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Abstract

A novel free–energy stable discontinuous Galerkin method is developed for the Cahn–
Hilliard equation with non–conforming elements. This work focuses on dynamic polynomial
adaptation (p–refinement) and constitutes an extension of the method developed by Man-
zanero et al. in Journal of Computational Physics 403:109072, 2020, which makes use of the
summation–by–parts simultaneous–approximation term technique along with Gauss–Lobatto
points and the Bassi–Rebay 1 (BR1) scheme. The BR1 numerical flux accommodates non–
conforming elements, which are connected through the mortar method. The scheme has been
analytically proven to retain its free–energy stability when transitioning to non-conforming
elements. Furthermore, a methodology to perform the adaptation is introduced based on
the knowledge of the location of the interface between phases. The adaptation methodol-
ogy is tested for its accuracy and effectiveness through a series of steady and unsteady test
cases. We test the scheme for freestream preservation and primary quantity conservation on
non–conforming curvilinear meshes. We solve a steady one–dimensional interface test case to
initially examine the accuracy of the adaptation. Furthermore, we study the formation of a
static bubble in two dimensions and verify that the accuracy of the solver is maintained while
the degrees of freedom decrease to less than half compared to the uniform solution. Lastly,
we examine an unsteady case such as the spinodal decomposition and show that the same
results for the free–energy are recovered, with a 35% reduction of the degrees of freedom for
the two–dimensional case considered and a 48% reduction for the three–dimensional case.
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1 Introduction

A variety of different approaches and methodologies have been developed throughout the years
to model and simulate systems of two or more immiscible fluids. These methods can be divided
into two large categories. The interface–tracking and the interface–capturing techniques. The
former includes the Marker–And–Cell (MAC) and front–tracking methods whereas the latter
include the widely known Volume Of Fluid (VOF), level–set and phase field methods. A review
of the characteristics and features of the various methods can be found in [1].

In this work, we focus on phase–field methods and especially the Cahn–Hilliard model [2]. Its
use for multiphase modeling has growing popularity in the recent years because of the favorable
total mass conservation characteristics [3] as well as the bounded behavior of the free–energy [4].

The essence of using a diffuse interface method such as the Cahn–Hilliard model is that the
sharp interface between the two immiscible fluids is represented by an interface of a finite width
throughout which, the fluid thermodynamic properties smoothly vary from those of one phase to
another. Typically, the physical width of the interface is of the order of nanometers [5]. However,
this constitutes an unrealistic target as to numerically capture this interface would require a large
amount of resources even for the simplest of the cases [6]. The answer to this is partially derived
from the sharp interface limit of the Cahn–Hilliard model. Through asymptotic analysis [7], it
can be proved that the Cahn–Hilliard model converges to the physical solution even with the
use of a substantially larger interface. This characteristic makes a simulation cost–effective while
retaining the desired accuracy.

The discretization scheme adopted is the nodal Discontinuous Galerkin Spectral Element Method
(DGSEM) based on previous work presented by Manzanero et al. [8]. The DGSEM offers great
flexibility as the solution is represented through an arbitrary approximation polynomial order
and supports the use of unstructured meshes of curvilinear hexahedral elements to approximate
complex geometries. Furthermore, another advantage of the DGSEM exploited in this work is
that the approximation order can vary across elements. There is a limited amount of publica-
tions concerning the use of discontinuous Galerkin methods in order to solve the Cahn–Hilliard
equation [8–14] and there is still a variety of aspects regarding the efficiency, robustness and
accuracy that should be addressed.

The DGSEM version of this work uses Gauss–Lobatto (GL) points, which through the Summation–
By–Parts Simultaneous–Approximation Term (SBP–SAT) property [15,16] allow the derivation
of free–energy stable schemes. There is a plethora of work focused on the construction of entropy
and energy stable schemes for the discontinuous Galerkin method [15, 17–23] and the references
therein. A review of entropy stable DGSEM schemes is given in [24]. As for the Cahn–Hilliard
equation, a DGSEM with the SBP–SAT property has been developed in [8, 9]. These schemes
however, are designed for conforming elements and they should be modified accordingly such
that they can retain their stability properties when using non–conforming elements.

There is a growing popularity of entropy stable schemes with special consideration on the ex-
tension of their characteristics to non–conforming elements. These ideas can contribute to the
creation of a free–energy stable scheme as the one developed in this work. The foundation for
the establishment of this family of methods has been laid in [25–29] on linear problems. One of
the first works is the one presented by Carpenter et al. [30] which makes a first attempt to create
an entropy–stable scheme using the local discontinuous Galerkin method. Again, the scheme
uses the SBP–SAT property of the Gauss–Lobatto (GL) points and is proved to be entropy–
stable for the compressible Euler equations for unstructured hexahedral meshes. This method
has been extended to the Navier–Stokes equations by Parsani et al. [31, 32]. Then in [33] the
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classic mortar method is modified to guarantee entropy stability of the discontinuous Galerkin
method. Following that work, the authors in [34] extended the scheme from the compressible
Euler equations to the compressible Navier–Stokes equations and into the use of curvilinear el-
ements. In addition, [35] is also an extension of the aforementioned work and focuses on an
entropy stable discontinuous Galerkin scheme. Another work on non–conforming curvilinear el-
ements for hyperbolic conservation laws is presented in [36]. There is a plethora of publications
concerning the design of energy– and entropy– stable operators for linear and nonlinear problems
for non–conforming elements and up to our knowledge, an equivalent free–energy stable scheme
for non–conforming elements has not been previously established for the Cahn–Hilliard model.

For diffuse interface methods, such as the Cahn–Hilliard, the region of interest is that of the inter-
face. More specifically, within the interface there are steep gradients, which should be adequately
resolved. On the contrary, on the bulk of each phase, the phase-field variable is constant and the
resolution can be lowered. Thus, the resolution can be coarsened in the regions away from the
interface and refined within the vicinity of the interface. The interested reader can find a wide
array of publications that address the aforementioned issue in the context of mesh adaptation
(h–refinement) [37–45] with respect to the refinement indicator, mesh refinement strategy and
dynamic adaptation. These correspond to different frameworks, employing numerical schemes
such as finite differences [39, 40], finite volume [41, 42] and finite elements [37, 38, 44, 45]. Also,
there are some works on finite elements that identify the effect of the polynomial order on the
accuracy of the solution [13, 46], but polynomial adaptation (p–refinement) is not addressed.
Up to the authors’ knowledge, there is no similar work performed on the effectiveness of local
polynomial adaptation for phase-field problems when used in conjunction with the discontinuous
Galerkin scheme.

There are various methods that can be used to mark the refinement region for Adaptive Mesh
Refinement (AMR), which could potentially be applied to polynomial refinement. Similar studies
on dynamic mesh adaptation for diffuse interface models have been performed with the use of
gradient based indicators [38,44], Legendre discretisation spectrum extrapolation [47], summation
of the tail of the spectrum [48], flux jump of the Laplace operator [37], the location of the
interface [39,49], as well as other error indicators [50–52]. Additionally, there is a theoretical study
on the a priori determination of the error for the discontinuous Galerkin method when used for
the Cahn–Hilliard equation [53]. A possible alternative approach for the polynomial refinement
of the Cahn–Hilliard is the truncation error estimation as presented in [54] and applied to the
Navier–Stokes equations in [55–57], which could allow anisotropic refinement in each element.
In this work, we take advantage of the knowledge of the location of the interface to perform the
adaptation.

The aim of this work is to create a scheme that retains the accuracy and stability characteristics
when transitioning to the use of the non–uniform polynomial order across the domain. To achieve
this, the first step was to modify the BR1 numerical flux to handle such elements and incorporate
the mortar method [58]. The modified scheme is then proved analytically to be free–energy stable
for the general case of non-conforming element boundaries following the methodology in [8]. The
time marching is performed through a first order IMplicit–EXplicit (IMEX) scheme. This choice
has been made to alleviate the stiffness of the system due to the higher order derivatives. The
free–energy of the system is proved to be bounded for the continuous and the discrete time
settings.

We also develop a methodology to perform automatic p–adaptation for the Cahn–Hilliard equa-
tion when using the DGSEM. This is based on the location of the interface and it takes advantage
of the attributes of the scheme’s spatial locality. The DGSEM offers the opportunity to augment
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the polynomial order within each element of the mesh and also individually in each direction.
Therefore, only the elements that contain part of the interface are refined while the rest are
coarsened. Thus, through this simple and efficient process we can achieve a reduction in the
degrees of freedom without further processing of the mesh. The accuracy and convergence char-
acteristics are subsequently examined through a series of different tests and direct comparison
with the conforming version of the scheme.

The rest of the work is organized as follows. First the model used and its characteristics are
specified in Sec. 2. Then the spatial and temporal discretisation methods are introduced in
Sec. 3, as well as the modified BR1 numerical fluxes that allow non-uniform polynomial order
in Sec. 3.2. The adaptation methodology is described in Sec. 4. In Sec. 5 the foundation of
the method is laid through an analytical proof of the free–energy boundedness of the scheme.
A verification for the freestream preservation and primary quantity conservation for general 3D
p–non–conforming meshes is presented in Section 6. In Sec. 7 three different test cases are
presented along with the results from the developed method and a comparison is made with the
conforming solver version with respect to the achieved accuracy and degrees of freedom.

2 Cahn–Hilliard equation and continuous energy estimates

This work is based on the Cahn–Hilliard equation, which can be utilized to describe a vast
variety of physical phenomena such as the dynamics of phase separation of two and N phase
flows, binary alloys, tumor growth, etc. [3]. The application of interest in this particular case
is the study of two phase flows. The model consists of a constant mobility parameter and a
polynomic double–well chemical free–energy [59,60]. The Cahn–Hilliard equation is defined as

φt = ∇ · (M∇w) , in Ω, (1)

The phase field variable φ represents the concentration of each phase and satisfies (1), M repre-
sents the mobility which is a positive parameter, Ω is the physical domain (with boundary ∂Ω),
and w is a scalar field representing the chemical potential. The chemical potential is designed to
minimize an arbitrary free–energy functional, F(φ,∇φ), which depends on the phase field and
its gradient,

w =
δF
δφ
. (2)

A homogeneous Neumann boundary condition is applied for the chemical potential in order to
ensure that mass is conserved [61],

∇w · ~n
∣∣∣∣
∂Ω

= 0. (3)

The free–energy consists of two terms that impose opposing effects. The chemical free–energy,
ψ, which drives phase separation, and the interfacial energy 1

2k|∇φ|
2, which promotes homoge-

nization by penalizing the existence of gradients. The parameter k is positive and controls the
width of the interface. The two energies lead into the existence of an interface,

F =

∫
Ω

(
ψ(φ) +

1

2
k|∇φ|2

)
d~x−

∫
∂Ω
g(φ) dS = Fv(φ) + Fs(φ). (4)

In (4), Fv(φ) and Fs(φ) represent the volumetric and surface free–energies accordingly. The
term g(φ) represents a boundary energy that will also be minimized with appropriate boundary
conditions, and k is the interfacial energy coefficient.
The minimization is performed by linearization of the free–energy (4) around an equilibrium
solution,

δF =

∫
Ω

(
dψ

dφ
δφ+ k∇φ · ∇ (δφ)

