the inside, but changing the sign of the normal
velocity,

Qe =


c1
c2

ρ
(

U⃗ − 2
(

U⃗ · n⃗
)

n⃗
)

p

 . (48)
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For the viscous numerical fluxes, we apply Neumann boundary conditions in all variables except
velocities, which take the interior values,

W⋆ = Wi + We

2 , F⃗⋆
v · n⃗ =


0
0

η
(

∇U⃗ + ∇U⃗T
)

· n⃗

0

 . (49)

Finally, for the gradient of the concentrations G⃗⋆
c,i the Neumann boundary condition is non–

homogeneous, if one wants to solve for arbitrary wall contact angles. Thus, we follow [71, 62] and use
the following expression:

C⋆
i = Ci, G⃗⋆

c,i · n⃗ = Fw,i, (50)

where the boundary coefficients Fw,i are

Fw,1 = −4
ε

(cos θw
12C1C2 (C1 + C2) + cos θw

13C1C3 (C1 + C3)) ,

Fw,2 = −4
ε

(− cos θw
12C1C2 (C1 + C2) + cos θw

23C2C3 (C1 + C3)) ,
(51)

being the three wall contact angles θw
ij related by the wall equilibrium constraint [71, 62],

σ12 cos θw
12 + σ23 cos θw

23 = σ13 cos θw
13. For 90◦ angles, the coefficients Fw,i are zero, and the boundary

condition reduces to the homogeneous Neumann boundary condition.

4 Results

In this section, we perform the validation of the approach proposed. First, we solve a manufactured
solution to verify the three-phase solver accuracy. Then, a validation is conducted for a two–phase
horizontal pipe. Finally, a three–phase T–shaped pipe intersection is simulated.

4.1 Manufactured solution

First, we study the convergence properties of the method. To do this, we extend the two–dimensional
the manufactured solution presented in [44] to the manufactured solution of the three–phase Cahn–
Hilliard solver.

As a result, the three–phase manufactured solution is defined as:

c1,0(x, y; t) = 1
3 (1 + cos (πx) sin (πy) sin (t)) ,

c2,0 (x, y; t) = 1
3 (1 + cos (πx) sin (πy) sin (1.2t)) ,

u0(x, y; t) = 2 sin (πx) cos (πz) sin (t) ,
v0(x, y; t) = −2 cos (πx) sin (πy) sin (t) ,
p0(x, y; t) = 2 sin (πx) sin (πz) cos (t) ,

(52)

which requires an appropriate balancing source term, not presented here for simplicity. We solve it
on the domain (x, y) ∈ [−1, 1]2 m. The final time is tF = 0.1 s, and all the physical parameters have
been adapted from [29] and they are given in Table 1.
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Table 1 Three–phase solver: list of the parameter values used in the manufactured solution (see Eq. (52))

ρ1 ρ2 ρ3 (kg/m3) η1 η2 η3 (Pa·s) ε (m)
1.0 3.0 2.0 1.0E-3 1.0E-3 1.0E-3 1/

√
2

M0 (m/s) c2
0 (m/s)2 σ12 σ13 σ23 (N/m)

1.134E-2 1.0E3 6.236E-3 7.265E-3 8.165E-3

First, we perform a polynomial order convergence study on a Cartesian mesh of 42 elements, and
with the polynomial order ranging from N = 2 to 10. In Fig. 3 we represent the L2 errors on the five
variables (c1, c2, ρu, ρv and p) at the final time tF = 0.1 s, for two time–step sizes, ∆t = 10−4 s and
10−5 s. Regarding the error behavior, an exponential accuracy is obtained for lower polynomial order,
as expected, and then the error stagnation associated with the time discretization is anticipated for
the two concentrations, as a result of the first–order IMEX scheme.

(a) ∆t = 10−4 s (b) ∆t = 10−5 s

Fig. 3 Three–phase solver: polynomial order convergence study of the manufactured solution (52). We represent
the L2 errors of the two concentrations c1 and c2, x– and y–momentum, and pressure. The polynomial order
ranges from 2 to 10, and we integrate in time until tF = 0.1 s with two time step sizes: ∆t = 10−4 s and 10−5 s.
All physical parameters are given in Table 1

Finally, we perform the mesh convergence study, where we use meshes with 42, 62, 82, 122 and 162

elements, and vary the polynomial order from N = 2 to N = 5. The L2 errors and the convergence
rates are written in Table 2. We observe that for the two concentrations the convergence rates are
always between N and N + 2, for N = 2 and N = 3, and due to the early stagnation, we cannot
evaluate the convergence rates for N = 4 and N = 5. For the rest of the variables, we find that the
convergence rates are always between N and N + 1, as expected. As previously mentioned, note that
high–order three–dimensional industrial CFD simulations typically use N = 2, 3, to keep a balance
between accuracy and cost.

