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Abstract This paper is devoted to the numerical discretization of the hyperbolic
two-phase flow model of Baer and Nunziato. Special attention is paid to the dis-
cretization of interface flux functions in the framework of Discontinuous Galerkin
approach, where care has to be taken to efficiently approximate the non-conservative
products inherent to the model equations. A discretization scheme is proposed in a
Discontinuous Galerkin framework following the criterion of Abgrall. A stabiliza-
tion technique based on artificial viscosity is applied to the high-order Discontinu-
ous Galerkin method and tested on a bench of discontinuous test cases.

1 Introduction

In this work a high order discretization method for the hyperbolic two-phase flow
model of Baer and Nunziato [3] is introduced. The model is composed of seven
equations in one-dimension: continuity, momentum and energy balance for each
phase and a convection equation for the volume fraction. It does not make any
assumption on mechanical, thermal or chemical equilibrium, thus, two pressures,
velocities and temperatures are present. The main challenge of this set of equa-
tions is that it cannot be cast in conservative (or divergence) form because of
the presence of non-conservative products. As a consequence, classical Rankine-
Hugoniot conditions cannot be used to define the jumps across the contact discon-
tinuities and shocks. This issue has remained challenging for a long time but re-
cently some authors published different methods in order to treat these additional
terms [29, 24, 30, 32].
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On the one hand, most works in the literature use a finite volume (FV) methodol-
ogy, often limited to second-order of accuracy, to discretize the Baer-Nunziato equa-
tions, see [11] for a review. Attempts to reconstruct Finite Volume methodology to
higher order usually suffer from a lack of compactness, which is a bottleneck for
massive parallel implementation. On the other hand, discontinuous Galerkin (DG)
methods take the advantages of FV approach (conservation, interface jumps, com-
pactness) but naturally allow the solution to be represented by a high-order poly-
nomial. DG methods, firstly introduced in [27], have emerged in recent years as
an efficient and flexible method to solve convection dominated problems [8]. A
nodal variant of the DG technique that uses a quad/hexa mesh topology and tensor
product expansions for the polynomial spaces is known as Discontinuous Galerkin
Spectral Element Method (DGSEM), as detailed in Kopriva [22]. The DGSEM has
been successfully used in a wide range of applications, in particular to model one
phase compressible flows [5, 26, 20, 21]. Recently some DGSEM formulations able
to solve the Baer-Nunziato equations in the presence of discontinuities have been
introduced by the authors [11]. One of the important aspects of this development
is the special treatment to avoid oscillations in the vicinity of shocks and contact
discontinuities. The method builds on work by Persson et al. [25] and uses a simple
artificial viscosity technique [34, 4, 17, 16] to stabilize the solution. In this work the
most successful of the formulations proposed in [11] is introduced and analyzed in
detail in a one-dimensional framework.

The paper is organized as follows: in Sec. 2 the discretization of the Baer-
Nunziato equations is presented. The DG method is detailed as well as the up-
wind fluxes, the treatment of the non-conservative products and the stabilization
method. In Sec. 3, the developed numerical scheme is tested using a bench of one-
dimensional test cases.

2 Discretization of the two-phase two-pressure model of Baer
and Nunziato

The one-dimensional set of Baer-Nunziato equations reads:
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This system of equations is closed with an equation of state for each phase
m = g, l (gas and liquid) relating the internal energy em = Em− 0.5u2

m to the den-
sity ρm and pressure pm, the saturation condition αl +αg = 1 (liquid and gas volume
fractions) and finally appropriate interfacial pressure and velocity. In this work, stiff-
ened gas equation is considered for the liquid phase, pm = ρmem(γm−1)+πm, and
perfect gas law for the gas phase (πg = 0). The interfacial quantities are set accord-
ing to the choice of Baer and Nunziato: uint = ul , pint = pg.

2.1 Discontinuous Galerkin Spectral Element Method

Discontinuous Galerkin methods and, in particular the nodal variant DGSEM, were
originally developed to solve conservation laws. Unfortunately, it is not possible to
cast the Baer-Nunziato equations in conservative form due to the presence of non-
conservative products of the form H(U) ∂αl

∂x . The difficulty of integrating this term
over a control volume arises in the presence of a discontinuity in the volume fraction.
As a result, some modifications from the original DGSEM are required. It should be
noticed that the scope of this work is limited to one-dimensional approximations.