)
d~x−

∫
∂Ω

dg

dφ
δφdS, (5)
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where δφ acts as a small perturbation. Since we will also apply Neumann boundary conditions
for φ, the perturbation δφ is not restricted to vanish at the boundaries ∂Ω. The integration of
the second term of the first integral in (5) by parts,

δF =

∫
Ω

(
dψ

dφ
− k∇2φ

)
δφd~x−

∫
∂Ω

(
dg

dφ
− k∇φ · ~n

)
δφdS, (6)

yields both the chemical potential definition,

w =
dψ

dφ
− k∇2φ, (7)

and the appropriate Neumann boundary conditions prescription,

k∇φ · ~n
∣∣∣∣
∂Ω

=
dg

dφ
. (8)

In this work we use a polynomial double–well function for the chemical free–energy [2],

ψ(φ) = (1− φ)2(1 + φ)2, (9)

and a linear function for the boundary free–energy,

g(φ) = βφ, (10)

since they represent standard choices in the literature, but other choices that are not covered
here exist (e.g. logarithmic chemical free–energy [62]).
An exact solution of the one–dimensional steady state Cahn–Hilliard equation (1), with the
chemical free–energy (9) and the free–energy (4), in an infinite domain with φ (±∞) = ±1 is
given by

φ = tanh

(√
2x√
k

)
. (11)

To facilitate the stability analysis of the system as well as the discretization, and following the
processes highlighted in [8, 10], the Cahn–Hilliard equation (1) is transformed into a system of
four first order equations,

φt = ∇ ·
(
M ~f

)
, (12a)

~f = ∇w, (12b)

w =
dψ

dφ
− k∇ · ~q, (12c)

~q = ∇φ. (12d)

To create the weak form, we have introduced two auxiliary variables ~q = ∇φ and ~f = ∇w.
We multiply (12a) and (12c) with the arbitrary scalar test functions ϕΦ and ϕW respectively
and (12b) and (12d) with the arbitrary vectorial counterparts ~ϕF and ~ϕQ. Then we integrate
over the domain Ω and derive four weak forms,

〈φt, ϕΦ〉 =
〈
∇ ·
(
M ~f

)
, ϕΦ

〉
, (13a)〈

~f, ~ϕF

〉
= 〈∇w, ~ϕF 〉 , (13b)

〈w,ϕW 〉 =

〈
dψ

dφ
, ϕW

〉
− k 〈∇ · ~q, ϕW 〉 , (13c)

〈~q, ~ϕQ〉 = 〈∇φ, ~ϕQ〉 , (13d)

where the operator 〈f, g〉 is the L2 inner product

〈f, g〉 =

∫
Ω
fg dx. (14)
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2.1 Continuous free–energy stability

The analytical proof of the free–energy boundedness with a given initial condition is given in [8].
The process makes use of the transformed system (13) and then through some manipulation of
the equations the following inequality can be derived,

F(T ) = F(0)−
∫ T

0

〈
M ~f, ~f

〉
dt 6 F(0). (15)

As a result, the Cahn–Hilliard equation (1) with chemical potential (7) and Neumann boundary
conditions (3) and (8) guarantees that the free–energy F evaluated at any time instant T , as
defined in (4), is bounded.This is the property to be mimicked by the subsequent approximation.

3 The nodal discontinuous Galerkin spectral element method

In this section we briefly introduce the underlying theory and the construction of the non–
conforming nodal DGSEM. The interpolating nodes are the GL points as they satisfy the SBP–
SAT property (19). This is a crucial aspect to prove the scheme’s stability, avoiding the use of
exact integration. Furthermore, a non–conforming DGSEM is constructed, where the polynomial
order can vary across different elements [63].

The computational domain Ω is tessellated into non–overlapping hexahedral elements, which are
then geometrically transformed from a reference element e = [−1, 1]3 by means of a transfinite
mapping. This mapping relates the physical (~x = (x1, x2, x3) = (x, y, z)) and the local (~ξ =
(ξ1, ξ2, ξ3) = (ξ, η, ζ)) coordinates,

~x = ~X(~ξ) = ~X(ξ, η, ζ). (16)

The solutions and functions are approximated by order Ne polynomials in an element e,

INe [u(x, y, z, t)]e = U(ξ, η, ζ, t) =

Ne∑
i,j,k=0

Uijk(t)li(ξ)lj(η)lk(ζ), (17)

where the approximation order Ne can vary from element to element. In (17), lj are the Lagrange
interpolating polynomials whose nodes are a set of Gauss–Lobatto points in the reference element
e and Uijk(t) are the (time dependent) nodal values of an arbitrary function u. The notation
is as follows: we use lower cases for the exact functions, whereas upper cases represent their
polynomial approximation.
We approximate the integrals with quadrature rules that use the same GL nodes as those that
represent the solution, ∫ 1

−1
FGdξ ≈

∫
E,Ne

FGdξ =

Ne∑
m=0

wmFmGm, (18)

where wi are the quadrature weights [64]. This provides an exact integration for 2Ne − 1 order
polynomial (see [65]). The choice of the GL nodes is essential since it makes the quadrature
rule (18) to satisfy the discrete SBP-SAT property, that is, a discrete Gauss law, which in one
dimension is ∫

E,Ne

dU

dξ
V dξ = UNeVNe − U0V0 −

∫
E,Ne

U
dV

dξ
dξ. (19)

The SBP–SAT property makes it possible to resemble the continuous analysis that proves the
boundedness of the free energy F in (15) discretely.
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The transformations from the reference element to the physical space must create a watertight
mesh (i.e. without gaps across the elements). This constraints the mapping functions at the
inter–element faces to be the same,

~XeL (ξ, η, ζ)

∣∣∣∣
face

= ~XeR (ξ, η, ζ)

∣∣∣∣
face

. (20)

From the mapping, we compute a set of covariant and contravariant vector bases,

~aj =
∂ ~X

∂ξj
, ~aj = ∇ξj , j = 1, 2, 3. (21)

The relation between the covariant and (volume weighted) contravariant bases is

J~ai = ~aj × ~ak, (i, j, k) cyclic, (22)

where J is the Jacobian of the transformation, J = ~a1 · (~a2 × ~a3). The volume weighted con-
travariant bases satisfy the continuous metric identities,

3∑
i=1

∂Jain
∂ξi

= 0, n = 1, 2, 3. (23)

In the discrete setting, we must ensure that the approximation of the metrics is free–stream
preserving. Having a watertight mesh is a necessary condition but not sufficient. For free–stream
preservation, the mesh has to satisfy two additional conditions [66],

1. Condition (F): the projection of the discrete volume weighted contravariant bases at
the faces has to be also continuous J~ai

∣∣eL
face

= J~ai
∣∣eR
face

. The symbol J represents the
polynomial approximation of the Jacobian.

2. Condition (V): the approximation of the contravariant bases has to satisfy a discrete
version of the metric identities (23).

The mapping function is approximated with the interpolation operator (17). However, although
the mapping is represented by order Ne polynomials, the genuine order of the mapping is given
by the approximation order of the faces. We highlight the construction of a watertight mesh that
satisfies the two conditions:

• Edges: the approximation order of the edges in the mesh has to be unique, and the face
functions that share an edge must reduce to the same curvilinear function at the edge. The
order of an edge shared by various faces has to be Nedge = min (Nf1 , Nf2 , ...) for general
three-dimensional non–conforming elements, two dimensional, two dimensional extruded
and conforming problems, at most.

• Faces: the approximation order of the faces in the mesh has to be unique and it must
be Nf = min (NeL , NeR) /2 for general three–dimensional non–conforming elements, and
Nf = min (NeL , NeR) for two–dimensional, two–dimensional extruded, and conforming
problems, at most.

• Volume: the contravariant basis have to be computed in a curl form [67]

J ain = −~̂xi · ∇ξ × IN (Xl∇ξXm) , i, n = 1, 2, 3, (n,m, l) cyclic. (24)

We use the contravariant basis to transform the differential operators from physical to compu-
tational space. The divergence of a vector is

∇ · ~f =
1

J
∇ξ ·

(
MT ~f

)
=

1

J
∇ξ · ~̃f, (25)
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where,
~̃
f =

[
f̃1 f̃2 f̃3

]T
= MT ~f, (26)

is the contravariant flux, and

M = [J~a1 J~a2 J~a3] = [J~aξ J~aη J~aζ ]. (27)

The gradient of a scalar is transformed as [67]

∇u =
1

J
M∇ξu. (28)

Lastly we approximate the three dimensional integrals in an element by GL tensor product
quadratures

∫
e
fg de ≈

∫
E,Ne

JFGdE = 〈JF,G〉E,Ne
=

Ne∑
i,j,k=0

wijkJijkFijkGijk, (29)

which allows us to write the discrete Gauss law as in [68]

〈
∇ξU, F̃

〉
E,Ne

=

∫
∂E,Ne

UF̃ · n̂ dŜ −
〈
∇ξ · F̃ , U

〉
E,Ne

. (30)

In (30), n̂ is the unit outward normal vector at the reference element faces, dŜ is the surface
local integration variables (dŜi = dξj dξk for i–oriented faces). To compute the surface integral,
the two dimensional quadratures in each of the six faces that define the element are defined

∫
∂E,Ne

UF̃ · n̂ dŜ =

∫
f,Ne

UF̃ ξ dη dζ

∣∣∣∣ξ=1

ξ=−1

+

∫
f,Ne

UF̃ η dξ dζ

∣∣∣∣η=1

η=−1

+∫
f,Ne

UF̃ ζ dξ dη

∣∣∣∣ζ=1

ζ=−1

.

(31)

Moreover, surface integrals can be written in either physical or computational space. The relation
between the two spaces is

dSi =
∣∣J~ai∣∣dξj dξk = J if dŜi, (32)

where we defined the face Jacobian J if =
∣∣J~ai∣∣. An equivalent relation can be deducted for the

surface flux in the reference element, F̃ · n̂, as well as the physical, ~F · ~n, through the relation

~̃F · n̂i dŜi =
(
MT ~F

)
· n̂i dŜi = ~F ·

(
Mn̂i

)
dŜi = ~F · ~n

∣∣J~ai∣∣ dŜi = ~F · ~ni dSi. (33)

Therefore, quadratures can be represented both in physical and computational spaces,∫
∂E,Ne

~̃F · n̂ dŜ =

∫
∂e,Ne

~F · ~ndS, (34)

and the use of one form over the other depends on whether we study an isolated element (com-
putational space) or the whole combination of elements in the mesh (physical space).
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3.1 The mortar element method

Following [58], we use two projection operators Plh and Phl from the order Nl (low order) space
to its Nh > Nl (high order) counterpart and vice versa known as the mortar method [47]. Let
F ∈ PNl and G ∈ PNh two polynomial functions. Then from [25, 33], the projection operator is
designed to satisfy

〈F,PhlG〉E,Nl
= 〈PlhF,G〉E,Nh

, (35)

which is an SBP–preserving operator that satisfies the M–compatibility condition [25,26,33,69].
A consequence of (35) is that the operator to augment the polynomial space differs to the opposite
one, known as restriction. To augment the polynomial space one simply uses an interpolation
operation,

(Plh)ij = lNl
j

(
ξNh
i

)
, (36)

that is, we evaluate the Lagrange interpolating polynomials of the low–order Nl space at the
GL nodes of the high–order Nh space. To fulfill the condition (35), the backward projection
(restriction) from Nh to Nl must be

Phl = M−1
l P

T
lhMh, Me = diag

(
wNe

0 , wNe
1 , ..., wNe

Ne
,
)
, (37)

where wNe
j are the quadrature weights at the GL quadrature points for an element e with poly-

nomial order Ne. As presented in Section 6 the error remains down to machine rounding error.
Constructed in such way, the operators are not invertible, that is PhlPlh 6= Ih and PlhPhl 6= Il.
This means that when an arbitrary polynomial A ∈ PNl from the lower space is projected to the
mortar, it is not recovered by using the restriction operator,

Phl (Plh (A)) 6= A. (38)

An exception to (38) is any constant function, Phl (Plh (k)) = k. Therefore, we can show that
although the polynomials in (38) differ, the mortar is still able to keep the integral value,

〈Phl (Plh (A)) , 1〉E,Nl
= 〈Plh (A) ,Plh (1)〉E,Nh

= 〈A,Phl (Plh (1))〉E,Nl
= 〈A, 1〉E,Nl

. (39)

This property is useful for proving that the scheme is conservative [33].

