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Abstract

In this paper, we show how to accurately estimate the local truncation error of partial dif-
ferential equations in a quaaipriori way. We approximate the spatial truncation error using
the r-estimation procedure, which aims to compare the discretisation on a sequence of grids
with different spacing. While most of the works in the literature focused oa posteriori
estimation, the following work develops an estimator for non-converged solutions. First, we
focus the analysis on one- and two-dimensional scalar non-linear test cases to examine the ac-
curacy of the approach using a finitéfdrence discretisation. Then, we extend the analysis to a
two-dimensional vectorial problem: the Euler equations discretised using a finite volume vertex-
based approach. Finally, we propose to analyse a direct applicatiextrapolation based on
non-convergea-estimation. We demonstrate that a solution with an improved accuracy can be
obtained from a nomx-posteriorierror estimation approach.

Keywords: quasia priori truncation error, finite volume solvers, multigrid, uncertainty
estimator

1. Introduction

In the past decades, due to the increasing demand for complex fluid flow simulations, great
effort has been done by the Computational Fluid Dynamics (CFD) community in order to in-
crease the accuracy and reduce the calculation costs. It is now well understood that numerical
errors play a crucial role in the balance between accuracy and computational time.

The errors commited in solving numerically a set of Partidgféential Equations (PDE) can
be broadly classified into three categories:

o Discretisation errors (DE). These errors arise when the mathematical problem is solved nu-
merically on discrete domains. The discretisation error is defined asfiheetice between
the exact solution to the PDE and the exact solution to the discretised PDE.

e Truncation errors (TE). They act as a source for the DE througlligozetisation error
transport equatiofDETE, see Roy [1]). The truncation error is defined as tlfiedénce
between the discrete and continous PDE both applied to the exact solution of the mathe-
matical model.
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e Iteration errors (IE). Iterative error is present in a siolntwhen an iterative procedure is
used to solve the discrete equations. The iteration erd&fined as the tlierence between
the exact solution to the discrete equations and the salatithe current iteration.

The estimation of the numerical error provides valuablerimiation that can be used infiir-
ent applications. The truncatifliscretisation errors are directly related to the meshidigion,
and thus, a careful estimation might be employed in meshrggogmesh adaptation. These es-
timations might also be used to increase the accuracy ofatt@pdifferential equation solution.
However, the accurate evaluation of numerical errors issdl@hging task.

The most commonly used strategy to study discretisaticoreis based on Richardson ex-
trapolation [2]. Richardson extrapolation is derived frampower series expansion of the numer-
ical solution expanded about the exact solution to the PBIs, tit assumes a smooth solution
in the asymptotic range. The success of Richardson exaapol[3, 4, 5, 6, 7, 8] is due to its
generality as it can be applied to any set of PDE indepenglefithe numerical scheme. Because
it is ana posteriorierror estimator, the method is not code intrusive and redbtieasy to imple-
ment. However, this approach requires the computation lefast three numerical solutions, on
grid of different spacing, in order to obtain the expression of the hepmirm of the Taylor se-
ries. Therefore, this makes this method hardly suitabledonplex three-dimensional industrial
applications. Another family of discretisation error esditors comes from the solution of auxil-
iary equations like the DETE (Shih [9]) or the adjoint equas [10, 11]. While these methods
proved to be very reliable estimators, they howevefesurom a very high computational cost
and are code intrusive.

The analysis of truncation error can be done in two mannerst, By deriving analytically
the Taylor series expansions [12, 13, 14, 15, 16]. This agugdrallows for ara priori analysis
and gives very valuable information on the quality of the ima&isd on the accuracy of the numer-
ical scheme. However, the complexity of the related expoasgor general three-dimensional
non-linear problems together with the dependence on theerioah scheme have prevented the
expansion of this approach. The second way of studying tirecétion error arised from the
multigrid theory [5] and is known as-estimation. Given an exact (converged) solution to the
discrete PDE, this method relies on the evaluation of therelie PDE operator on a coarser
mesh [4, 17, 18, 19, 20]. Because of its strong relation tohngesility and accuracy, a careful
estimation can yield an increase in the order of the schenoeédure known as-extrapolation)
andor a reliable mesh adaptation indicator [21, 22]. Howewemdation error estimation by
T-estimation has always been usedosteriorj from converged solutions.

