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Abstract

Improving the balance between cost and accuracy of computational fluid dy-
namics solvers by local mesh adaptation has become a topic of increasing
interest. Numerical error based adaptation sensors proved to be robust and
converge faster than sensors simply based on features of the flow field. How-
ever, this family of sensors known as residual-based sensors usually suffer
from a high computational cost, e.g. the adjoint or Richardson extrapola-
tion and are a posteriori indicators, which thus implies an initial solution to
the problem. In this paper, we develop a mesh adaptation indicator accu-
rate in the early stages of the iteration procedure, based on the τ -estimation
technique. τ -estimation allows for an accurate truncation error estimation
and can therefore be used to correct the discretized equations through the
so-called τ -extrapolation methodology. We introduce the τ -estimation tech-
nique for non-converged solutions and derive all the necessary conditions
to be used in the context of mesh adaptation and extrapolation of prac-
tical problems. Then, we apply this methodology to two-dimensional test
cases, Euler flow past a NACA0012 airfoil in different Mach regimes, with
a special focus on computational time. We demonstrate that quasi-a priori
τ -estimation can substantially reduce the cost when combined with mesh
adaptation or τ -extrapolation in comparison to classic adaptation sensors.

Keywords: mesh adaptation, truncation error, error estimation

1. Introduction

In the past decades, due to the increasing demand for complex fluid flow
simulations, great effort has been done by the computational fluid dynamics
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(CFD) community in order to increase the accuracy and reduce the calcula-
tion costs. It is now well understood that numerical errors play a crucial role
in the balance between accuracy and computational time.

In the finite volume community, it is well known that accuracy can be
easily gained by using a denser discrete mesh or by using a higher order
numerical scheme as the discretization errors are of the order O(hp), where
h is a characteristic mesh length and p is the formal order of the scheme.

The simplest refinement anyone can think of is to divide all cells in the
domain. This is referred to as uniform refinement. Although it does improve
the solution vastly, it is easy to realise that a huge unwanted effort is required
in doing so. For example, in the far-field region of an airfoil, cell division does
not usually bring much improvement.

One great advantage of an unstructured approach to solve partial dif-
ferential equations is that it provides more flexibility in the generation of
the mesh, especially for complex configurations involving for instance multi-
element airfoils. Unstructured meshes are also more suited in relocating
nodes or (de-)refining regions.

These methods used to increase the accuracy are often referred to as r-, h-
and p-refinement, and can be combined for example as hr- or hp-refinement,
the latter being more often employed in the finite element community.

r-refinement, which consists in moving nodes by keeping the overall num-
ber constant, has been considered in the unstructured community [1, 2, 3, 4],
however the unstructured approach allows for more tuning at a reasonable
cost. Dynamic remeshing consists in generating new independent meshes,
during the solution process, taking into account that the generation of un-
structured meshes using a Delaunay-type algorithm is very efficient. An
important contribution is due to Mavriplis [5], using an adaptive remesh-
ing strategy for Euler two-dimensional flows with a multigrid strategy. In
this approach, a coarse unstructured mesh is first generated, fine enough to
capture flow properties, and regions where high gradients occur. Then a
new finer mesh is created using Delaunay’s triangulation and smoothed by
a Laplacian operator. New meshes are then created until the desired level
of accuracy is reached. This method naturally builds a sequence of meshes
which can then be used in a full multigrid algorithm. Remeshing an un-
structured mesh is much less demanding than the equivalent in a structured
approach, and the smoothing step allows a sequence of good quality meshes
ensuring optimal accuracy, but still require substantial computational time
especially for complex geometries.
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Another common approach in the unstructured community is called local
refinement (h-refinement), where the topology of the initial mesh is kept,
which obviates the use of high order transfer operators. Local refinement
has been widely studied and many articles can be found in the literature.
Parthasarathy and Kallinderis gave a great contribution to local
refinement/derefinement techniques [7, 6] where they present adaptation
methodologies for three-dimensional meshes and applied them to an Euler
transonic test-case, showing good improvement of the accuracy. The al-
gorithm is implemented in tandem with multigrid: coarse mesh levels are
naturally generated by the adaptation procedure, and each time the mesh
is adaptively refined, an additional level is added to the multigrid system.
Later [8], three-dimensional viscous calculations have been performed us-
ing semi-unstructured prismatic meshes: an unstructured tessellation is used
along the surface whereas a structured clustering is performed along the wall
normal to accurately capture turbulence features. In this approach local re-
finement is performed only in the lateral direction, along the body surface,
whereas only displacement of the nodes is considered in the normal direc-
tion, thus satisfying minimum spacings imposed by the turbulence model and
simplifying the algorithm with respect to a fully three-dimensional adaptive
approach. This approach has also been chosen by Braaten and Connell [9]
for the three-dimensional Navier-Stokes equations.