3.2 Discontinuous Galerkin spectral element approximation of the Cahn–
Hilliard equation

We now assemble the discrete version of (13). The first step is to transform (13) into the local
coordinate system as described in (25) and (28), and to get the weak form of the system in
the reference element E. To do that, we restrict the test functions ϕΦ, ϕW (scalar), ~ϕF , ~ϕQ
(vectorial), to the order Ne polynomial space,

〈Jφt, ϕΦ〉E =
〈
∇ξ ·

(
Mf̃

)
, ϕΦ

〉
E
, (40a)〈

J ~f, ~ϕF

〉
E

= 〈M∇ξw, ~ϕF 〉E =
〈
∇ξw,MT ~ϕF

〉
E

= 〈∇ξw, ϕ̃F 〉E , (40b)

〈Jw, ϕW 〉E =

〈
J

dψ

dφ
, ϕW

〉
E

− k 〈∇ξ · q̃, ϕW 〉E , (40c)

〈J~q, ~ϕQ〉E = 〈M∇ξφ, ~ϕQ〉E =
〈
∇ξφ,MT ~ϕQ

〉
E

= 〈∇ξφ, ϕ̃Q〉E . (40d)

The following step is to integrate the right hand side terms that contain a ∇ξ operator by parts,
to replace the continuous functions with their polynomial approximations and to replace exact
integrals by quadratures. Furthermore, we apply the discrete Gauss law (30) to (41b) and (41d).
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〈JΦt, ϕΦ〉E,Ne
=

∫
∂E,Ne

ϕΦ

(
MF̃

)?
· n̂ dSξ −

〈
MF̃ ,∇ξϕΦ

〉
E,Ne

, (41a)〈
J ~F , ~ϕF

〉
E,Ne

=

∫
∂E,Ne

(
(W ? −W ) |J~a|i ~ni

)
· ~ϕF dSξ + 〈∇ξW, ϕ̃F 〉E,Ne

, (41b)

〈JW,ϕW 〉E,Ne
=

〈
J dΨ

dΦ
, ϕW

〉
E,Ne

− k
∫
∂E,N

ϕW Q̃
? · n̂ dSξ + k

〈
Q̃,∇ξϕW

〉
E,Ne

, (41c)〈
J ~Q, ~ϕQ

〉
E,Ne

=

∫
∂E,N

(
(Φ? − Φ) |J~a|i ~ni

)
· ~ϕQ dSξ + 〈∇ξΦ, ϕ̃Q〉E,Ne

, (41d)

where index i is used with Einstein convention.
The terms with star superscript in (41) are the numerical fluxes, which make the flux uniquely
defined at the boundaries. In this work, we use the Bassi–Rebay 1 scheme (BR1) [70], which
handles non–conforming interfaces. Without loss of generality, we consider the inter–element
face with orders Nl < Nh. The mortar method computes the scalar fluxes on the higher order
element, which are then transferred to the lower order element through the restriction operator,(

(W ? −W ) |J~a|i ~ni
)
h

=

(
Wh + Plh (Wl)

2
−Wh

)
|J~a|h ~nh =

1

2
(Plh (Wl)−Wh) |J~a|h ~nh,(

(W ? −W ) |J~a|i ~ni
)
l

= Phl
(

(W ? −W ) |J~a|i ~ni
)
h
,(

(Φ? − Φ) |J~a|i ~ni
)
h

=

(
Φh + Plh (Φl)

2
− Φh

)
|J~a|h ~nh =

1

2
(Plh (Φl)− Φh) |J~a|h ~nh,(

(Φ? − Φ) |J~a|i ~ni
)
l

= Phl
(

(Φ? − Φ) |J~a|i ~ni
)
h
.

(42)

Whereas for the vector fluxes, we transform the contravariant fluxes from the lower order to the
higher order element and then we take their difference (since the normal vectors are opposite)
and add an interface stabilizing term,

~̃F ?h · n̂ =
1

2
|J~a|h~nh ·

(
~Fh + Plh

(
~Fl

))
− σ |J~a|h (Wh − Plh (Wl)) ,

~̃F ?l · n̂ = −Phl
(
~̃F ?h · n̂

)
,

~̃Q?h · n̂ =
1

2
|J~a|h~nh ·

(
~Qh + Plh

(
~Ql

))
− σ |J~a|h (Φh − Plh (Φl)) ,

~̃Q?l · n̂ = −Phl
(
~̃Q?h · n̂

)
,

(43)

In (43), |J~a|h~nh and |J~a|l~nl are the (scaled) normal vectors at the face, and they satisfy
|J~a|h~nh = − |J~a|l ~nl = −Plh

(
|J~a|l~nl

)
(Condition (F)).

For Neumann boundary conditions, we use the adjacent element interior value to compute the
gradients in (41b) and (41d),

W ? = W
∣∣
∂e
, Φ? = Φ

∣∣
∂e
, (44)

and we directly impose Neumann boundary values for divergence weak forms (41a) and (41c),(
M ~F

)?
· ~n = 0, ~Q? · ~n =

dG
(
Φ
∣∣
∂e

)
dφ

= β, (45)

where β is kept constant to β = 0 for all the numerical experiments.
Note that we have presented the physical interface fluxes, rather than the contravariant fluxes,
so that we can relate in a straightforward manner the interface values shared by two elements
(recall that the same physical flux yields different contravariant flux values, as it depends on
each element geometry).
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3.3 Temporal Discretization

The Cahn–Hilliard equation incorporates higher order derivatives which make the system stiff.
To combat the stiffness, a first order IMplicit–EXplicit (IMEX) scheme has been employed.
Throughout this work a constant timestep ∆t has been used. Following the theory developed
in [8, 71], the scheme takes the following form:

φn+1 − φn = ∆t∇ ·
(
M∇

(
dψ(φn)

dφ
+ S0

(
φn+1 − φn

)
− k∇2

(
K0φ

n+1 + (1−K0)φn
)))

. (46)

The notation follows that n will be used as a superscript to denote state values at tn = n∆t.
The chemical free–energy ψ (φ) is non–linear and will be treated explicitly as denoted in (46).
The treatment of the interface energy term k∇2φ is controlled by the K0 parameter. For K0 = 0
there is a fully explicit time marching, for K0 = 1/2 we get the Crank–Nicolson scheme, whereas
for K0 = 1 it is fully implicit with a backwards Euler scheme. For the numerical tests of Sec. 7,
the fully implicit treatment has been utilized. The second term of the right hand side of (46) is
an additional numerical stabilization according to [71]. It has been shown in [8] that a value of
S0 = 1 the system is stable for Φ ∈ [−1, 1] and thus has been chosen for the following numerical
tests.
Applying the scheme (46) to the discretized scheme of (41), the fully discrete discontinuous
Galerkin approximation is obtained

〈
J Φn+1 − Φn

∆t
, ϕΦ

〉
E,N

=

∫
∂E,N

ϕΦ

(
MF̃

)?,θ
· n̂ dSξ −

〈
MF̃ θ,∇ξϕΦ

〉
E,N

, (47a)〈
J ~F θ, ~ϕF

〉
E,N

=

∫
∂E,N

(
W ?,θ −W θ

)
ϕ̃F · n̂ dSξ +

〈
∇ξW θ, ϕ̃F

〉
E,N

, (47b)〈
JW θ, ϕW

〉
E,N

=

〈(
dΨ

dΦ

)n
+ S0

(
Φn+1 − Φn

)
,J φw

〉
E,N

(47c)

− k
∫
∂E,N

ϕW Q̃
?,n+1 · n̂ dSξ + k

〈
Q̃n+1,∇ξϕW

〉
E,N

,〈
J ~Qn+1, ~ϕQ

〉
E,N

=

∫
∂E,N

(
Φ?,n+1 − Φn+1

)
ϕ̃Q · n̂ dSξ +

〈
∇ξΦn+1, ϕ̃Q

〉
E,N

. (47d)

The superscript θ has been used for variables (e.g. ~F θ or W θ) that are not directly evaluated
at tn or tn+1 with the IMEX strategy, but on a combination of those depending on the different
terms involved in (47c).

4 Heuristic p–adaptation methodology

In this section we describe a methodology to automatically adapt the polynomial order for so-
lutions of the Cahn–Hilliard equation. This methodology exploits the characteristics of the
introduced numerical method which permit the use of different order of accuracy in each ele-
ment. The indicator identifies the elements that contain at least one point within the interface
region. The latter has been defined as the region where the phase field parameter φ ranges from
−0.9 < φ < 0.9 and is a choice which is usual in diffuse interface literature [72]. If an element
is marked for refinement, then it is refined to a user specified polynomial order in all directions.
The adaptation process is presented in Algorithm 1.

To enhance the robustness of the method, and since the movement of the interface cannot
be predicted when solving the Cahn–Hilliard equation, a buffer region of refined elements is
applied to all the neighboring elements of those that contain part of the interface, as presented

11



in Algorithm 1. On the contrary, the elements that are not marked, are coarsened also to a
user specified level. In this work we have used a coarse level of NCoarse = 2. Simulations have
also been conducted with a coarse polynomial order of NCoarse = 1 and we noticed that for the
meshes used, the NCoarse = 1 is not sufficient to adequately resolve the solution and thus this
option has been omitted.

In order to avoid steep changes in the polynomial order across the elements, two different jump
restrictions have been tested to bridge the fine and coarse element levels. In both cases, the
polynomial order of the elements in fine level remains intact, and modifications take place in
the neighboring coarse level elements. The first criterion restricts the polynomial order jump
between two subsequent elements not to be greater than unity and from this point on, we will
refer to that as the N − 1 condition. The other criterion is less restrictive and dictates that for
two adjacent elements with Nl < Nh, the Nl will take a value of Nl ≥ 2Nh/3. The latter will
be referred to as the 2N/3 criterion for the rest of this text. These conditions have been derived
from the work of [63].