Let us rewrite the Baer-Nunziato equations,

Ut +Fx +H(αl)x = 0, x ∈Ω , (2)

where U is the solution and Ut denotes its temporal derivative. The flux function is
F, while Fx denotes its spatial derivative and the non conservative flux is denoted by
H(αl)x (notice that αl = U(1)). In the following and to simplify the notation αl will
be shortened to α .

Discontinuous Galerkin methods tessellate the physical domain Ω into non over-
lapping subdomains Ωk. The residual is forced to be orthogonal to the approxima-
tion space locally within each element,∫

Ωk

(Ut +Fx +Hαx)ψdx = 0, (3)

where ψ is an arbitrary locally smooth function. The physical domain Ωk, of size
∆xk, is mapped into the computational domain, which in 1D is [−1,1],

∆xk

2

∫ 1

−1
Utψdξ +

∫ 1

−1
Fξ ψdξ +

∫ 1

−1
Hαξ ψdξ = 0. (4)

The solution and the fluxes are approximated by polynomials of degree N. A char-
acteristic of the DGSEM is that it approximates both the solution and the fluxes with
the same polynomial degree, e.g.,

U(ξ , t)≈ UN(ξ , t) =
N

∑
i=0

UN(ξi, t)`i(ξ ). (5)
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This approximation results in a computationally efficient method with higher alias-
ing error. The approximation is nodal, therefore `i are Lagrange polynomials while
ξi are chosen to be Legendre-Gauss nodes. As a result, UN(ξi, t) is the solution at
the Legendre-Gauss nodes. The nodal values of the fluxes FN(ξi, t) and HN(ξi, t) are
computed evaluating the solution at the nodes. As the method is Galerkin, the test
function can also be written as a polynomial ψ = ∑

N
i=0 ψi`i(ξ ). Now, substituting

the polynomial expressions in Eq. 4 and taking into account that the coefficients ψi
are linearly independent we get,

∆xk

2

∫ 1

−1
UN

t ` j(ξ )dξ +
∫ 1

−1
FN

ξ
` j(ξ )dξ

+
∫ 1

−1
HN

α
N
ξ
` j(ξ )dξ = 0, j = 0,1, . . . ,N.

(6)

Equation 6 is integrated by parts to separate volume from surface contributions,

∆xk

2

∫ 1

−1
UN

t ` j(ξ )dξ +
(
FN +HN

α
N)`(ξ )∣∣1−1−

∫ 1
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−
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ξ
α

N` j(ξ )dξ −
∫ 1

−1
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α
N`′j(ξ )dξ = 0, j = 0,1, . . . ,N.

(7)

It should be noticed that the computation of the volume fraction derivative, αξ , in-
side the control volume is not required after the integration by parts. In order to ob-
tain a completely discrete equation, the integrals are approximated using Gaussian
quadrature. In the DSGEM the interpolation nodes are used as quadrature nodes,
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(8)

Finally, the elements are coupled through the definition of a numerical interface
flux,
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N
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i α

N
i `
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(9)

The numerical flux FN∗ and αN∗ is a function of the element and its immediate
neighbor (or a physical boundary). To calculate its value, a Riemann problem should
be solved [33]. The Riemann solver calculates a value for the fluxes, taking into
account the values at each side of the discontinuity and the directions of transfer of
information in the equation. More information about the numerical flux computation
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will be given in the next section. Having obtained a suitable discrete expression for
each elemental contribution, it suffices to sum over all elements in the mesh and
apply the boundary conditions weakly to finalize the DGSEM method, see details
in Kopriva [22].

2.2 Interface flux approximation. Criterion of Abgrall

In this section we present the approximate Riemann solver employed to compute
the intercell fluxes FN∗ and αN∗ of the 7-equation Baer-Nunziato two-phase flow
model.

For the conservative flux FN∗, the Rusanov flux is chosen. The Rusanov flux [23,
28] only uses one wave speed Smax which is the maximum absolute eigenvalue of
left and right states of the Jacobian matrix. The main advantage of the Rusanov flux
is its simplicity and low dependence on the eigenstructure of the flux Jacobian. Thus,
it is particularly easy to implement when the flux Jacobian is difficult to formulate,
for example when a complex equation of state is used. Its main disadvantage is its
high diffusion of discontinuities, in particular the contact discontinuities. This effect
is diminished if a high order approximation is used.