Here, we propose to extend the work of Bernert [18], Fult®] find Fraysset al.[20, 23],
who focused their study on converged solutions, to non-ead solutions. We develop a trun-
cation error estimator and derive all of the necessary ¢immgdito ensure accuracy. We discuss
the conditions for an accurate estimation as follows: tliepof the transfer operators acting in
the truncation error estimator formula as a function of tfaeo of the numerical scheme, the in-
fluence of distortion and the influence of the iteration eomothe accuracy of the estimation. In a
second step, &extrapolation formulais presented accounting for thevalmmnditions. Whereas
non-converged-estimatioyir-extrapolation are performed on one- and two-dimensiocelbs
equations using a finite fierence method, a concrete application using the finite veluentex-
based DLR TAU-Code [24] for the Euler equations is subsetijyipresented.

The present paper is organised as follows. First, we denv8dc. 2 the mathematical
formulation and the conditions to be fulfilled for an acceratestimatiorir-extrapolation for
non-converged solutions. In Sec. 3.1 and 3.2, we study theracy of ther-estimatiofir-
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extrapolation for non-converged solutions of one-dimemnai and two-dimensional reference
problems. We present thefficulties associated with this methodology as well dedént so-
lutions. Finally, in Sec. 4, we address more realistic camitjons with Euler equations on
guadrilateral- and triangle-based grids.

2. Problem formulation

Let us consider the discretisation of a partidfeliential equation on a gri@" indexed by a
mesh size paramethrof the following form:

AN = = 7f 1)

where, 7" represents a continuum-to-gy' transfer for the specifiefl (e.g., pointwise restric-
tion) andu” represents the converged numerical solution. The disat&in erroe” and the local
truncation error” corresponding to Eq. 1 are defined as follows:

" = IMu-u"
™ = A7) - T"Au) 2)

In addition to the discrete equation Eq. 1 and considerindl @approximation storage multi-
grid algorithm [5], the coarse grid equation may be writteri@lows:

ARy = AR IR + TR - AnE), oM~ TH(E + T 3

corresponding to the discrete equation on a coarser ®Eshvith a mesh ratio op = h/H <

1. In Eq. 3,u" is the current approximation of the solution (relaxed onfthe grid and not
necessarily convergectjg = u" - " is the fine grid iteration error, for which its high frequeesi
must be smoothedﬂl‘* represents the fine to coarse transfer operator of the anluvt,ihereaﬂ;ﬁl4
represents the fine to coarse transfer operator of the @sidate that these restriction operators
are not necessarily identical. Similarly, introducing taktive truncation errorrr'j, Eq. 3 may
be written as follows:

ANy = M4 with (4)
i @@t - 1) - @@ - M =T1+ T2 (5)

Our goal is to usef! to estimater™. If this estimation can be performed withfBaient
accuracy, then one can use this local error as a mesh adapiadicator, as an uncertainty
estimator or as a means to increase the order of accuracyg epttial scheme.

The following theorem provides the relationship betweenabcuracy of{' towardsr" and
the order of the restriction operators acting in Eq. 5.



Theorem 1 (Truncation Error Estimate)Assume that there existsm g, s > 1 such that if u is
of classC™P*4(Q), the truncation error (2) satisfies:

e (A1) Local truncation error of order pr" = hP7"v + O(hP*9), with v of classC9(Q)
¢ (A2) Local discretisation error of order pe" = hP7"w + O(hP*9), with w of classC9(Q)

e (A3) Fine to coarse transfer operator of the solution of orderf#]hq) = I"¢ + O(h9),
with ¢ of classC3(Q)

then

AAN

oA, oA
oun

Eh THeD + O(max(™ &P+ |1 eh2))  (6)
our g

T:;' =(1—pp)TH+IhH

[]h
where‘?,—ﬁﬂ1 and %%' represent the Jacobian on the fine and coarse grids.
Proof of this theorem can be found in Fraysseal.[20].