Overall, we confirm that the scheme and its implementation are accurate for industrial applications.
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Table 2 Three–phase solver: manufactured solution (see Eq. (52)) convergence analysis: we use 43, 83, and 163

meshes, and N = 2, 3, 4 and 5. The final time is tF = 0.1 s, and we use the IMEX scheme with ∆t = 5 · 10−5 s

Mesh c1 error order c2 error order ρu error order ρv error order p error order
N=2 42 5.82E-04 – 6.97E-04 – 5.06E-02 – 5.06E-02 – 2.81E-01 –

62 1.60E-04 3.19 1.91E-04 3.19 1.92E-02 2.39 1.92E-02 2.39 1.17E-01 2.15
82 5.97E-05 3.42 7.15E-05 3.41 9.38E-03 2.49 9.38E-03 2.49 6.19E-02 2.22
122 1.61E-05 3.23 1.93E-05 3.23 3.28E-03 2.59 3.28E-03 2.59 2.40E-02 2.34
162 6.65E-06 3.07 7.97E-06 3.07 1.51E-03 2.70 1.51E-03 2.70 1.18E-02 2.47

N=3 42 3.13E-05 – 3.69E-05 – 5.41E-03 – 5.41E-03 – 3.36E-02 –
62 3.67E-06 5.29 4.38E-06 5.26 1.30E-03 3.52 1.30E-03 3.52 9.41E-03 3.14
82 1.49E-06 3.13 1.79E-06 3.11 4.51E-04 3.68 4.50E-04 3.68 3.65E-03 3.30
122 1.35E-06 0.25 1.62E-06 0.25 9.55E-05 3.83 9.55E-05 3.83 9.01E-04 3.45
162 1.35E-06 0.00 1.61E-06 0.00 3.08E-05 3.94 3.08E-05 3.94 3.20E-04 3.60

N=4 42 3.03E-06 – 3.65E-06 – 4.52E-04 – 4.52E-04 – 3.12E-03 –
62 1.39E-06 1.93 1.66E-06 1.94 7.10E-05 4.56 7.10E-05 4.57 5.47E-04 4.30
82 1.35E-06 0.10 1.62E-06 0.10 1.85E-05 4.67 1.85E-05 4.67 1.52E-04 4.46
122 1.35E-06 0.00 1.61E-06 0.00 2.67E-06 4.77 2.67E-06 4.77 2.37E-05 4.58
162 1.35E-06 0.00 1.61E-06 0.00 6.59E-07 4.87 6.59E-07 4.87 6.20E-06 4.67

N=5 42 1.35E-06 – 1.62E-06 – 3.17E-05 – 3.15E-05 – 2.57E-04 –
62 1.35E-06 0.01 1.61E-06 0.01 3.18E-06 5.67 3.18E-06 5.66 2.83E-05 5.44
82 1.35E-06 0.00 1.61E-06 0.00 6.23E-07 5.67 6.22E-07 5.67 5.79E-06 5.52
122 1.35E-06 0.00 1.61E-06 0.00 6.48E-08 5.58 6.47E-08 5.58 5.81E-07 5.67
162 1.35E-06 0.00 1.61E-06 0.00 1.50E-08 5.08 1.50E-08 5.08 1.15E-07 5.62

4.2 Two–phase pipe simulations

In this section, we focus on a test case relevant for the oil and gas industry. In particular, we simulate
the flow in horizontal pipes with different superficial velocities (see Eq. (45)) at the inflow, US

G and
US

L, which correspond to the gas and liquid respectively. Depending on the superficial velocities values,
we obtain different flow regimes. This test case follows the one proposed in [72, 43] and agrees with
the experimental results of [73].