The volume fraction interface flux approximation αN∗ will be computed follow-
ing the so-called Abgrall criterion. The criterion of Abgrall [1] states that a two-
phase flow uniform in velocity and pressure should remain uniform in these vari-
ables with time evolution. In order to satisfy the criterion of Abgrall for the Rusanov
flux, some choices are to be made for the flux FN∗ and the liquid volume fraction at
the interface αN∗. The classical flux holds the conservative part of the system and
is here augmented to hold a contribution from the liquid volume fraction equation,
denoted by F∗1b

. The scheme is chosen such that:F∗1b
=−Smax

2
(αR−αL)

α
N∗ =

αR +αL

2

Rusanov flux with Abgrall criterion (10)

It should be noticed that an interpolation from the interior Gauss points to the inter-
face points±1 is required to obtain left and right states (e.g. αL,αR) for the intercell
flux computation.

2.3 Stabilization using an artificial viscosity method

The upwind scheme presented earlier may yield high oscillations in the vicinity of
discontinuities due to Gibbs phenomena [14]. The objective here is to search for a
method that detects the occurrence of the Gibbs phenomena and attenuates it. Sev-
eral methods can be found in the literature to stabilize the solution in the presence
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of discontinuities. Classical limiters work well in order to avoid the local creation
of extrema, however they severely degrade the accuracy, often reduced to one in the
entire cell. Artificial viscosity methods, firstly introduced in the scope of finite dif-
ferences in the fifties by von Neumann and Richtmyer [34], add a controlled amount
of viscosity to the governing equations in the vicinity of strong gradients, such as
shock waves or contact discontinuities. In this way the discontinuity may be resolved
in the space of interpolating polynomials. Other variants of artificial viscosity meth-
ods exist as well. A particularly important one is the method of Spectrally Vanishing
Viscosity (SVV) [31, 18], which is similar in spirit, but the smoothing is limited to
the high frequency components of the solution.

In this work, we construct an stabilization method for the multiphase flow based
on the single phase work of Persson et al. [25], where the mitigation is attained
through an artificial viscosity technique. The new set of equations, with the artificial
viscosity term included, reads:

∂U
∂ t

+
∂F
∂x

+H
∂αl

∂x
=

∂

∂x

(
ε

∂U
∂x

)
(11)

Then the discontinuity should spread over a layer of thickness ε . The definition
of the parameter ε , that controls the amount of viscosity introduced, as well as the
definition of a sensor to capture the regions where the stabilizing viscosity should
be added, are key aspects in the development of the artificial viscosity method.

The discontinuity sensor is built following [25]. Spectral methods represent the
solution of the problem as a sum of basis functions multiplied by some coefficients.
In particular the DGSEM uses the Legendre orthogonal polynomials as a basis and
therefore a one dimensional solution of order N, can be represented in each element
as a sum of local modes,

UN(x) =
N

∑
i=0

ŨN
i Li(x), (12)

where ŨN
i is the projection of the solution onto the Legendre orthogonal polynomial

Li(x). It should be noticed that the DGSEM is a nodal method, and therefore the
coefficients, UN

i , obtained in Eq. 9 are the values of the solution at the collocation
nodes and not the modal coefficients ŨN

i . However, they can be computed from the
nodal values as:

V ŨN = UN , (13)

where matrix V is a generalized Vandermonde matrix [15]. A particularity of spec-
tral methods is that for smooth solutions the coefficients Ũi decay very quickly (ex-
ponential convergence), while the convergence rate is poor (algebraic convergence)
for non smooth solutions [13, 6].

A truncated expansion of order N−1 of the solution, UN(x), is also constructed
as:
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ÛN−1(x) =
N−1

∑
i=0

ŨN
i Li(x). (14)

The difference between the truncated expansion of the solution, ÛN−1, and the
solution itself, UN , is small for smooth solutions and big for discontinuous solutions
due to spectral convergence. In order to measure the difference between the two
functions the following indicator is computed within each element:

s = log10 max
(
(UN− ÛN−1,UN− ÛN−1)

(UN ,UN)

)
, (15)

where (u,v) =
∫ 1
−1 uvdx represents the usual L2 inner product and can be approx-

imated using Legendre-Gauss quadrature. It should be noticed that the maximum
value among all the equations is taken, which is justified as the objective of the
indicator is to capture discontinuities in any of the equations.