Corollary 1 (Dynamicr-extrapolation) Let us consider the problem

Aty = 1+ ok (7)

1-pP
and assume that,

e (A4) Fine to coarse transfer operator of the residual such that:

H &?{H "H aﬂh -t
Iy = S | Il g
U™ g U™ [gn
Then it follows,
et = TMu—T" = o(max(mePHa |1h 12 hPjleh) (8)

Proof. Let us first derive the DETE,

M= A - 1MAap) =
AY(THu) - A ) =
AT - A THu-€") =
aAH
our
oAl

ourt TH(@+er+el+O(hs))
oA

| €+ O(maxmeR2D), hPjiel)) (9)
OU™ {715

et +0(leM?) =
THu

e+ 0(h?P) =
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The above formulation of the DETE follows the advanced lirgsdion of Phillips and Roy
[26].
From(A1l), (A2) and Eq. 9 it follows:

oAH
M~ OHP), f~OHP), M —|
auH j—H[]h
h
-1
oA . :
— <M, with M independent oH (20)
U™ |7
Using Eq. 6 andA4), Eq. 7 can be rewritten as,
1 .
Av@H) = fH + I pThH = fH 4+ 7 £ O(max(™EPHa) i€ 2)) (11)
-p

Then, using DETE Eq. 9, the truncation errbrassociated to Eq. 7 can be written as,

oA

™= o(max@™ P 16?) = ——| €+ O(max©™CPP) Pl (12)
U™
With Eg. 10, Eq. 12 becomes
el = O(max(™SP+D_||eh 2, hPllel)) (13)

Discussion:

The two first assumptions state that the meshes employedfidently refined so that both
discretisation and truncation errors decrease at the foatesof convergence. Thus, this analysis
is only valid in the asymptotic range. The main conclusidrisag 6 are related to the order of the
restriction operator acting on the solution and on the ntageiof the iteration error. Examining
the exponent of the last term in Eq. 6, it can be deduced timnitcessary to use higher order
interpolations > p to transfer the solution from a fine to a coarse meshs # p, then the
truncation error estimation will be dominated by the tedn®), reducing the accuracy of the
general results of the formula.

Another interesting conclusion of Eq. 6 concerns its depand on the iteration error. It
can be remarked that {A4) holds, then the accuracy of the truncation error estimatioreases
quadratically when the iteration error decreases untligbelowO(h™n(P+d): then an accurate
truncation error estimation can be obtained in the earlgestaf the iteration towards conver-
gence. Once an accurate truncation error estimation itaélaj Corollary 1 demonstrates that a
better approximation of the solution on the coarse grid eaadmputed.

In the linear case, by denoting"(u") = £"u", (A4) can be rewritten as:

o= MR ()t (14)
If Eq. 14 is satisfied, it can be remarked that Eq. 6 and Eq. 8ddepend at all on the itera-
tion error. Actually, the dependence on the iteration esfahe higher order term$|t€t‘||2) is due
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to the linearisation of the discrete opera#@t, which does not take placed is linear. It means
that, constructing the restriction operator for the finel geisidual[t'j following Eq. 14 yields an
accurate truncation error estimation at the first stage eftration procedure. However, it is
of little practical interest since the fine gridfiirential operato" has to be inverted, which is
equivalent to solving the initial problem. .

Another approach to fulfill Eq. 14 would be to computg such that,

M= (L) e (15)

Eq. 15 only requires the inversion of the coarse gritedéntial operato.H, which is much
cheaper than solving Eq. 14. However, we remind the readeithie above analysis assumes
(A3) and there is no guarantee that Eq. 15 yields to an opefﬁ'tom‘ orders > p, except for
special cases that we will not discuss here.

Finally, Eq. 15 could be solved for the coarse grid operglbinstead,

LM =i (ZHY (16)

Where(jﬁ)+ stands for the Moore-Penrose pseudo-inversér';beowever in our anaysis, we
assumed discretisation coarse grid approximatiqdca) [27]. In the dca approach, the coarse
grid operator has the same stencil as the fine grid operhtesthe associated truncation errors
have the same expressions aAd)and @A2) hold both onQ" andQ".

On the other hand, for non-linear probler’4) requires the inversion of the Jacobian which
is a common practice when steady state solutions are obtaiitle an implicit scheme.