One of the most important benefits of this adaptation approach, is that the computational cost
is kept to a minimum. The method, calculates the new polynomial order for each element and
performs the interpolation or projection from the previous to the following polynomial orders.
In this case we use the operator PPN (35) to perform an L2 projection from order P to order N
as presented in [64], (

ΦN
)

= PPN
(
ΦP
)
. (48)

For interpolation we use the operator (36) and for restriction the operator (37).
This method is effective since the solutions of the Cahn-Hilliard equation typically involve a
single scale, that of the interface. This flexibility also stems from the use of a higher order
method such as the discontinuous Galerkin. Due to the higher order approximation, the element
size can be substantially larger compared to classic lower order methods and thus the issues for
the interface–marking approach detailed in [51] such as the refinement or coarsening of the area
around the interface are bypassed. In addition, for phase field simulations, the target is to have a
sufficient number of solution points within the interface in order to capture it appropriately. For
other discretization methods, this number is defined to be at least 5 points within this region [73],
while some researchers prefer a number close to 10 [74,75]. In this work, we use a varying number
of points within the interface that ranges from 3 to 30 to assess the convergence characteristics
of the scheme.

Therefore, since we have a–priori knowledge of the element size, the interface width and the
desired value for points within the interface, it is a very straightforward and low–cost method
which does not require a rigorous tuning of parameters such as in various marker methods used for
AMR [38,44,51]. Thus, as presented in Algorithm 1, the user specifies a value for the maximum
and the minimum polynomial order to be used, the iteration interval upon which the adaptation
will take place and lastly the criterion for the polynomial order jump.
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Algorithm 1 adaptation algorithm used for polynomial adaptation of the Cahn-Hilliard equa-
tion
1: NF ← NFine . Fine polynomial orders specified by the user
2: NC ← NCoarse . Coarse polynomial orders specified by the user
3: fadpt ← adaptation Frequency . adaptation frequency specified by the user
4: Jump← 2N/3 or N− 1 . User specifies the desired jump condition
5: iter← Iteration number
6: procedure adaptation(Element,Nf ,Nc,fadpt,iter,Jump)
7: if mod

(
iter
fadpt

)
= 0 or iter = 1 then

8: for i← 1,number_of_elements do
9: if any |Element(i).φ (x, y, z)) | ≤ 0.9 then

10: Element(i).Polynomial_Order = NF;
11: else
12: Element(i).Polynomial_Order = NC;
13: end if
14: end for
15: for i← 1,number_of_elements do
16: if Element.Polynomial_Order = NC then
17: if |Element.Neighbor.φ (x, y, z)) | ≤ 0.9 then . Apply NFine to buffer zone
18: Element.Polynomial_Order = NF;
19: end if
20: end if
21: end for
22: ApplyJump(Element) . Application of the Jump condition
23: InterpolateToNewPolynomialOrders(Element) . Process of Eq (48)
24: end if
25: end procedure

13



5 Stability analysis

In this work we focus on the p–non–conforming extension of the stability analysis methodology
presented in [8]. The initial steps of the analysis are briefly described and a more detailed
description can be found in [8]. This analysis focuses specifically on the treatment of the inter–
element boundary terms for elements with different polynomial orders to prove that the scheme
is free–energy stable. The derivation of the following steps is given in detail in Appendix A.1.

1. Take the time derivative of (41d).

2. Replace the test functions ϕΦ = W , ~ϕF = ~F , ϕW = Φt, ~ϕQ = ~Q.

3. Both (41d) and (41c) share the term
〈
∇ξΦt,

~̃Q
〉
E,Ne

, which is replaced from (41d) in (41c).

4. Replace the term
〈
∇ξW, ~̃F

〉
E,Ne

, from (41b) in (41a).

5. Both (41a) and (41c) have the term〈JΦt,W 〉E,Ne
, which is replaced from (41c) in (41a).

6. The time derivative of the free–energy is identified from the terms〈
J dΨ

dΦ ,Φt

〉
E,Ne

+ k
〈
J ~Qt, ~Q

〉
E,Ne

= d
dt

〈
J
(
Ψ + k

2‖Q‖
2
)〉
E,Ne

= FE,Ne
t .

This results in the following equation for an element e,

FE,Ne
t −

∫
∂E,Ne

(
k
(

(Φ?
t − Φt)

~̃Q+ Φt
~̃Q?
)

+ (W ? −W ) ~̃F +W ~̃F ?
)
· n̂dŜ = −

〈
JM ~F, ~F

〉
E,Ne

.

(49)
Now we sum (49) for all the mesh elements,∑

e

FE,Ne
t + IBT + PBT = −

∑
e

〈
JM ~F, ~F

〉
E,Ne

, (50)

where IBT and PBT are the interior and physical boundary terms. As derived in [8], the PBT
represent the surface free–energy,

PBT =
∑

boundary
faces

∫
∂E,Ne

Φt
dG

dΦ
dS =

d

dt

∑
boundary

faces

∫
∂E,Ne

GdS = FS,t, (51)

thus, the equation for the total free–energy F̄ =
∑
e

FE,Ne +
∑

boundary
faces

∫
∂E,Ne

GdS is

F̄t + IBT = −
∑
e

〈
JM ~F, ~F

〉
E,Ne

. (52)

A stable approximation has IBT > 0. It is in the interior boundary terms where the stability of
the inter–element coupling through the mortar element method is assessed. Each interior face
has the contribution of the two adjacent elements with orders Nl < Nh,

IBT =−
∑

interior
faces

∫
f,Nl

(
k
(

((Φ?
t − Φt) |J~a|~n)l · ~Ql + Φl,t

~̃Q?l · n̂
))

dŜ

−
∑

interior
faces

∫
f,Nl

(
((W ? −W ) |J~a|~n)l · ~Fl +Wl

~̃F ?l · n̂
)

dŜ

−
∑

interior
faces

∫
f,Nh

(
k
(

((Φ?
t − Φt) |J~a|~n)h · ~Qh + Φh,t

~̃Q?h · n̂
))

dŜ

−
∑

interior
faces

∫
f,Nh

(
((W ? −W ) |J~a|~n)h · ~Fh +Wh

~̃F ?h · n̂
)

dŜ.

(53)
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For simplicity, we first study the second and fourth terms of (53) (the part that involves W and
~F ). We replace the inter–element fluxes (42) and (43),

((W ? −W ) |J~a|~n)h · ~Fh +Wh
~̃F ?h · n̂ =

1

2
(Plh (Wl)−Wh) |J~a|h ~nh · ~Fh (54a)

+Wh

(
1

2
|J~a|h~nh ·

(
~Fh + Plh

(
~Fl

))
− σ |J~a|h (Wh − Plh (Wl))

)
=

1

2
|J~a|h

(
Plh (Wl) ~Fh +WhPlh

(
~Fl

))
· ~nh − σ |J~a|hWh (Wh − Plh (Wl)) ,

((W ? −W ) |J~a|~n)l · ~Fl +Wl
~̃F ?l · n̂ =

1

2
Phl

(
(Plh (Wl)−Wh) |J~a|h ~nh

)
· ~Fl (54b)

−WlPhl
(

1

2
|J~a|h~nh ·

(
~Fh + Plh

(
~Fl

))
− σ |J~a|h (Wh − Plh (Wl))

)
,

and we apply property (35) to the second term in (53),∫
f,Nl

(
1

2
Phl

(
(Plh (Wl)−Wh) |J~a|h ~nh

)
· ~Fl

−WlPhl
(

1

2
|J~a|h~nh ·

(
~Fh + Plh

(
~Fl

))
− σ |J~a|h (Wh − Plh (Wl))

))
dŜ

=

∫
f,Nh

(
1

2

(
(Plh (Wl)−Wh) |J~a|h ~nh

)
· Plh

(
~Fl

)
− Plh (Wl)

(
1

2
|J~a|h~nh ·

(
~Fh + Plh

(
~Fl

))
− σ |J~a|h (Wh − Plh (Wl))

))
dŜ

= −
∫
f,Nh

(
1

2
|J~a|h

(
WhPlh

(
~Fl

)
+ Plh (Wl) ~Fh

)
· ~nh − σ |J~a|h Plh (Wl) (Wh − Plh (Wl))

)
dŜ

(55)

We add the (negative) contributions from the fourth term in (53) and the transformed lower
order integral of (55),

−
∫
f,Nh

(
1

2
|J~a|h

(
Plh (Wl) ~Fh +WhPlh

(
~Fl

))
· ~nh − σ |J~a|hWh (Wh − Plh (Wl))

)
dŜ

+

∫
f,Nh

(
1

2
|J~a|h

(
WhPlh

(
~Fl

)
+ Plh (Wl) ~Fh

)
· ~nh − σ |J~a|h Plh (Wl) (Wh − Plh (Wl))

)
dŜ

= σ

∫
f,Nh

|J~a|h (Wh (Wh − Plh (Wl))− Plh (Wl) (Wh − Plh (Wl))) dŜ

= σ

∫
f,Nh

|J~a|h (Wh − Plh (Wl))
2 dŜ > 0.

(56)

We proceed similarly with the first and third integrals of (53), for which we use the same
numerical fluxes,

−
∫
f,Nl

(
k
(

((Φ?
t − Φt) |J~a|~n)l · ~Ql + Φl,t

~̃Q?l · n̂
))

dŜ

−
∫
f,Nh

(
k
(

((Φ?
t − Φt) |J~a|~n)h · ~Qh + Φh,t

~̃Q?h · n̂
))

dŜ

=kσ

∫
f,Nh

|J~a|h (ΦhΦh,t − ΦhPlh (Φl,t)− Φh,tPlh (Φl) + Plh (Φl)Plh (Φl,t)) dŜ

=kσ

∫
f,Nh

|J~a|h (Φh − Plh (Φl)) (Φh − Plh (Φl))t dŜ =
σk

2

d

dt

∫
∂E,Nh

|J~a|h (Φh − Plh (Φl))
2 dŜ,

(57)
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which gives,

IBT =
∑

interior
faces

σ

∫
f,Nh

|J~a|h (Wh − Plh (Wl))
2 dŜ +

σk

2

d

dt

∫
f,Nh

|J~a|h (Φh − Plh (Φl))
2 dŜ, (58)

Finally, following [8] we define an augmented free–energy F̄σ that includes the interface penal-
ization,

F̄σ =
∑
e

FE,Ne +
∑

interior
faces

σk

2

∫
f,Nh

|J~a|h (Φh − Plh (Φl))
2 dŜ +

∑
boundary

faces

∫
f,Ne

GdS, (59)

and that satisfies the free–energy equation,

F̄σt = −
∑
e

〈
JM ~F, ~F

〉
E,Ne

−
∑

interior
faces

σ

∫
f,Nh

|J~a|h (Wh − Plh (Wl))
2 dŜ 6 0. (60)

The physical dissipation and the numerical dissipation are both responsible for decreases in the
free–energy. The numerical interface penalization is not needed for stability, hence a valid scheme
can have σ = 0, but having σ > 0 usually enhances the accuracy of the solutions [8, 76].

5.1 Stability analysis of the non–conforming fully discrete system using the
IMEX integrator

To begin the stability analysis for the fully discrete system the following steps are carried out in
accordance to [8]. The analytical relations can be found therein, as we will mainly focus on the
effect of having p–non–conforming elements which are connected through the mortar method as
described in Section 3.1. The initial steps are presented in Appendix A.2. Briefly the steps are:

1. We evaluate (47d) at tn+1 and tn and subtract them. Then divide by ∆t and set ~φQ = ~Qn+1.

2. Then we set φw =
(
Φn+1 − Φn

)
/∆t in (47c) and subtract it from the modified (47d) from

Step 1.