The selection of a reliable adaptation parameter is a key aspect in order
to reduce the errors in the computation. Classical methods such as feature-
based compute a sensor based on the flow field variables [11, 10, 14]. However,
their lack of mathematical foundation makes it difficult to apply them in a
user-independent way to problems that differ greatly from established experi-
ence.Therefore, in the last years special attention has been paid to indicators
based on numerical errors, such like the family of residual-based adaptation
indicators or the goal-oriented adjoint methodology [12, 13].

One of the main drawbacks of these sensors is that they are a posteri-
ori estimators, in the sense that a solution to the flow equations has to be
computed first. In this work, we propose to extend previous work of Fraysse
et al. [16, 17, 18] on the application of τ -estimation [15] to mesh adaptation
and higher order extrapolation using non-converged solutions to steady-state
Euler equations. The outline of this paper is as follows: in Section 2, the
quasi-a priori truncation error estimator is introduced as well as all the nec-
essary conditions to get optimal accuracy. In Section 3, we present some
implementation details to practical problems. Finally in Section 4, we ap-
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ply the dynamic τ -estimation to mesh adaptation and τ -extrapolation on
two-dimensional test cases.

2. Mathematical background

Let us consider the discretization of a partial differential equation (PDE),
representing symbolically for instance the Euler equations, on a mesh Ωh

indexed by a mesh size parameter h of the following form:

R(U ) = 0⇒ Rh(Uh) = 0 (1)

where, Uh is the discrete solution (converged) of the PDE and Rh rep-
resents the discrete residual (the spatial discretization). The discretization
error εh and the local truncation error τh corresponding to Eq. 1 are defined
as follows:

εh = IhU −Uh

τh = Rh(IhU) (2)

where Ih represent a continuum-to-mesh transfer operator, e.g. simple
injection.

Introducing a coarser mesh level denoted by ΩH , with a mesh ratio of
ρ = h/H < 1, the coarse mesh equation of a full approximation storage
multigrid technique reads,

RH(ÛH) = τHh with ÛH = ÎHh (εhit + Ũh) (3)

τHh = RH(ÎHh Ũh)− IHh (Rh(Ũh)) = T1 + T2 (4)

In Equation 4, ÎHh and IHh stand for restriction operators (applied over the

solution and the residual respectively) and Ũh is the current approximation
of the solution on the fine mesh, such that it differs to the converged solution
by the iteration error, εhit = Uh − Ũh.

As stated by Brandt [15], it is remarkable that τHh is a truncation error
estimation on the coarse mesh ΩH . Our objective is to use τHh to estimate τH

in the early stages of the iteration procedure, e.g. when εhit 6= 0 thus T2 6= 0.
If this estimation can be performed with sufficient accuracy far before the
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solution is converged, it can provide an inexpensive error estimator to be
used in mesh adaptation or extrapolation to higher accuracy.

The following theorem provides the conditions to be fulfilled for an accu-
rate truncation error estimation using τHh .