To validate Eq. 6 and Eq. 8, we employed a set of parti@&dintial equations with known
analytic solutions in the following sections. For each teste, first, an analysis is made on the
application of(A4) to verify Eq. 6 and secona;extrapolation is applied in order to verify Eq. 8.
First, we emphasised the analysis on one-dimensional iegsatnd then we investigated the
extension to two-dimensional scalar problems, both soli@dg a finite diference approach.
Finally the two-dimensional Euler equations are considergng a vertex-based finite volume
approach.

3. Detailed analysis on reference problems

In this section, we studied théfects on the dynamic truncation error estimation (TEI) of the
restriction operator acting on the fine grid residﬂﬁ\lfor different mesh distributions. Emphasis
is given on how to get a truncation error estimate from a nmmverged solution, while accuracy
towards exact truncation error is presented briefly in AglpeA and in more details in Fraysse
et al. [20]. The truncation error estimate is computed fdfetient iteration error magnitudes
and compared against its converged value (TE(#IE[“) - ThH(uh))). Then, in a second step,
T-extrapolation is applied from instantaneous (DEI) andveoged (DEC) truncation error esti-
mates by solving Eq. 7 using distinct restriction operafgfsind the €ects on the discretisation
error are shown using analytic solutions. In this work, wasidered three tlierent operators to
restrict from fine to coarse grid, the teffain Eq. 5:

e T, is neglected, the approach is referred to as (1)
e T, is restricted using injection, the approach is referredcst(®a
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e T, is restricted following A4), the approach is referred to as (3)

In order to verify the discretisation error of the initiabiplems as well as theextrapolation
procedure, the Method of Manufactured Solutions [28, 3048} is used. This method is used
extensively in the context of CFD code verification. It catsin defining an analytic solution,
and modifying the governing equations accordingly, by agai source term. This source term
is added such that the chosen analytic solution satisfiegaberning equations.

Although the form of the manufactured solution is somewhhiti@ry, it should be chosen
to be smooth, infinitely dierentiable (to avoid the cancelation of higher order dériea) and
realisable (i.e., solutions should be avoided that havathegdensities, pressures, and temper-
atures for example in the case of the Euler equations). mdgeetric functions were employed
because no derivative can be eliminated, which is of imperdo analyse the order of accuracy.

3.1. One-dimensional non-linear test case

First, to illustrate the ability of the formulation of Eq. & deal with non-converged solutions,
we considered the one-dimensional forced Burger’s equatith known exact solution.
The one-dimensional equation considered reads as follows:

U’ +uu ="f+hc a7

whereb.c represents the boundary conditions. Furthermore, we deres the following forcing
function f and boundary conditions:

U(0) = Uex(0),  U(L) = Uex(1) (18)

This problem has the following exact solution:

{ f(X) = 16 cos(4&) — 4 sin(4x) cos(4)

Uex(X) = COS(4X).

Eq. 17 is solved using a second-order spatial scheme. A titfierence method associated
with a second-order accurate central scheme for the coitiqutat the first and second deriva-
tives was considered so th&1) and @A2) hold with p = q = 2 for the uniformandp=q =1
for the distorted grids (see Appendix A). The fine grid wagsaoted from the coarse grid by
inserting a new node in each coarse grid cell. In this way/ydepto restrict the solution from
fine to coarse grid, an injection operator could be used sqA®) holds withs = co. Finally, at
convergence, it follows thal{%q'j -1 ~ O(h*) for the uniform andﬁrﬂ —7H ~ Oo(h®) for
the distorted grids (see Appendix A and Frayssal.[20]). In order to study the influence of
the iteration error, the steady-state solution was reaobid) a Runge-Kutta relaxation scheme
and a multigrid strategy.

We focused the analysis on the influence of the restricticaratpr acting on the fine grid
residual[hH, for two different mesh distributions: uniform and distorted grids.

The uniform distribution was generated such that:

i—-1

;= — i=1,..,i 19
. imax— 1 ! imax (19)

while the distorted distribution was constructed in thigywa
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xi = (i = 1)hynit + (randf) — 0.5)h Punit =

unif?

imax—1 O =1 (20)
Here, imax is the maximum number of nodes of the coarse@fidaind the function rand
returns a random value between 0 anddlcontrols the skewness of the mesh in the case of
distorted grids. In this studg was set to 1. A representation of the two mesh topologiesean b

seen in Fig. 1.