3. The following step is to combine (47a) and (47b). First we set ~φF = M ~F θ in (47b) and
φΦ = W θ in (47a).

4. We then subtract the equations derived in Steps 2 and 3 and multiply by ∆t .

5. The following step is to express the chemical free potential ψ (φ) through a Taylor expansion
using the definition from (9).

6. Through some manipulation, which is described in detail in [8], we end up to an expression
for the discrete volumetric free–energy Fn,E,Nv within each element, which is defined as
Fn,E,Nv =

〈
J
(

Ψn + 1
2k
~Qn · ~Qn

)
, 1
〉
.

7. The last step is to sum over all the elements within the domain Ω.

Following the aforementioned steps we derive (61) for the discrete volumetric free energy:

Fn+1,N
v −Fn,Nv = −∆t

∑
e

〈
J ~F θ,M ~F θ

〉
E,N

+ IBT + PBT +
∑
e

dissE,NIMEX, (61)

where IBT represents the inter-element coupling terms of non-conforming elements, with ap-
proximation orders Nl and Nh respectively, as defined in (62). The terms PBT arise from the
exterior boundaries (66) and the application of boundary conditions. The last term is the nu-
merical dissipation of the IMEX scheme, which is negative, and there is a detailed proof in [8]
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about its contribution in the decrease of the free energy. As the non–conformity of the domain
does not affect or alter that term, it will not be presented analytically. Lastly, the first term of
the right hand side of (61) will always be negative and represents the physical dissipation arising
from the interior of each element.
Following the aforementioned steps, the interior boundary terms can be expressed as in (62).
This is the equivalent version of (53) from the continuous stability analysis:

IBT =−
∑

interior
faces

∫
f,Nl

k
(

((∆Φ? −∆Φ) |J~a|~n)l · ~Q
n+1
l + ∆Φl

~̃Q?,n+1
l · n̂

)
dŜ

−
∑

interior
faces

∫
f,Nl

(((
W θ,? −W θ

)
|J~a|~n

)
l
· ~F θl +W θ

l
~̃F ?,θl · n̂

)
dŜ

−
∑

interior
faces

∫
f,Nh

k
(

((∆Φ? −∆Φ) |J~a|~n)h · ~Q
n+1
h + ∆Φh

~̃Q?,n+1
h · n̂

)
dŜ

−
∑

interior
faces

∫
f,Nh

(((
W θ,? −W θ

)
|J~a|~n

)
h
· ~F θh +W θ

h
~̃F ?,θh · n̂

)
dŜ.

(62)

where ∆Φ = Φn+1 − Φn. The second and fourth terms from (62), and following the same proce-
dure as in (56), are equal to:

−
∑

interior
faces

∫
f,Nl

(((
W ?,θ −W θ

)
|J~a|~n

)
l
· ~F θl +W θ

l
~̃F ?,θl · n̂

)
dŜ

−
∑

interior
faces

∫
f,Nh

(((
W ?,θ −W θ

)
|J~a|~n

)
h
· ~F θh +W θ

h
~̃F ?,θh · n̂

)
dŜ

=−
∑

interior
faces

σ

∫
f,Nh

|J~a|h
(
W θ
h − Plh

(
W θ
l

))2
dŜ.

(63)

The first and third terms of (62), following the process of (57), are equal to:

−
∑

interior
faces

∫
f,Nl

k
(

((∆Φ? −∆Φ) |J~a|~n)l · ~Q
n+1
l + ∆Φl

~̃Q?,n+1
l · n̂

)
dŜ

−
∑

interior
faces

∫
f,Nh

k
(

((∆Φ? −∆Φ) |J~a|~n)h · ~Q
n+1
h + ∆Φh

~̃Q?,n+1
h · n̂

)
dŜ

=−
∑

interior
faces

kσ

∫
f,Nh

|J~a|h
(
Φn+1
h − Plh

(
Φn+1
l

))
(∆Φh − Plh (∆Φl)) dŜ.

(64)

We manipulate (64) by adding and subtracting Φn and we arrange it to get

= −
∑

interior
faces

kσ

∫
f,Nh

|J~a|h
(

Φn+1
h − Φn

h

2
+

Φn+1
h + Φn

h

2
−
Plh

(
Φn+1
l

)
− Plh (Φn

l )

2

−
Plh

(
Φn+1
l

)
+ Plh (Φn

l )

2

)
(∆Φh − Plh (∆Φl)) dŜ

= −
∑

interior
faces

kσ

2

∫
f,Nh

|J~a|h
((

Φn+1
h − Plh

(
Φn+1
l

))2 − (Φn
h − Plh (Φn

l ))2 + (∆Φh − Plh (∆Φl))
2
)

dŜ.

(65)
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The boundary terms remain unchanged because we use same approximation in the interior as
the exterior for every boundary:

PBT =
∑

boundary
faces

∫
∂e,N

(
Φn+1 − Φn

)
βdS =

∑
boundary

faces

∫
∂e,N

(
G
(
Φn+1

)
−G (Φn)

)
dS. (66)

Gathering the results of (63), (65) and (66) and substituting in (61), we derive (67) for the
volumetric free–energy. We define an augmented free–energy Fn,N,σ

Fn+1,N,σ
v −Fn,N,σv −

∑
boundary

faces

∫
∂e∩∂Ω,N

(
G
(
Φn+1

)
−G (Φn)

)
dS

+
∑

interior
faces

kσ

2

∫
f,Nh

|J~a|h
((

Φn+1
h − Plh

(
Φn+1
l

))2 − (Φn
h − Plh (Φn

l ))2
)

dŜ

= Fn+1,N −Fn,N =−∆t
∑
e

〈
J ~F θ,M ~F θ

〉
E,N

+
∑
e

dissE,NIMEX

−
∑

interior
faces

σ

∫
f,Nh

|J~a|h
(
W θ
h − Plh

(
W θ
l

))2
dŜ

−
∑

interior
faces

kσ

2

∫
f,Nh

|J~a|h (∆Φh − Plh (∆Φl))
2 dŜ.

(67)

Equation (67) confirms that the free–energy remains bounded in the discrete time setting, as the
four terms on the right hand side of (67) are dissipative.
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6 Numerical Verification

The goal of the following tests is to numerically validate the code and showcase the primary
conservation characteristics, and that the scheme is freestream preserving for general 3D p–non–
conforming meshes. For that purpose we make use of the mesh presented in [77]. The mesh is
a 4 × 4 cube defined in Ω = [0, 1]3 with all boundaries being treated with periodic boundary
conditions. Initially we construct a cartesian mesh and apply a transformation to the space
variables ~χ = (χ1, χ2, χ3)T to create the curved mesh in physical space ~x. The transformation
function used throughout the following tests is

xl = χl + 0.1 sin (πχ1) sin (πχ2) sin (πχ3) for xl = 1, 2, 3. (68)

The mesh has been generated using the HOPR package [78] with a geometrical order of approx-
imation of Ngeo = 2.

Figure 1: mesh used for the freestream preservation and primary conservation and an example
of a random polynomial order distribution across the domain.

The first test is conducted to prove that the scheme is freestream preserving. We set a uniform
initial condition, in this case φ (t = 0) = 1, and measure the error produced as the solution is
marched in time. To measure the error we use the L2 and the L∞ norms which are computed as

‖φ‖L2 =

√∑
e

〈JΦ,Φ〉E,N , ‖φ‖L∞ = max
(√
〈JΦ,Φ〉E,N

)
. (69)

We conduct a series of tests with a random distribution of the polynomial order across the
domain from the interval P ∈ [4, 6], as in the example presented in Figure 1. Since Ngeo = 2,
the geometric conditions described for general 3D p–non–conforming meshes are automatically
satisfied. The time marching is performed with an explicit low storage 3rd order Runge–Kutta
(RK3) scheme [79]. The parameters of the simulation are presented in Table 1.

M k σ ∆t K0 S0

1.0 10−4 0.0 10−7 1.0 1.0

Table 1: parameter values used for the freestream preservation and primary quantity conservation
tests.

The results obtained for the freestream preservation test are summarized in Table 2. We present
the L2 norm of the initial rate of change of the concentration parameter as well as the L2 and
L∞ norms of the error at a time instant of t = 1.
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‖φt(t = 0)‖L2 ‖φ(t = 1)− φ(t = 0)‖L2 ‖φ(t = 1)− φ(t = 0)‖L∞

φ 1.471 · 10−11 1.806 · 10−14 5.883 · 10−16

Table 2: results for the freestream preservation test.

As presented in Table 2, the results indicate that the scheme is freestream preserving with the
error being close to machine rounding error.
The second test is conducted to prove that the scheme is primary quantity conserving. In this
case we measure the error in total mass as

Total mass error =

∫
Ω
φ(t)− φ(0)d~x. (70)

For this test we use the same 4 × 4 mesh with a geometrical order of approximation Ngeo = 2.
In this case, we use a random distribution for the polynomial order across the domain from the
interval P ∈ [4, 5]. The time marching also in this case is performed using the RK3 scheme.
The parameters of this simulation are presented in Table 1. The initial condition is a random
distribution for the concentration parameter φ in the interval φ ∈ [−1, 1]. The solution is
computed until a final time of t=1.
The results are presented in Figure 2. As presented, the error remains close to machine rounding
error throughout the simulation and thus the scheme shows primary quantities conservation.

Figure 2: results for the primary quantity conservation test with a random initial condition.
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7 Numerical results

In this section, we consider three different numerical experiments: a one–dimensional interface
test case, the formation of a circular static bubble and that of a spinodal decomposition in two
and three dimensions. The one–dimensional test case is used to initially evaluate the accuracy
of the adaptation compared to the conforming version of the scheme as well as to quantify the
error introduced when adapting along the direction of the interface. The static bubble formation
is an unsteady case used to assess the accuracy of the scheme in two–dimensions and showcase
the ability to achieve similar level of accuracy through a significant reduction in the degrees of
freedom. Lastly, the spinodal decomposition is a classic problem of the Cahn–Hilliard equation.
We examine a two– and a three–dimensional test case of a spinodal decomposition. We show that
the same results for the free–energy and final state can be recovered with the use of adaptation
and present the course of the reduction of the degrees of freedom as the solution evolves. These
test cases have been chosen to illustrate the capabilities, robustness and accuracy of the scheme.

7.1 One–dimensional interface

The first test case to be examined is a one–dimensional interface between two immiscible fluids.
It is a case that proves the effectiveness of this methodology and can be used as a preliminary
study to assess the characteristics of the scheme. Moreover, the impact of the polynomial order
jump condition on the accuracy among neighboring elements is assessed. The initial condition
is a sharp jump of the phase–field variable φ between the two phases is defined as

x ∈ [0, 40], t ∈ [0, 15], φ(x, 0) =

{
1 for x ≥ 20
−1 for x < 20

. (71)

The Neumann boundary condition (8) is enforced at both ends of the domain. The model
parameters used in this case are presented in Table 3. Recall that the parameters K0 and S0

are related to the IMEX time marching scheme. The backward difference Euler has been chosen
(K0 = 1) as well as the value for S0 = 1 that guarantees non–linear stability [8].