Finally, ε , the amount of viscosity imposed in each element, is computed as:

ε =


0 if s < s0−κ

ε0

2

(
1+ sin

π(s− s0)

2κ

)
if s0−κ ≤ s≤ s0 +κ

ε0 if s > s0 +κ

(16)

In this work, the values of ε0 = h
(N+1) (being h the size of the elements), s0 =

log10
1

(N+1)4 and κ = 5 were chosen empirically and demonstrated very satisfac-
tory results. As it is explained in [25], the selection of these values for the param-
eters introduces viscosity only when the solution is not continuous and the profiles
of the discontinuities are sharp but smooth. The effectiveness of these parameters
to correctly capture the discontinuities and stabilize the solution in the multiphase
framework will be shown in Sec. 3.

The artificial viscosity method produces an a posteriori stabilization, i.e. the so-
lution is not stabilized until the oscillation is generated. In general there is no prob-
lem with this, however if the amplitude of the oscillation is too high it can transiently
produce unphysical values of the variables, e.g. negative densities or volume frac-
tions outside the interval [0,1]. This is inadmissible as the computation of some
quantities, e.g. the speed of sound, would result in invalid operations. The develop-
ment of a robust artificial viscosity method requires the introduction of relaxation
iterations. If any of the aforementioned variables acquire an unphysical value as a
result of an oscillation, a relaxation iteration is performed instead of the regular it-
eration. In a regular iteration, the time derivative of the solution is computed with
Eq. 11, while in a relaxation iteration only the diffusive terms,

∂U
∂ t

=
∂

∂x

(
ε

∂U
∂x

)
, (17)
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are computed. It should be noticed that relaxation iterations do not produce an ad-
vance in physical time but only a filtering of the solution.

A comment should be made about the major drawback of the artificial viscosity
approach: the reduction in the stable time step for explicit time stepping schemes
[19, 7]. The scaling of the explicit time step is given by:

∆ t ∼
(
SmaxN2/h+ ||ε||L∞N4/h2)−1

, (18)

where Smax is the absolute value of the largest characteristic velocity, ε is the mag-
nitude of the viscosity, h is the size of the element and N is the approximation’s
polynomial degree [15]. Therefore if the maximum value of the artificial viscosity
is used (see Eq. 16), the time step is given by:

∆ t ∼
(
N2/h(Smax +N)

)−1
, (19)

therefore Smax is increased by N because of the artificial viscosity method. To over-
come this limitation, several approaches are available. The cost of explicit time
stepping methods can be reduced, for example, by using local time stepping [36]
or adaptive time stepping [9] techniques. A different approach is to circumvent the
time stability limit by using implicit methods [35]. Finally, a similar effect to arti-
ficial viscosity can be obtained by filtering the solution, thus not affecting the time
stability limit [12, 15].

The derivation of the DGSEM performed in Sec. 2.1 does not include second
order derivatives. However, the stabilization using artificial viscosity requires them.
Several methods are available in the literature to perform the discretization of el-
liptic problems, see [2] for a thorough review. In this work the Symmetric Interior
Penalty Discontinuous Galerkin [10] has been chosen to discretize the second order
derivatives.

3 Numerical experiments

In this section, our aim is to test the developed method. Several shock tube problems
are used to test the capturing properties of the scheme in the presence of disconti-
nuities. We consider seven test problems which are classical benchmark, see for
instance [32]. The initial data consists of two constant states separated by a dis-
continuity located at x = x0 , all the parameters are listed in Table 1. Transmissive
boundary conditions are imposed at x = 0 and x = 1.