Theorem 1 (Truncation Error Estimate). Assume that there exists
n, p, q, r, s ≥ 1 such that if U ∈ Cn+p+q(Ω), the truncation error (2) satisfies:

• (A1) Local truncation error of order p: τh = hpIhV +O(hp+q), with
V ∈ Cq(Ω),

• (A2) Local discretization error of order r: εh = hrIhW + O(hr+s),
with W ∈ Cs(Ω),

• (A3) Fine to coarse transfer operator of the solution of order t:

ÎHh IhU = IHU +O(ht), with U ∈ Ct(Ω),

• (A4) Fine to coarse transfer operator of the residual such that:

IHh = J H ÎHh J h−1

where J H =
∂RH

∂UH

∣∣∣∣
IHU

is the Jacobian matrix.

Then,

τHh = (1− ρp)τH +O(max(hmin(t,r+s), ||εhit||2)) (5)

Proof
Let us first decompose the current solution approximation as Ũh = IhU−

εh − εhit. Then the first term T1 of Equation 4 becomes:

T1 = RH(ĨHh (IhU − εh − εhit)) (6)

with assumption (A3) and linearizing about IHU , Equation 6 yields:

T1 = RH(IHIhU)− J H ÎHh εh − J H ÎHh εhit +O(max(h2r, ht, ||εhit||2)) (7)

As far as T2 in Equation 4 is concerned, by using the same decomposition
as in Equation 6 and linearizing about IhU , it becomes:
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T2 = IHh (Rh(IhU)− J hεh − J hεhit) +O(max(h2r, ht, ||εhit||2)) (8)

Finally, by using the discrete error transport equation τh = Rh(Uh+εh) =
J hεh + O(h2r), the relation between fine and coarse discretization errors

ÎHh εh = ρrεH +O(hr+min(s,t)) and assumption (A4), we obtain

τHh = (1− ρp)τH +O(max(hmin(t,r+s), ||εhit||2))

�

With an accurate truncation error estimation in hand, a direct applica-
tion is the so-called τ -extrapolation which consists in solving the following
problem

RH(ŪH) =
1

1− ρp
τHh (9)

Then it can be demonstrated that,

ε̄H = IHU − ŪH = O(max(hmin(t,r+s), ||εhit||2)) (10)

From Equation 5, it can be seen that an accurate truncation error estima-
tion can be obtained in the first steps when solving iteratively a non-linear
PDE at the following conditions:

• Grid ΩH has to be representative of Ωh, e.g. embedded,

• Grids Ωh and ΩH are fine enough that we are working in the asymptotic
range,

• The restriction operator acting on the solution (ÎHh ) is at least one
order higher than the formal order of accuracy p, t > p,

• The discretization error decreases equally of faster than the truncation
error r ≥ p,

• The Jacobian J h has to be inverted to reach quadratic convergence
of the quasi-a priori truncation error estimate towards its converged
value.
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Then, Equation 10 states that a higher order solution can be obtained
by solving again the set of equations with an additional source term (trun-
cation error estimation) on the right-hand-side. Based on the previous de-
velopments, we derive in Section 3 a quasi-a priori mesh adaptation and
τ -extrapolation procedure.

3. Applications and implementation details

Mesh adaptation and extrapolation to higher order have been reported
previously in Fraysse et al. [17, 18]. In the first journal paper, a mesh adap-
tation sensor based on truncation error has been developed and compared
to the adjoint methodology and classic feature-based indicator for the Euler
equations. The second one has been devoted to the extension of truncation
error-based mesh adaptation to the set of Navier-Stokes equations as well
as higher order extrapolation. However, both approaches have been per-
formed a posteriori : first the solution was computed on the initial mesh and
then mesh adaptation and/or τ -extrapolation was applied. In this section,
we detail how to perform τ -estimation in the early stages of the iteration to
convergence and apply it to mesh adaptation and higher order extrapolation.