M k σ ∆t K0 S0

1.5 2.25 0.0 10−3 1.0 1.0

Table 3: parameter values used for the one–dimensional interface test case.

Number of elements (element size/interface width)
Domain Dimensions Mesh 1 Mesh 2 Mesh 3

[0,40] 10 (1.0) 20 (0.5) 40 (0.25)

Table 4: mesh specification for the test case of the steady state one–dimensional interface and
relative element size compared to the interface width as approximated by (11).

As the simulation evolves, the system converges to a steady state. We chose to compare the
convergence of the scheme based on a very fine solution of N = 10 to assess the accuracy
of the adaptation process. The initial condition of the problem along with the final solution
are presented in Figure 3. The adaptation interval in this test case does not correlate with the
accuracy of the results, as this is a steady case and the adaptation performed on the first timestep
is sufficient.

21



Figure 3: representation of the initial condition for the one–dimensional interface test and the
final solution (t = 15) on Mesh 1 with N = 6.

We first establish the convergence rates and characteristics when uniformly refining the polyno-
mial order of the solution, as presented in Figure 4. More specifically, the convergence test has
been performed for three different meshes. The coarsest case corresponds to a cell size which is
equal to the interface width, as approximated from the steady state solution (11). The subse-
quent two meshes have cell sizes of half and a quarter of the initial cell size respectively. From
the results presented in Figure 4, we confirm that the polynomial refinement leads to exponential
convergence rates. The convergence rate has an even–odd behavior which is also present in the
manufactured solution case in [8]. Through this test case, the effect of the polynomial refinement
has been showcased as well as the dependency on the cell size of the mesh used.

Figure 4: comparison of the L2 norm of the error for the one–dimensional steady state interface
test case at t = 15 between the N = 10 uniform solution and the adapted solution with the two
different jump criteria. The results presented are for varying fine level polynomial order on the
three different meshes specified in Table 4.

Having established for this case that the polynomial refinement leads to exponential convergence,
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we validate that these characteristics are preserved when performing polynomial local refinement
and coarsening. In all cases, the initial setup has been a uniform fine level polynomial order across
the domain. This polynomial order is retained in the region of the interface, whereas there is
coarsening in the bulk of the phases. The lowest polynomial order chosen for the bulk of the
phases is NCoarse = 2 as described in Sec. 4.
This case also incorporates an initial test for the jump of the polynomial order across different
elements. Since it is a one–dimensional case it does not unveil the effect and the error that might
occur due to the use of the mortar method. However, it has been used as a mean of identifying
errors that occur while changing the polynomial order in the direction of the interface. Two
cases for the jump of the polynomial order between two subsequent elements have been tested,
the N − 1 and the 2N/3 criteria as introduced in Sec. 4.

The results of the adaptation process are presented in Figure 4. The results with the use of
adaptation match those of the uniform polynomial order for all meshes and polynomial orders
tested. Furthermore, the reduction achieved in degrees of freedom throughout the simulation of
the one–dimensional interface is presented in Table 5.

Mesh 1
NFine = 3 NFine = 4 NFine = 5 NFine = 6

Initial DoFs 40 50 60 70
Final DoFs 34 38 42 46
Reduction % 15 25.5 30 34.2

Mesh 2
NFine = 3 NFine = 4 NFine = 5 NFine = 6

Initial DoFs 80 100 120 140
Final DoFs 60 64 70 80
Reduction % 25 36 41.6 42.8

Mesh 3
NFine = 3 NFine = 4 NFine = 5 NFine = 6

Initial DoFs 160 200 240 280
Final DoFs 104 110 118 130
Reduction % 35 45 50.8 53.5

Table 5: final number of degrees of freedom for the one–dimensional steady interface test case
upon the adaptation process with the 2N/3 criterion. Results presented for the three different
meshes of Table 4.

7.2 Circular static bubble

The second case to be studied is that of the formation of a static bubble. The initial condition is
a square at the center of the domain with the phase-field parameter taking the value of φ = −1
and the rest of the domain the value of φ = 1,

φ(x, y) =

{
1 if |x− 20| ≤ 7 and |y − 20| ≤ 7
−1 otherwise

. (72)

The initial condition is presented in Figure 5(a). Subsequently, the solution evolves to a state of
minimum energy, which is a circular bubble as presented in Figure 5(b).
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(a) t = 0 (b) t = 100

Figure 5: visualization of the (a) initial condition (t = 0) and (b) final condition (t = 100) of
(72) for the two–dimensional circular static bubble test case.

The parameters of the simulation are presented in Table 6. The final solution time is t = 100.
Two different Cartesian meshes have been considered. The first has an element size which is half
of the interface width and the second being a quarter of the interface width. Also in this case,
the element size was based on the knowledge of the parameter in the Cahn–Hilliard equation
that controls the interface width. The specification of the mesh is presented in Table 7. All
boundaries are treated with periodic boundary conditions. A suitable adaptation interval for
this test case and the meshes specified in Table 7 has been identified to be every 500 iterations.
It has to be mentioned that this value is dependent upon the element size, the dynamics of the
problem as well as the timestep chosen for each particular simulation.

M k σ ∆t K0 S0

1.5 2.25 0.0 10−3 1 1

Table 6: parameter values used for the static 2D circular bubble test case.

Number of elements (element size/interface width)
Domain Dimensions Mesh 1 Mesh 2

[0, 40]2 20 × 20 (0.5) 40 × 40 (0.25)

Table 7: mesh specification for the test case of the static two–dimensional circular bubble and
relative element size compared to the interface width as approximated by (11).

The results using the adaptation algorithm on this problem compared to the uniform solution
are presented in Figures 7 and 9. The data points for the adapted results in Figure 7 correspond
to Mesh 1 and a fine level polynomial order of NFine ∈ {2, 3, 4, 5, 6, 8} whereas NCoarse = 2. For
this particular mesh, the results amongst the cases with the different polynomial order jump as
well as the uniform solution are matching. The adaptation does not incur any additional error.
This is due to the element size being relatively large and in conjunction with the buffer of refined
elements the coarse elements are situated far away from the interface region and thus the results
match those of the uniform solution. What distinguishes the two solutions that make use of the
adaptation, is that the same accuracy can be achieved with fewer degrees of freedom for the case
of the 2N/3 jump condition. Figures 6(a), 6(b) illustrate the field of the polynomial order for the
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case of Mesh 1 for two different time instants along with the 2N/3 criterion. Given a sufficient
adaptation rate the polynomial order jump does not affect the solution and does not cause any
error for this specific mesh and simulation settings.

(a) t=2.5 (b) t=100

Figure 6: visualization of the polynomial order distribution for the instant of (a) t = 2.5 and
(b) t = 100 for the static circular bubble test case on Mesh 1 with the 2N/3 jump condition.
The solid black lines denote the position of the interface −0.9 ≤ φ ≤ 0.9.

Figure 7: convergence of the L2 error norm for the case of Mesh 1 of the static bubble test case
(t = 100). Comparison of the achieved accuracy for a given number of degrees of freedom for a
uniform polynomial order and adapted with two different jump conditions.

In Figure 9 the results for Mesh 2 and polynomial orders of NFine ∈ [2, 6] are presented. The
fine polynomial order is retained in the interface region and the rest of the domain is coarsened
to NCoarse = 2 according to the phase–field parameter value in each element. Furthermore, in
Figure 9 the convergence characteristics for the two different jump conditions are presented.
The adaptation process achieves significant decrease in the degrees of freedom, with the more
aggressive approach of 2N/3 showcasing the largest benefit. The field of the polynomial order
for the latter is presented in Figures 8(a) and 8(b). However, in this case the adaptation incurs
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some error in the solution. For the case of NFine = 6, the offset in the error compared to the
uniform solution of both the N − 1 and 2N/3 criteria is of the order of 10−5.

(a) t = 2.5 (b) t = 100

Figure 8: visualization of the polynomial order distribution for the instant of (a) t = 2.5 and
(b) t = 100 for the static circular bubble test case on Mesh 2 with the 2N/3 jump condition.
The solid black lines denote the position of the interface −0.9 ≤ φ ≤ 0.9.

Figure 9: convergence of the L2 error for the case of Mesh 2 of the static bubble test case
(t = 100). Comparison of the achieved accuracy for a given number of degrees of freedom for a
uniform polynomial order and adapted with two different jump conditions.

To understand the underlying difference between the two adapted solutions as well as the error
generated during the polynomial adaptation process, we show a cross section along the middle
line of the bubble. Figure 10(a) presents the profiles of the uniform and adapted solutions with
NFine = 6 and Figure 10(b) presents the error of the aforementioned solutions compared to the
fine uniform solution with polynomial order N = 10. The results in Figure 10(b) show that
in the region of the interfaces, 11.5 ≤ x ≤ 14.5 and 26.5 ≤ x ≤ 29.5, the error between the
adapted and uniform solutions is similar. However, some error arise in the bulk region of the
phases near the interface. Thus, the interface region is captured adequately with the use of
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the adaptation technique and the accuracy is maintained with a significantly smaller number of
degrees of freedom.

(a) Cross section of the final solution along the
mid–line for Mesh 2 of the static bubble test
case comparing the solution profile for a N = 6
uniform solution and the adapted solution with
NFine = 6 with the two different jump criteria.

(b) Error along the mid–line of the domain com-
pared to a fine uniform solution of N = 10 for
the uniform solution with N = 6, the adapted
solution with NFine = 6 and the N − 1 crite-
rion and an adapted solution with NFine = 6
and the 2N/3 criterion

Figure 10: solution along the mid–line of the circular bubble test case (a) and error along the
mid–line compared to the fine reference solution with N = 10 (b) for (t = 100).

7.3 Spinodal Decomposition

The spinodal decomposition is a classic problem of the Cahn–Hilliard equation [3]. The main
idea of this test is to introduce noise of different frequencies to an initial state of φ = 0 and allow
it to evolve to the state of minimum energy. This is accompanied by a separation of the phases
and the creation of bulk regions for each phase. We test the qualities and effectiveness of the
adaptation scheme on a two– and a three–dimensional spinodal decomposition.

7.3.1 Two–dimensional spinodal decomposition

The initial condition,

φ0 (x, y) =0.05
(
cos (0.105x) cos (0.11y) + (cos (0.13x) cos (0.087y))2

+ cos (0.025x− 0.15y) cos (0.07x− 0.02y)
)
,

(73)

and the problem specification stem from the benchmark cases described in [80].
The visualization of the initial state of the simulation is presented in Figure 11(a). The pa-
rameters are specified in Table 8. The adaptation frequency has been set to occur every 500
iterations. This problem has also been studied with the present numerical schemes in [8], and
the sensitivity to the parameters of the time marching IMEX scheme has been identified. Also,
the effect of having a structured or unstructured mesh has been quantified, and therefore the
reader is invited to see the results therein. Here, we focus on the effect of the adaptation using
a more general unstructured mesh. The quantity of interest in the spinodal decomposition is
the evolution of the free–energy. We also monitor the variation of the degrees of freedom as the
simulation evolves.

M k σ ∆t K0 S0

1.0 10 1.0 10−1 1.0 1.0

Table 8: parameter values used for the spinodal decomposition test case.
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(a) Initial state (t=0) (b) Final state (t=10000)

Figure 11: visualization of the (a) initial state and (b) final state of the spinodal decomposition
problem. The continuous black lines denote the locations of the interface where the phase-field
parameter takes the values |φ| = 0.9.