The flow pattern map of Taitel & Dukler (see Fig. 4) classifies the flow regimes as stratified
flow, slug flow, dispersed bubble flow and annular flow. In a stratified flow the phases are completely
separated with gas in the upper part and liquid in the lower part of the pipe. In a slug flow, the waves in
the flow reach the top of the pipe, eventually closing the gas path at the top. In a dispersed bubble flow,
small bubbles are present in the flow, and are dispersed everywhere in the cross section. In an annular
flow, the liquid forms a coat all around the pipe walls. Following [72], we define four test cases that
reproduce the four flow regimes, denoted with red crosses in Fig. 4, and whose superficial velocities are
given in Table 3. The domain for the simulations consists of a pipe with length L = 1 m and diameter

Table 3 Two–phase solver: superficial velocities (in m/s) and theoretical flow regime in horizontal pipe test case

Test Flow regime US
G US

L

1 Stratified flow 0.7 0.06

2 Slug flow 0.25 2

3 Dispersed bubble flow 0.05 8

4 Annular flow 4.9 0.06

D = 0.1 m. The physical domain is discretized using a mesh of 8220 hexahedral elements and the
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Test points
Dispersed bubble flow

Slug flow

Stratified flow

Annular flow
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2

3
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1
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102
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G [m/s]

10−4 10−3 10−2 10−1 1 101 102

Fig. 4 Two–phase solver: flow pattern map of the two-phase flow in a horizontal pipe with a diameter of 1 meter.
The data has been extracted from [72]

solution is approximated by order N = 3 polynomials. The physical parameters are summarized in
Table 4. The mobility is taken from [72], and the width of the interface covers approximately three

Table 4 Two–phase solver: physical parameters of the pipe flow

ρ1 ρ2 (kg/m3) η1 η2 (Pa·s) ε (m) M0 (m/s) c2
0 (m/s)2 σ (N/m) g (m/s2)

1.0 5.0 5 · 10−3 10−2 0.0424 0.1886 1.0E3 2.5 · 10−4 1.0

points in the high–order mesh. The time step chosen for the simulations is ∆t = 10−5 s. Regarding
the boundary conditions, a no–slip boundary condition (see Eq. (48)) is enforced at the pipe walls
(with a contact angle of 90◦) while a velocity inflow boundary condition (see Eq. (39)) and a constant
pressure outflow boundary condition (see Eq. (46)) are used. It should be noted that the flow regime
inflow is considered layered (see Fig. 2). The initial condition for all simulations is propagated along
the Z axis, with a small wave–like perturbation with Z coordinate, to introduce asymmetry.

Then, Fig. 5 shows an isosurface of c values under 0.5, colored by density, for the four test cases
shown in Fig. 4 (organized from top to bottom from 1 to 4) at t = 4 s.

In Fig. 6 we show the density contour in a Z–normal slice at L/D = 8. As can be seen, the flow
regimes are correctly predicted. Note that ignoring the effect of the hydrostatic pressure on the outlet
when imposing a constant outlet pressure, it induces a velocity in the negative X direction that curves
the interface. This can be more easily seen in the stratified flow regime (Test 1).

4.3 Three–phase T–shaped pipe intersection

Finally, we solve a T–shaped pipe junction configuration with two inlets and one outlet. The domain
has a straight upper inlet whose length is 3 m, which is then coupled to a 90◦ bend whose radius
is 3 m. Additionally, the second inlet has a straight 5 m section, and then another 90◦/3 m bend.
Finally, the outlet after the T–shaped junction is a straight pipe whose length is 6 m. The diameter
of the pipe is D = 1 m. The computational mesh used has 1700 elements and is represented in Fig. 7.
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Fig. 5 Two–phase solver: results of test cases 1-4 (organized top to bottom) at t = 4s. Stratified, Slug, Dispersed
Bubble and Annular Flow regimes

Fig. 6 Two–phase solver: representation of the density contour in a pipe at z/D = 8 cross section. The four
regimes (stratified, slug, dispersed bubble, and annular) are represented

Physical parameters are given in Table 5. In the upper inlet, we only inject phases 1 and 2 with
superficial velocities Vs,1 = Vs,2 = 4 m/s. In the lower inlet, we only inject phase 3 with superficial
velocity Vs,3 = 2 m/s. Additionally, the gravity acceleration is g⃗ = −1 m/s2 in x-direction. We use a
polynomial order N = 3, and the IMEX scheme uses S0 = 8 with a time–step size ∆t = 5 ·10−5 s. The
initial condition is a steady state with uniform pressure p = 0, and with the pipe filled with phase 3
(c1 = c2 = 0).