The CFD code used in the present work is the DLR TAU-Code [19]. It
solves the Reynolds Averaged Navier-Stokes equations on unstructured hy-
brid meshes by employing a second-order finite volume discretization. The
multigrid strategy implemented in TAU uses the full approximation scheme
algorithm to compute the correction term on the coarse meshes. The coarse
meshes are obtained by agglomeration of the fine mesh dual cells. When the
primary mesh is composed of quadrilaterals (or hexahedrons for 3D compu-
tations), then the advancing front method is capable of agglomerating four
quadrilaterals (eight hexahedrons) to create a coarse quadrilateral (hexahe-
dral), as in a structured solver. However, when the primary mesh is unstruc-
tured, the agglomeration algorithm creates coarse mesh elements that do not
necessarily maintain the fine mesh characteristics. In the context of multi-
grid, this situation is not a strong limitation, particularly in TAU, where
the coarse mesh fluxes are computed with a first-order accuracy. However,
in the context of truncation error estimation, it is of importance that the
truncation error is identical between fine and coarse meshes (see Fraysse et
al. [16]). This goal clearly cannot be accomplished if the elements differ from
fine to coarse mesh. To circumvent this issue and to obtain estimations of
the truncation error for unstructured meshes, in the following analysis, the
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fine mesh (where the flow solution is actually computed) was obtained from
the coarse mesh by bisecting all of the edges. This method also allows for
the use of injection to restrict the solution from fine to coarse meshes, thus
preventing the use of complex interpolations and assuring that no accuracy
is lost (t =∞).

The estimation of the truncation error is obtained by computing the fol-
lowing expression:

1

1− ρp
τHh = RH(ÎHh Ũh)− J H ÎHh J h−1Rh(Ũh) = T1 + T2 (11)

In the current work, the Euler equations are solved using the second order
Jameson-Schmidt-Turkel scheme with scalar dissipation, so that p = 2 and
given that Ωh is embedded in ΩH by bisection of all the edges, ρ = 0.5.

From Equation 11, it can be seen that the first term T1 is straightforward
to compute as it just consists in evaluating the residual on the coarse mesh
from the current fine mesh approximation of the solution. The second term
on the other side requires the inversion of the Jacobian matrix J h, it is
achieved in the following way:
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• Solve the linear system: −J hφh
1 = Rh(Ũh),

• Restrict Ũ and φh
1 using ÎHh ,

• Multiply by coarse mesh Jacobian T2 = J H ÎHh φh
1 .

The Jacobian matrices are built analytically inside the DLR TAU-Code
and the linear system is solved using the ILU(0)-GMRES from the PETSc
libraries [20].
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4. Results

In this section we introduce the results associated to the local mesh adap-
tation and extrapolation to higher order based on dynamic τ -estimation.
Three two-dimensional inviscid NACA0012 test cases are analyzed, repre-
sentative of several flow regimes. The far-field conditions considered here
are, subsonic, transonic and supersonic (see Table 1 and Figure 1(b)-(d)).
Results on these test cases have been reported previously in the context of
feature-based [11] and adjoint-based [21, 17] mesh adaptation.

Table 1: Far field conditions
Test case Mach number Angle of attack α
Subsonic 0.4 5◦

Transonic 0.95 0◦

Supersonic 1.5 1◦

The subsonic test case is obtained using a free-stream Mach number of
M∞ = 0.4 and an angle of attack of α = 5◦. Mach number contours can
be seen in Figure 1(b). The main feature of this test case is a zone where
the flow accelerates on the suction side right after the stagnation point. The
transonic flow free-stream Mach number is set to M∞ = 0.95 and the angle
of attack to α = 0◦. Mach number contours can be seen in Figure 1(c): a
fish-tailed oblique shock and a recompression in the wake yielding to another
normal shock wave. Finally, the last test case is devoted to a supersonic flow.
The free-stream Mach number is set to M∞ = 1.5 and the angle of attack
to α = 1◦ (see Figure 1(d)). The main features of this test case are a bow
shock upstream as well as a fish-tailed one. Adapted meshes from converged
solutions both for the feature-based and TE-based indicator are shown in
Figure 2.