In test 1 the liquid phase wave pattern consists of a left rarefaction, a right shock
wave and a right traveling liquid contact, while the gas phase consists of a left rar-
efaction, a contact and a right shock wave. The equations of state for both phases are
assumed ideal, with γg = γl = 1.4. Test 2 is more demanding than test 1 as it includes
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(a) EOS parameters and initial discon-
tinuity position

Test 1 Test 2 Test 3 Test 4 Test 5
γl 1.4 3.0 1.4 1.4 3.0
γg 1.4 1.35 1.4 1.4 1.4
πl 0.0 3400.0 0.0 0.0 10.0
πg 0.0 0.0 0.0 0.0 0.0
x0 0.5 0.5 0.5 0.5 0.5

(b) Liquid phase

Test αLl ρLl uLl pLl αRl ρRl uRl pRl

1 0.8 1.0 0.0 1.0 0.3 1.0 0.0 1.0
2 0.2 1900.0 0.0 10.0 0.9 1950.0 0.0 1000.0
3 0.8 1.0 0.75 1.0 0.3 0.125 0.0 0.1
4 0.8 1.0 -2.0 0.4 0.5 1.0 2.0 0.4
5 0.6 1.4 0.0 2.0 0.3 1.0 0.0 3.0

(c) Gas phase

αLg ρLg uLg pLg αRg ρRg uRg pRg

0.2 0.2 0.0 0.3 0.7 1.0 0.0 1.0
0.8 2.0 0.0 3.0 0.1 1.0 0.0 1.0
0.2 1.0 0.75 1.0 0.7 0.125 0.0 0.1
0.2 1.0 -2.0 0.4 0.5 1.0 2.0 0.4
0.4 1.4 0.0 1.0 0.7 1.0 0.0 1.0

Table 1 One-dimensional shock tubes. EOS parameters, initial discontinuity position and initial
data for liquid and gas phases.

large variations of initial data and non-ideal equation of state. In test 3 the solution,
for both phases, consists of a right shock wave, a right traveling contact discontinu-
ity and a left sonic rarefaction wave. The correct resolution of the sonic point is very
important in assessing the entropy satisfaction property of the numerical scheme. In
test 4 both solid and gas phases consist of a two symmetric rarefaction waves and
a trivial stationary contact wave. The region between the rarefaction waves is close
to vacuum, therefore this test case is useful to assess the pressure positivity in dif-
ferent numerical methods. Test 5 was designed to assess the ability of numerical
methods to resolve the stationary isolated contact waves. The exact solution allows
the existence of the stationary contact waves in the solid and gaseous phases when
the volume fraction and solid pressure gradients are present across the solid contact.
The solution of this test problem contains isolated contacts in both solid and gas
phases.

A comparison is made between a first order discretization (which corresponds
to a classical Finite Volume approach) and a sixth order discretization, both with
100 elements. A solution obtained with a first order full non linear Riemann solver
[30] on a mesh consisting of 2000 elements is shown for comparison. Results are
shown in Fig. 1 where the mixture density is displayed (ρm = αlρl +αgρg). Final
time has been set to t = 0.15 for tests 1 to 5. When the spatial discretization uses
a first order representation of the solution, the Rusanov flux, although robust, does
not give satisfactory results in the sense that it dissipates too much discontinuities.
On the contrary, when the polynomial degree N = 5 is used, the solution is almost
indistinguishable from the reference solution. It is remarkable how the artificial vis-
cosity approach, detailed in Sec. 2.3, achieves to impose a very controlled amount
of viscosity, keeping very sharp fronts and almost no oscillations.
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1.3

1.4

0 0.5 1.0

Fig. 1 Shock tube problems. Comparison between first order Rusanov with 100 elements, sixth
order Rusanov with 100 elements and full non linear Riemann solver with 2000 elements. Density
mixture.

4 Conclusions

In this work a discontinuous Galerkin discretization of the Baer-Nunziato equations
that takes the DGSEM as a basis was introduced. The condition of Abgrall was used
to extend the Rusanov flux to high order and to treat the non-conservative products.
A stabilization technique based on local artificial viscosity was adapted to the Baer-
Nunziato equations to deal with the inherent oscillations caused by high-order dis-
cretizations in the vicinity of discontinuities. This approach allowed to smooth the
discontinuities in a very thin region and thus resolve them in the space of polynomi-
als. The numerical experiments showed that the proposed discretization allows very
high-order solutions in the presence of discontinuities. It was also shown that the
accuracy of these solutions is comparable to the ones obtained with a full non linear
Riemann solver with more than three times the number of degrees of freedom of the
high-order counterpart.
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