We represent the evolution of the phases in Fig. 8, where we represent phase 2 in blue, phase 3
in gray and the space left is occupied by phase 1. Initially, the pipe is filled with phase 3, which was
chosen because it has the minimum density of the three phases (so it is easier for the other two phases
to displace it). At the initial stages (see Fig. 8(b)), we observe the advancing front at the upper inlet.
We see that phase 2 (blue) overtakes phase 1 at the elbow, and then both phases arrive at the main
pipe at t ≈ 1.5 (see Fig. 8(d)). Then, phases 1 and 2 enter the principal pipe and restrict the flow of
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Fig. 7 Three–phase solver: computational mesh for the T–shaped junction pipe domain, with 1700 elements

Table 5 Three–phase solver: list of the parameter values used for the three–phase T–shaped pipe intersection
simulation

ρ1 ρ2 ρ3 (kg/m3) η1 η2 η3 (Pa·s) ε (m)
5.0 1.0 0.2 1.0E-5 2.5E-5 5.0E-5 0.03

M0 c2
0 (m/s)2 σ12 σ13 σ23 (N/m) g (m/s2)

1.8856E-2 1.0E3 2.5E-4 2.5E-4 2.5E-4 1.0

phase 3 after the T–shaped pipe intersection. The lower density fluid, phase 3, is then confined to the
wall, and phases 1 and 2 intermittently occupy the bulk of the pipe (see Fig. 8(i)).

~g

(a) t = 0 s (b) t = 0.5 s

In Fig. 9 we represent the configuration of the three–phase at the final simulation time at t = 7.5 s.
Both phases 1 (Fig. 9(a)) and 2 (Fig. 9(b)) represent the bulk of the pipe, whereas phase 3 (Fig. 9(c))
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(c) t = 1.0 s (d) t = 1.5 s

~g

(e) t = 2.0 s (f) t = 2.5 s

(g) t = 3.0 s (h) t = 3.5 s

is forced to coat the walls of the pipe (similar to an annular flow regime). Due to the rupture of the
flow of phase 3 by the phases 1 and 2, phase 3 gets a counter–clockwise swirl motion around the pipe.

Finally, we represent the velocity contours at the final time t = 7.5 s in Fig. 10. We can see the
detachment due to the low viscosity of phase 2, at the upper elbow. A similar pattern is found at
the lower elbow for phase 3. Then, after the T–shaped intersection, the flow becomes under–resolved,
with large velocity spots, as a result of the interaction between the three phases.

Overall, we confirm the validity of the solver to compute simulations in complex three–dimensional
geometries, as those found in the oil and gas industry.
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(i) t = 4.0 s (j) t = 4.5 s

Fig. 8 Three–phase solver: evolution of phase two (blue) and phase three (gray) for the first 4.5 seconds

5 Conclusions

We present a three–phase incompressible Navier–Stokes/Cahn–Hilliard system, and its discontinuous
Galerkin implementation. The model uses the three–phase Cahn–Hilliard model of [1], and the incom-
pressible Navier–Stokes with artificial compressibility of [2]. We construct a discontinuous Galerkin
approximation of the equations, where we combine the scheme used for the three–phase Cahn–Hilliard
model in [62] and that used for the kinetic–energy stable incompressible Navier–Stokes equations of [2].
An implicit–explicit (IMEX) method is adopted as temporal scheme for the Cahn–Hilliard equation,
while Runge–Kutta 3 (RK3) is used for the Navier–Stokes equations. Therefore, the low–order tempo-
ral approximation is used exclusively to approximate the diffusive contribution of the Cahn–Hilliard
equation, which is an artifact to simulate diffuse interfaces and phase separation. The interfaces
produced by the Cahn–Hilliard equation will not be numerically diffused by the lower–order approxi-
mation, since the chemical free energy controls the sharpening back the interface. In the Navier–Stokes
equations, however, the use of a high–order method has the advantage of a lower numerical dissipation,
which prevents turbulent flow structures to quickly diffuse back into the flow.

First, the three–phase solver accuracy is validated with a manufactured solution test case. Then
the numerical method is shown to correctly match a two–phase experimental flow regime map for a
horizontal pipe. Finally, a three–dimensional T–shaped pipe intersection is solved as an example of a
complex geometry. We highlight the ease in the configuration of the solver and the scheme for a user,
as it only requires an appropriate choice of the physical parameters and conditions, plus the choice
of the polynomial order of the simulation. The rest of the numerical parameters have been proven
valid in a vast range of flow conditions, and the boundary conditions are automatically set–up by the
algorithm that computes the inlet profile for given superficial/slip velocities.
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Fig. 9 Three–phase solver: representation of the three–phase at the final time t = 7.5



High–order DG approximation for a three–phase iNS/CH model 23

Fig. 10 Three–phase solver: total velocity contour at the final time t = 7.5 s
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