We focus the analysis on adaptation and τ -extrapolation based on a non-
converged solution. For details concerning the mesh adaptation algorithms,
we refer the reader to Fraysse et al. [17]. Thus, for each test case, the flow
solution is iterated to various values of solver tolerance (based on L2 norms
of two successive approximations), from 1 to 10−6. For each solver tolerance,
adaptation using the new proposed dynamic truncation error estimation as
well as feature-based adaptation are compared to their converged versions
(10−10).
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In this paper, we emphasize the analysis on the influence of the iteration
error. Then, only one local adaptation cycle is considered, based on a fixed
increase of 40% of new nodes. In order to test the accuracy of the quasi-a
priori adaptation procedure, a converged solution is computed on the lo-
cally adapted meshes and force coefficients (lift, drag and pitching moment)
are output. The reference force coefficient values used for comparison are
based on the converged solution of the uniformly refined mesh (the original
mesh containing 11750 nodes in Figure 1(a) from which each edge is bisected
yielding a 46540 nodes mesh).

For each test-case, the following study is performed:

• dynamic τ -estimation,

• dynamic τ -estimation-based adaptation and comparison to feature-
based and uniform adaptations,

• dynamic τ -extrapolation,

• detailed analysis of computational efficiency.

As discussed in Section 2 and in more details in Fraysse et al. [16], the
conditions in order to get an accurate estimation of the truncation error are:

1. two consistent meshes Ωh and ΩH ,

2. a high order restriction operator (s > p = 2) to transfer the solution
from the initial mesh Ωh to the coarse mesh ΩH ,

3. a restriction operator to restrict the second term T2 of Equation 4 which
satisfies: IHh = J H ÎHh J h−1

.

The first condition is ensured by first generating the coarse mesh ΩH ,
in this work it contains 2995 nodes, and uniformly adapting it to get the
initial mesh Ωh, containing 11750 nodes. Building the initial mesh in this
way allows also to fulfill the second point, as in this case a simple injection
of the solution from Ωh to ΩH can be done. Finally, the third point requires,
as described in Section 3 the solution of a linear system. In the following, we
study the influence of the treatment of T2 from Equation 4 on the quasi-a
priori τ -estimation, adaptation and τ -extrapolation.
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Figure 1: Two-dimensional NACA0012 test cases. (a): Initial mesh. Mach number con-
tours of the (b): subsonic, (c): transonic and (d): supersonic test cases.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Two-dimensional NACA0012 adapted meshes from converged solutions. Left
column: feature-based and right column: TE-based adaptation. First to third row: sub-
sonic, transonic and supersonic test cases respectively.
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4.1. Quasi-a priori τ -estimation

In this part, our aim is to verify Equation 5, in particular how the treat-
ment of the second term T2 of Equation 4 affects the convergence speed
towards the final truncation error. In order to do that, we run the Euler
solver from DLR TAU-Code to various tolerances (scaled L2 residuals), from
1 to 10−6 to get a non-converged solution. A converged solution is obtained
as well by setting the solver tolerance to 10−10. Once these solutions are
obtained, the truncation error estimation of Equation 4 is applied following
three paths:

• T1 only: in this case only the first term T1 is computed, note that this
is correct when the solution is converged (T2 = 0),

• T1 + T2 Injection: T2 is computed as well using simple injection to
restrict it on the coarse mesh, then added to T1,

• T1 + T2 Jacobian: T2 is computed following (A4), then is added to
T1.