(a) free–energy evolution with varying polyno-
mial order. For all polynomial orders above
N = 4 the solution converges to the same fi-
nal state. The adapted solution with NFine = 4
matches the uniform one for both jump criteria.

(b) number of degrees of freedom versus the
physical time for the two different jump criteria.

Figure 12: results of the free–energy and degrees of freedom for the two–dimensional spinodal
decomposition test case in the T–section.

The results presented in Figure 12(a) indicate that for that specific mesh the quantity of interest,
the free–energy, converges when the polynomial order used is N ≥ 4. The final state is presented
in Figure 11(b). Thus a polynomial order of N = 4 has been used as the basis for the comparison
among the uniform and the adapted solution. The coarse level polynomial order used in this
test case is NCoarse = 2. As presented in Figure 12(a), the adapted solution manages to achieve
the same solution and the same final state. The case with the N − 1 criterion manages to
achieve a 30% reduction in the degrees of freedom whereas the 2N/3 achieves a 35% reduction.
A significant proportion of the simulation is carried out using fewer degrees of freedom.

The diagrams in Figure 13 present the field of the polynomial order as well as the position of the
interfaces for different time instants of this spinodal decomposition problem. In Figure 13(a),
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which corresponds to t = 800, there are few elements which have been coarsened because the
phases still undergo through the process of separation. As time evolves, the two phases are
further separated as presented in Figure 13(b) and there is a significant decrease in the degrees
of freedom. The final state is presented in Figure 13(c), which reveals that a large proportion of
the elements has a coarse level polynomial order.

(a) t = 800 (b) t = 1600

(c) t = 104

Figure 13: visualization of the polynomial order distribution on the solution for (a) t = 800, (b)
t = 1600 and (c) t = 104 for the spinodal decomposition test case with the 2N/3 criterion. The
continuous black lines denote the locations of the interface where |φ| = 0.9.

7.3.2 Three–dimensional spinodal decomposition

We test a similar spinodal decomposition problem on three dimensions. The problem defini-
tion stems from [8] and we use the cylindrical mesh, with 920 elements and element size of 0.1
(L = 1, D = 1). This is a 2D extruded mesh whose external faces are curvilinear and the ge-
ometrical order of approximation is Ngeo = 2 which conforms with the freestream preservation
restrictions. The initial condition as defined in [8],

φ0 (x, y) =0.015 cos (0.5x− 10z) cos (0.7x+ 10zy + 1) + 0.02 cos
(
20y2 + 15x2

)
sin (8x+ 2y)

+0.02 cos
(

10
√
y2 + z2

)
cos (5xy) cos (20x+ 10z) + 0.01 cos (3x) cos (3z) cos (4y) .

(74)
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In this case, we solve the Cahn–Hilliard equation using the chemical–free energy (9) and we also
use an interface width parameter k = 0.0025 instead of the value k = 0.01 used in [8]. The
latter has been chosen in order to simulate a system with a smaller interface and showcase the
scheme’s capabilities. The parameters of the simulation are presented in Table 9. We use a fine
polynomial order of NFine = 4, a coarse polynomial order of NCoarse = 2 and the 2N/3 jump
criterion. The adaptation frequency has been defined to occur at an interval of 1000 iterations.

Figure 14: evolution of the free–energy as the three–dimensional spinodal decomposition evolves.
The adapted solution with NFine = 4 matches the uniform solution with N = 4.

M k σ ∆t K0 S0

1.0 0.0025 1.0 10−4 1 1

Table 9: parameter values used for the three–dimensional spinodal decomposition test case.

The results presented in Figure 14 show that the results for the free–energy from the adapted
solution match exactly those recovered when using a uniform polynomial order across the domain.
As the solution evolves and the phases are separated, the adaptation scheme reduces the degrees
of freedom as presented in Figure 15. For this problem specification, the reduction achieved
is 48%. In Figure 16 the polynomial order distribution for different time instants is presented.
The final state, as presented in Figure 16(d), is a flat interface separating the two phases.

Figure 15: number of degrees of freedom versus the physical time as the three–dimensional
spinodal decomposition simulation evolves.
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(a) t = 0.5 (b) t = 1

(c) t = 1.5 (d) t = 10

Figure 16: visualization of the polynomial order distribution on the solution for (a) t = 0.5, (b)
t = 1, (c) t = 1.5 and (d) t = 10 for the three–dimensional spinodal decomposition test case
with the 2N/3 criterion. The continuous black lines denote the locations of the interface where
|φ| = 0.9.
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8 Conclusions

In this work, we have established the theoretical framework for a free–energy stable discontinuous
Galerkin scheme for the Cahn–Hilliard equation that targets p–non–conforming meshes. The
analysis carried out has proven that for the continuous and the fully–discrete time setting, the
stability characteristics of the conforming scheme of [8] can be maintained when transitioning to
elements with non–uniform polynomial order. To do so, we use the BR1 numerical flux [70] and
the made use of the standard mortar method [47].
In addition, we have designed a methodology for performing local polynomial refinement for the
Cahn–Hilliard equation. This specific algorithm has the advantage of being simple and low–
cost, based on the advantages that the higher order Discontinuous Galerkin Spectral Element
Methods (DGSEM) offer as well as the Cahn–Hilliard model. We have also implemented and
tested two different criteria to ensure that the scheme maintains the robustness and accuracy of
the uniform solver. Lastly, the effectiveness of the method has been tested and verified through
various two– and three–dimensional test cases, such as the spinodal decomposition, which have
showcased that there is a significant reduction of the degrees of freedom required to attain the
same accuracy as in the conforming version of the scheme.
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A Stability Analysis

A.1 Semi–discrete stability analysis

In this section we follow the steps from [8] used to derive the free–energy bound (15) to derive
an equivalent discrete bound for a modification of (13d) assuming exact time integration.
Following the continuous analysis, we first take the (exact) time derivative of (13d),〈

J ~Qt, ~ϕQ
〉
E,N

=

∫
∂E,N

Φ?
t ϕ̃Q · n̂ dSξ − 〈Φt,∇ξ · ϕ̃Q〉E,N , (75)

where we omitted the test function time derivative terms since (13d) holds for any polynomial
test function (ϕQ or ϕQ,t),〈

J ~Q, ~ϕQ,t
〉
E,N

=

∫
∂E,N

Φ?ϕ̃Q,t · n̂ dSξ − 〈Φ,∇ξ · ϕ̃Q,t〉E,N . (76)

Next, we use the summation–by–parts property (30) in (75),〈
J ~Qt, ~ϕQ

〉
E,N

=

∫
∂E,N

(Φ?
t − Φt) ϕ̃Q · ñ dSξ + 〈∇ξΦt, ϕ̃Q〉E,N , (77)

and replace ~ϕQ = ~Q (and ϕ̃Q =MT ~ϕQ as shown in (40)), to get the time derivative,〈
J ~Qt, ~Q

〉
E,N

=
1

2

d

dt
J || ~Q||2E,N =

∫
∂E,N

(Φ?
t − Φt)

~̃Q · ñ dSξ +
〈
∇ξΦt,

~̃Q
〉
E,N

. (78)

We then set ϕW = Φt in (41c),

〈JW,Φt〉E,N =

〈
J dΨ

dΦ
,Φt

〉
E,N

− k
∫
∂E,N

Φt
~̃Q? · n̂ dSξ + k

〈
~̃Q,∇ξΦt

〉
E,N

. (79)

Since the time derivative is exact, we can use the chain rule for the chemical free–energy potential
derivative, 〈

J dΨ

dΦ
,Φt

〉
E,N

=
d

dt
〈JΨ, 1〉E,N . (80)

We subtract (78) multiplied by k from (79), and use the result in (80) to obtain,

〈JW,Φt〉E,N =
d

dt
〈JΨ, 1〉E,N + k

d

dt

〈
J ~Q, ~Q

〉
E,N

− k
∫
∂E,N

(
Φt
~̃Q? · n̂+ Φ?

t
~̃Q · n̂− Φt

~̃Q · n̂
)

dSξ.
(81)

Next, we use the summation–by–parts property (30) again in (41b),〈
J ~F , ~ϕF

〉
E,N

=

∫
∂E,N

(W ? −W ) ϕ̃F · n̂ dSξ + 〈∇ξW, ϕ̃F 〉E,N , (82)

and we set ~ϕF = M ~F , so that〈
J ~F ,M ~F

〉
E,N

=

∫
∂E,N

(W ? −W )M ~̃F · n̂ dSξ +
〈
∇ξW,M ~̃F

〉
E,N

. (83)

Lastly, we set ϕΦ = W in (41a),

〈JΦt,W 〉E,N =

∫
∂E,N

W
(
M ~̃F

)?
· n̂ dSξ −

〈
M ~̃F,∇ξW

〉
E,N

, (84)
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and we sum (83) and (84) to find that

〈JΦt,W 〉E,N =

∫
∂E,N

(
W
(
M ~̃F

)?
· n̂+W ?

(
M ~̃F

)
· n̂−W

(
M ~̃F

)
· n̂
)

dSξ−
〈
J ~F ,M ~F

〉
E,N

.

(85)
Now, (81) and (85) both contain the term 〈JW,Φt〉E,N on the left hand side, so we can equate
both right hand sides to obtain∫

∂E,N

(
W
(
M ~̃F

)?
· n̂+W ?

(
M ~̃F

)
· n̂−W

(
M ~̃F

)
· n̂
)

dSξ −
〈
J ~F ,M ~F

〉
E,N

=
d

dt
〈JΨ, 1〉E,N + k

d

dt

〈
J ~Q, ~Q

〉
E,N
− k

∫
∂E,N

(
Φt
~̃Q? · n̂+ Φ?

t
~̃Q · n̂− Φt

~̃Q · n̂
)

dSξ.