For each flow solver tolerance, the L2 norm (for the continuity equa-
tion) of the difference between the quasi-a priori truncation error estimation
and its value computed from a converged solution, is obtained and reported
in Figure 3(a)-(c) for the three test cases. The L2 norms of the iteration
error and the converged truncation error estimation can be found as well.
These numerical experiments are in perfect agreement with our theoretical
expectations. If the second term T2 is omitted from Equation 4, then the
difference between non-converged and converged truncation errors decreases
at the same rate of the iteration error, so no particular gain is obtained using
this methodology. Remarkably, adding the second term T2 by injecting it
onto the coarse mesh ΩH does not improve the rate of convergence at all.
On the other hand, computing T2 following (A4) drastically decreases the
minimum solver tolerance to get a reasonably accurate estimation. Typically,
more than one order of magnitude for the difference between truncation er-
ror estimation computed from non-converged and converged solution can be
obtained for a solver tolerance of 10−2, for all test cases.
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Figure 3: Quasi-a priori truncation error estimation. L2-norm of the TE for the continuity
equation. (a): Subsonic case, (b): transonic case and (c): supersonic case.
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4.2. Quasi-a priori adaptation

Based on the quasi-a priori τ -estimation experiments obtained in Sec-
tion 4.1, a local adaptation methodology is derived. One local adaptation is
applied (40% new nodes) from each quasi-a priori truncation error estima-
tion and compared to classical feature-based adaptation as well as a globally
refined mesh (obtained by bisecting all the edges of the initial mesh Ωh).
Results obtained from the converged solution (10−10) are computed as well,
both for truncation error-based and feature-based sensor. Once the adapted
mesh is obtained, a converged solution is computed. Quantitative analysis is
obtained by computing and comparing the force coefficients, lift (Cl), drag
(Cd) and pitching moment (Cmy) coefficients and is reported in Figure 4(a)-
(c) for the subsonic, Figure 5(a)-(c) for the transonic and Figure 6(a)-(c) for
the supersonic test case.

As far as adaptations from the converged solution is concerned, it can be
noticed that the truncation error indicator obtains more accurate results than
the feature-based sensor for the prediction of all force coefficients. Indeed,
taking as reference values the force coefficients obtained on a globally refined
mesh (obtained by bisecting all the edges of the initial mesh), it can be seen
that local mesh adaptation from τ -estimation yield closer predictions for all
test cases.

In the case of locally adapting the mesh by computing the sensors from
non-converged solutions, the results follow the analysis from Section 4.1. It is
clear on these graphs that adaptations based on non-converged feature-based
or truncation error without particular treatment for the second term T2 last
to provide stabilized values. On the other hand, adapting the mesh from a
truncation error sensor which satisfies (A4) provides very acceptable results
from lower solver tolerances. Typically, stabilized values can be obtained
from a solver tolerance of 10−4 for the subsonic test case and 10−3 for the
transonic and supersonic test cases.
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Figure 4: Effect on force coefficients of quasi-a priori adaptation, subsonic case. (a): Cl

(b): Cd, (c): Cmy
.
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Figure 5: Effect on force coefficients of quasi-a priori adaptation, transonic case. (a): Cl

(b): Cd, (c): Cmy
.
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Figure 6: Effect on force coefficients of quasi-a priori adaptation, supersonic case. (a): Cl

(b): Cd, (c): Cmy
.
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4.3. Quasi-a priori τ -extrapolation

With a truncation error estimation in hand, a natural next step is to use
it in order to increase the accuracy of the numerical scheme. This goal is
achieved by solving Equation 9, which consists of the original PDE forced
by the truncation error estimate. While the usual τ -extrapolation procedure
involves the solution of the problem on the coarse mesh ΩH , as described
in Equation 9, a further step is considered here by preliminary interpolating
the truncation error estimate back to the initial mesh Ωh. The extrapolated
problem reads:

Rh(Ūh) =
ρp

1− ρp
IhHτHh (12)

The procedure closely follows the quasi-a priori adaptation method. Once
the truncation error estimations are obtained from the different solutions
of the Euler equations (from the three paths described earlier and differ-
ent solver tolerances), they are interpolated back to the original mesh Ωh

and Equation 12 is solved until convergence is reached (10−10). The three
truncation error estimation approaches are checked and the force coefficients
obtained from the solution of Equation 12 are reported in Figure. 7 for the
subsonic, Figure 8 for the transonic and Figure 9 for the supersonic test cases.

τ -extrapolation from a converged solution provides a substantial gain in
the accuracy of all the force coefficients, reaching almost the results obtained
on an overly refined mesh for all force coefficients, and in some cases even
better predictions are obtained (by observing that all force coefficient con-
verge monotonically). This clearly shows the efficiency of the approach in
order to increase the accuracy of the numerical scheme.

Results obtained from non-converged solutions show very interesting re-
sults. For the subsonic test case, while the T1 only and the T1+T2 Injection
need a solution obtained with a solver tolerance of at least 10−5 to get stabi-
lized, it is remarkable that if the truncation error estimation satisfies (A4),
then the force coefficients almost reach their final values for a solver toler-
ance of 10−2. In the transonic case, the T1 only and the T1 + T2 Injection
require a solution from a solver tolerance of at least 10−5 to give steady re-
sults, whereas if the truncation error estimation satisfies (A4), then the force
coefficients almost reach their steady values for a solver tolerance of 10−3.
The supersonic test case follows this trend: if the T1 only and the T1 + T2
Injection need a solution obtained with a solver tolerance of at least 10−4

to get stabilized, it can be noticed that if the truncation error estimation
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satisfies (A4), then the force coefficients almost reach their final values for
a very low solver tolerance of 10−2.
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Figure 7: Effect on force coefficients of quasi-a priori τ -extrapolation, subsonic case. (a):
Cl (b): Cd, (c): Cmy

.
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Figure 8: Effect on force coefficients of quasi-a priori τ -extrapolation, transonic case. (a):
Cl (b): Cd, (c): Cmy

.
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Figure 9: Effect on force coefficients of quasi-a priori τ -extrapolation, supersonic case.
(a): Cl (b): Cd, (c): Cmy

.
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4.4. Computational costs

4.4.1. τ -estimation

In this subsection our goal is to have a closer look at the computational
costs associated to the calculation of the truncation error estimate. To this
aim, for each solver tolerance, we reported in Figure 10(a)-(c) for the three
test cases, the computational times for the truncation error estimation based
on assumption (A4).

It is important to notice that, only computational times associated to the
flow solver and the linearized problem are taken into account. Computational
times associated to the preprocessing, residual evaluations for the truncation
error estimation and local refinement are negligible with respect to solving
the Euler equations or the linear problem.

The discretization parameters used in the computation of solutions for
the set of Euler equations are described now. The pseudo-time integration
consists of a three-steps Runge-Kutta with four levels of W-Cycle multigrid
and a constant CFL number of 1.8. This temporal integration is the default
choice left by the DLR TAU-Code. The linear system associated to the
truncation error estimation is solved using the external package PETSc and
it employs a preconditioned ILU(0)-GMRES solver.

For each test case, by comparing Figure 10(a) and Figure 3(a) (Fig-
ure 10(b) and Figure 3(b), Figure 10(c) and Figure 3(c) respectively) it can
be seen that for an error lower than 10% in the quasi-a priori truncation error
estimation with respect to its converged value, the new proposed estimator
(following (A4)) requires a solver tolerance of 10−2 and therefore yields to
a total normalized time of 0.2 (respectively 0.17 and 0.5 for the transonic
and supersonic test cases). This means it needs 20% (respectively 17% and
50%) of the computational time required to evaluate the truncation error
from a converged solution. In this particular case the flow solver requires
approximately only one second to reach this tolerance and most computa-
tional time is spent in the linear system (four seconds). It is remarkable that
the time required to solve the linear system is independent of the solution.
It is interesting to notice that the performance is lower for the supersonic
test case. The reason is that the linear solver seems to be insensitive to the
highly hyperbolic flow, while the flow solver converges must faster.
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(a)

(b)

(c)

Figure 10: Computational times, τ -estimation from non-converged solutions using T1+T2
Jacobian strategy. (a): Subsonic (b): transonic, (c): supersonic test cases.
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4.4.2. Adaptation and τ -extrapolation

The computational time analysis of Section 4.4.1 is extended here to take
into account the adaptation and the extrapolation procedures. In addition
to the times required to compute the solution on the original mesh and to
solve the linear system, the time required to solve until the convergence on
the adapted mesh or for the extrapolated problem are added. Here, the
CPU time required for preprocessing of the meshes and the adaptation are
not taken into account as they are negligible. The solutions on the locally
adapted meshes as well as the solutions of the extrapolated problem are
initialized from free-stream values.