(86)

We rearrange (86) to move time derivatives to the left hand side of the equation. Additionally,
we identify the volumetric discrete free–energy of the element,

d

dt

(
〈JΨ, 1〉E,N +

k

2
J
∣∣∣∣∣∣ ~Q∣∣∣∣∣∣2

E,N

)
=

d

dt

∫
E,N
J
(

Ψ +
k

2
~Q · ~Q

)
dE = FE,Ne

t , (87)

and thus, we simplify (86) to

FE,Ne
t = −

〈
J ~F ,M ~F

〉
E,N

+ kBTE,N (Φt, ~Q) + BTE,N (W,M ~F ). (88)

In (88), we find that the volumetric free–energy is dissipated in the element interior by the
chemical potential flux (similarly to the continuous counterpart (15)), and exchanged with other
elements through the boundary terms BTE,N .
To obtain an energy estimate similar to that in (15), we sum all element contributions, getting∑

e

FE,Ne
t = F̄t =

〈
J ~F ,M ~F

〉
E,N

+
∑
e

(
kBTE,N (Φt, ~Q) + BTE,N (W,M ~F )

)
. (89)

We then split the boundary quadratures
∑

e BTE,N = IBTN + PBTN into the combination of
interior (IBTN ) and physical boundary (PBTN ) sums,∑

e

FE,Ne
t + IBT + PBT = −

∑
e

〈
JM ~F, ~F

〉
E,Ne

. (90)
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A.2 Discrete Stability analysis

These steps are derived from the analysis presented in [8]. The discretized PDE in time is given
by the following expression,

φn+1 − φn = ∆t∇ ·
(
M∇

(
dψ(φn)

dφ
+ S0∆φ− k∇2

(
K0φ

n+1 + (1−K0)φn
)))

, (91)

The parameter K0 controls the time marching method. So for K0 = 0 it is explicit Euler,
K0 = 1/2 it is the Crank–Nicolson scheme, and K0 = 1 is the implicit Euler. In this work, we
only make use of the implicit Euler time marching scheme and thus for the rest of this analysis
we assume that K0 = 1
We introduce the time discretization (91) into (41) to obtain the fully–discrete discontinuous
Galerkin approximation,〈

J Φn+1 − Φn

∆t
, ϕΦ

〉
E,N

=

∫
∂E,N

ϕΦ

(
M ~̃F

)?,θ
· n̂ dSξ −

〈
M ~̃F θ,∇ξϕΦ

〉
E,N

, (92a)〈
J ~F θ, ~ϕF

〉
E,N

=

∫
∂E,N

(
W ?,θ −W θ

)
ϕ̃F · n̂ dSξ +

〈
∇ξW θ, ϕ̃F

〉
E,N

, (92b)〈
JW θ, ϕW

〉
E,N

=

〈(
dΨ

dΦ

)n
+ S0

(
Φn+1 − Φn

)
,JϕW

〉
E,N

− k
∫
∂E,N

ϕW
~̃Q?,n+1 · n̂ dSξ + k

〈
~̃Qn+1,∇ξϕW

〉
E,N

, (92c)〈
J ~Qn+1, ~ϕQ

〉
E,N

=

∫
∂E,N

(
Φ?,n+1 − Φn+1

)
ϕ̃Q · n̂ dSξ +

〈
∇ξΦn+1, ϕ̃Q

〉
E,N

, (92d)

where we use the superscript θ for variables (e.g. ~F θ or W θ) that are not directly evaluated at
tn or tn+1 with the IMEX strategy, but on a combination of those depending on the different
terms involved in (92c). Moreover, following the semi–discrete analysis, we have already applied
the summation–by–parts property (30) in (92b) and (92d).
To analyze the stability of the system (92), we start by combining (92c) and (92d). We perform
the first manipulations on (92d), which we set for both tn+1 and tn,〈

J ~Qn+1, ~ϕQ

〉
E,N

=

∫
∂E,N

(
Φ?,n+1 − Φn+1

)
ϕ̃Q · n̂ dSξ +

〈
∇ξΦn+1, ϕ̃Q

〉
E,N

, (93a)〈
J ~Qn, ~ϕQ

〉
E,N

=

∫
∂E,N

(Φ?,n − Φn) ϕ̃Q · n̂ dSξ + 〈∇ξΦn, ϕ̃Q〉E,N . (93b)

Then we subtract (93b) from (93a), divide the result by ∆t (note that we have defined ∆Φ =
Φn+1 − Φn and ∆ ~Q = ~Qn+1 − ~Qn),〈

J ∆ ~Q

∆t
, ~ϕQ

〉
E,N

=

∫
∂E,N

(
∆Φ?

∆t
− ∆Φ

∆t

)
ϕ̃Q · n̂ dSξ +

〈
∇ξ (∆Φ)

∆t
, ϕ̃Q

〉
E,N

, (94)

and we set ~ϕQ = ~Qn+1 in (94) to obtain〈
J ∆ ~Q

∆t
, ~Qn+1

〉
E,N

=

∫
∂E,N

(
∆Φ?

∆t
− ∆Φ

∆t

)
~̃Qn+1 · n̂ dSξ +

〈
∇ξ (∆Φ)

∆t
, ~̃Qn+1

〉
E,N

. (95)

Next, we set ϕW = ∆Φ/∆t =
(
Φn+1 − Φn

)
/∆t in (92c),〈

JW θ,
∆Φ

∆t

〉
E,N

=

〈(
dΨ

dΦ

)n
+ S0∆Φ,J ∆Φ

∆t

〉
E,N

− k
∫
∂E,N

∆Φ

∆t
~̃Q?,n+1 · n̂ dSξ + k

〈
~̃Qn+1,

∇ξ (∆Φ)

∆t

〉
E,N

,

(96)
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and replace the last inner product in (96) by that in (95),〈
JW θ,

∆Φ

∆t

〉
E,N

=

〈(
dΨ

dΦ

)n
+ S0∆Φ,J ∆Φ

∆t

〉
E,N

+ k

〈
J ∆ ~Q

∆t
, ~Qn+1

〉
E,N

− k
∫
∂E,N

(
∆Φ

∆t
~̃Q?,n+1 · n̂+

(
∆Φ? −∆Φ

∆t

)
~̃Qn+1 · n̂

)
dSξ.

(97)

In a more compact form, we denote the boundary terms as BTE,N ,〈
JW θ,

∆Φ

∆t

〉
E,N

=

〈(
dΨ

dΦ

)n
+ S0∆Φ,J ∆Φ

∆t

〉
E,N

+ k

〈
J ∆ ~Q

∆t
, ~Qn+1

〉
E,N

− kBTE,N
(

∆Φ

∆t
, ~Qn+1

)
.

(98)

Next, we combine (92a) and (92b). To do so, we set ~ϕ~F = IN
[
M ~F θ

]
in (92b) (note we drop

the IN operator since the quadrature only requires nodal values, that is
〈
IN
(
M ~F θ

)
, ϑ
〉
E,N

=〈
M ~F θ, ϑ

〉
E,N

),

〈
J ~F θ,M ~F θ

〉
E,N

=

∫
∂E,N

(
W ?,θ −W θ

)
M ~̃F θ · n̂ dSξ +

〈
∇ξW θ,M ~̃F θ

〉
E,N

, (99)

and we set ϕΦ = W θ in (92a),〈
J ∆Φ

∆t
,W θ

〉
E,N

=

∫
∂E,N

W θ
(
M ~̃F

)?,θ
· n̂ dSξ −

〈
M ~̃F θ,∇ξW θ

〉
E,N

. (100)

We then sum (99) and (100),〈
J ∆Φ

∆t
,W θ

〉
E,N

= −
〈
J ~F θ,M ~F θ

〉
E,N

+ BTE,N
(
W θ,M ~F θ

)
. (101)

The final step is to combine (98) and (101). Since they share their left hand sides, we equate
both right hand sides and multiply them by the time step ∆t,〈(

dΨ

dΦ

)n
+ S0∆Φ,J∆Φ

〉
E,N

+ k
〈
J∆ ~Q, ~Qn+1

〉
E,N

= −∆t
〈
J ~F θ,M ~F θ

〉
E,N

+ kBTE,N
(

∆Φ, ~Qn+1
)

+ ∆tBTE,N
(
W θ,M ~F θ

)
.

(102)

We then perform manipulations on the left hand side to get the free–energy F . First, we perform
the Taylor expansion of Ψ(Φ) centered on Φn,

Ψn+1 = Ψn +

(
dΨ

dΦ

)n
∆Φ +

1

2

(
d2Ψ

dΦ2

)n
∆Φ2 +

1

6

(
d3Ψ

dΦ3

)n
∆Φ3 +

1

24

(
d4Ψ

dΦ4

)n
∆Φ4 + ... (103)

so, the expression for the chemical energy becomes

Ψn+1 = Ψn +

(
dΨ

dΦ

)n
∆Φ− 1

2

(
1− 3 (Φn)2

)
∆Φ2 + Φn∆Φ3 +

1

4
∆Φ4. (104)

We use (104) to write the first volume quadrature in (102) as〈(
dΨ

dΦ

)n
+ S0∆Φ,J∆Φ

〉
E,N

=
〈
JΨn+1, 1

〉
E,N
− 〈JΨn, 1〉E,N + 〈JΠ, 1〉E,N , (105)
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where Π
(
Φn+1,Φn

)
is the polynomial function

Π = S0∆Φ2 +
1

2

(
1− 3 (Φn)2

)
∆Φ2 − Φn∆Φ3 − 1

4
∆Φ4 = ∆Φ2Π?, (106)

with
Π? = S0 +

1

2

(
1− 3 (Φn)2

)
− Φn

(
Φn+1 − Φn

)
− 1

4

(
Φn+1 − Φn

)2
. (107)

For the time integration to be stable, it has been shown in [8] that Π∗ should remain positive. It
has been proven that a value of S0 = 1 suffice for Φ ∈ [−1, 1] so that the system is stable. In all
the numerical experiments conducted in this work, a value of S0 = 1 has been chosen. A more
detailed analysis as well as numerical experiments for different values of Φ is presented in [8].
For the interface energy in (102), we complete the square,〈

J∆ ~Q, ~Qn+1
〉
E,N

=
1

2

〈
J ~Qn+1, ~Qn+1

〉
E,N
− 1

2

〈
J ~Qn, ~Qn

〉
E,N

+
1

2

〈
J∆ ~Q,∆ ~Q,

〉
E,N

,

(108)

and we place (105) and (108) in (102),〈
J
(

Ψn+1 +
1

2
k ~Qn+1 · ~Qn+1

)
, 1

〉
E,N

−
〈
J
(

Ψn +
1

2
k ~Qn · ~Qn

)
, 1

〉
E,N

= −∆t
〈
J ~F θ,M ~F θ

〉
E,N

+ kBTE,N
(

∆Φ, ~Qn+1
)

+ ∆tBTE,N
(
W θ,M ~F θ

)
− 〈JΠ, 1〉E,N −

1

2
k
〈
J∆ ~Q,∆ ~Q

〉
E,N

.

(109)

We define the discrete volumetric free–energy in an element as,

Fn,E,Nv =

〈
J
(

Ψn +
1

2
k ~Qn · ~Qn

)
, 1

〉
E,N

, (110)

which simplifies (109) to

Fn+1,E,N
v −Fn,E,Nv =−∆t

〈
J ~F θ,M ~F θ

〉
E,N

+ kBTE,N
(

∆Φ, ~Qn+1
)

+ ∆tBTE,N
(
W θ,M ~F θ

)
− 〈JΠ, 1〉E,N

− 1

2
k
〈
J∆ ~Q,∆ ~Q

〉
E,N

.

(111)

Eq. (111) shows that free–energy changes are due to physical dissipation in the element interior by
the term ∆t

〈
J ~F θ,M ~F θ

〉
E,N

> 0 (the discrete counterpart of that obtained for the continuous

analysis (15)), numerical dissipation as a result of the IMEX scheme,

dissE,NIMEX = −〈JΠ, 1〉E,N −
1

2
k
〈
J∆ ~Q,∆ ~Q

〉
E,N

6 0, (112)

and boundary exchanges through all BTE,N terms.
The effect of boundary exchanges can only be studied from the perspective of all elements in the
domain. So we sum (111) for all mesh elements,

Fn+1,N
v −Fn,Nv =−∆t

∑
e

〈
J ~F θ,M ~F θ

〉
E,N

+ IBTN + PBTN +
∑
e

dissE,NIMEX, (113)

where Fn,Nv =
∑

eF
n,E,N
v is the sum of all element volumetric free–energies.
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