In this section, the reference time is chosen to be the computational time
required to solve the Euler equations on an overly refined mesh, as is de-
scribed in Table 2 for the subsonic case and in Table 3 and Table 4 for the
transonic and supersonic test cases respectively. It is interesting to remark
that the solution on the original mesh only requires 12% (13% and 15% for
the transonic and supersonic cases respectively) of the computational effort
associated to solving the problem on the overly refined mesh, showing how
improving the accuracy by global refinement for industrial problems is un-
practical.

As far as adaptation results from non-converged solutions is concerned,
and in particular the one obtained using the new proposed methodology (fol-
lowing (A4)), it can be seen in Figure 11(a)-(c) that some computational
time can be gained. For instance, considering a solver tolerance of 10−4

(10−3 for the transonic and supersonic test cases), for which stable results
were obtained, the computational time decreases to 26% (24% and 43% re-
spectively) of the overall time necessary to get a converged solution on the
globally refined mesh.

In the case of τ -extrapolation (see Figure 12(a-c)), the gain in CPU cost
is even better. Performing τ -extrapolation gives results similar or more ac-
curate than the overly refined mesh and needs only 24% (27% and 28%
respectively) of time. In the case of quasi-a priori τ -extrapolation, using the
new proposed methodology we verified that an accurate solution could be ob-
tained from a truncation error estimation evaluated from a solver tolerance
of 10−2 for the subsonic and transonic test case and 10−3 for the supersonic
case, thus in this case the total solving time drops down to 14% (15% and
24% respectively).
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Table 2: Computational times, subsonic case, converged solutions on the original and
globally refined mesh.

Original Uniform Adaptation
Solver time (s) 25 216

Normalized time 0.12 1

Table 3: Computational times, transonic case, converged solutions on the original and
globally refined mesh.

Original Uniform Adaptation
Solver time (s) 36 268

Normalized time 0.13 1

Table 4: Computational times, supersonic case, converged solutions on the original and
globally refined mesh.

Original Uniform Adaptation
Solver time (s) 8 54

Normalized time 0.15 1
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(a)

(b)

(c)

Figure 11: Computational times, adaptation from non-converged solutions using T1+T2
Jacobian strategy. (a): Subsonic (b): transonic, (c): supersonic test cases.
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(a)

(b)

(c)

Figure 12: Computational times, extrapolation from non-converged solutions using
T1+T2 Jacobian strategy. (a): Subsonic (b): transonic, (c): supersonic test cases.
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5. Conclusion

In this paper, we applied a new methodology to estimate the local trunca-
tion error of the steady-state Euler equations. This estimator is based on the
so-called τ -estimation which consists on evaluating the spatial discretization
on two embedded meshes. The approach described in this article does not
assume a converged solution, but requires the solution of an additional linear
system for the discrete Jacobian.

Based on these quasi-a priori evaluations, the influence of the level of
convergence of the flow solver is studied on a local adaptation procedure and
a higher order extrapolation methodology. Test cases consisting of the two-
dimensional inviscid flow past a NACA0012 airfoil at different free-stream
conditions have been used to assess the performance of this approach, and
comparisons with a classical feature-based mesh adaptation indicator have
been carried out.

It is demonstrated that this approach, which lies between a priori and
a posteriori, allows for an interesting reduction in computational time with
respect to the a posteriori τ -estimation approach, whereas the precision of
the estimation as well as the local adaptation and higher order extrapolation
remains accurate.
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