T-estimation using Eq. 5 uses two grid levels of similar chteastics. In order to fulfill this
condition the fine grid§" were generated by bisecting all segments of the @dfdisIn this way,
the requirements for systematic mesh refinemé@berkampf and Roy [29]), who state that the
successively refined grids should satisfyrdform refinemenéand aconsistent refinementere
fulfilled.

In order to validate Eq. 6, Eq. 17 was solved on an igf nodes grid for each of the
two mesh topologies. At each multigrid cycle, the trunaatoror estimation from Eq. 5 was
computed using either injection f@t' or (A4) and compared to its converged value. Results are
reported in Fig. 2(a) and Fig. 3(a) for the uniform and digtdgrids respectively.

In these graphs, the solver tolerance, thenorms of the converged truncation error esti-
mate (TEC), the iteration error, the squared iterationreand the diference between the in-
stantaneous truncation error estimate and its converdad (/‘a'EI-TEC:T:j(Gh) - th (uM)) are
represented. TEI-TEC (1) stands for the method one, whersdhond term of Eq. 5 is ne-
glected. TEI-TEC (2) is the second approach where the Terin Eq. 5 was computed using
an injective operataf . Finally, TEI-TEC (3) means that! was computed such tha§) was
satisfied. It can be seen for all mesh topologies that naggettte fine grid residual (second term
of Eqg. 5) or restricting it using injection does not yield t@aadratic convergence. Typically,
||q'j (Gh)—q'j (uh))||L2 decreases at the same rate#mz, therefore these former approaches do not
allow to reach a faster convergence and the condition tleaitéination error (or a typical solver
tolerance) be smaller than the truncation error is recalerowever, wher ! fulfills (A4) it
can be seen that the quantity (G") — 7H (u"))||., decreases quadratically with the iteration error,
which is the result expected from Eq. 6.

Once a truncation error estimate was available through $keeofiEq. 5, we performed the
so-calledr-extrapolation technique by solving Eq. 7 on gfi. This procedure has been re-
peated at each multigrid cycle in order to measure the infleieri the iteration error arising
from the discretisation of the initial problem on g@f. As for the verification of Eq. 6, Eq. 8
was checked with and without assumptié®j using the two grid topologies of Eq. 19-20. The
results of this analysis are reported in Fig. 2(b) and Fig) &fr the uniform and distorted grids
respectively. In these plots, the discretisation erroitsiakd from the converged solutions on
grids Q" andQ" are also displayed and compared againstrtiestrapolation obtained of"
from a converged (DEC) and non-converged solutions (DHig first comment, common to the
two mesh topologies, concerns the discretisation erraaiobtl by solving Eq. 7 from a con-
vergedr-estimation. It can be seen that thextrapolation procedure improves substancially the
accuracy of the discretised solution. The extrapolatectelisation errors are at least two orders
of magnitude smaller than the discretisation error obthfr@m the initial problem solved of2".
This can be easily explained by remarking that the secomad ¢éthe Taylor expansions associ-
ated to the central discretisations are of ongleiq = 4. Thus, from Eq. 7, the discretisation error
associated to Eq. 8 computed from a convergedtimation is of ordep + g = 4. The second
important comment is related to the discretisation errepaisited to the extrapolated problem
obtained with a dynamie-estimation approach. It can be seen that, as a natural goesee of
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the dynamicr-estimation analysis, the same conclusions hold. WHhet) does not hold or if
the second term of Eq. 5 is neglected, then the discretisatior associated to the extrapolated
problem Eq. 8 reaches its converged value at a rate of coeneegproportional tcneirt‘n._z, o)
that no special gain is obtained. However, A4) holds, it can be seen that the discretisation
error associated to Eq. 8 reaches its converged value a¢ pmaportional tq|ei't‘||22, therefore
validating Eq. 7.

Distorted grids

Uniform grids

Figure 1: 1D Burgers’ equation, uniform and distorted grids
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Figure 2: 1D Burgers’ equation, uniform grid. (a): Analysisdynamic truncation error accuracy and (b) dynamic
T-extrapolation.
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Figure 3: 1D Burgers’ equation, distorted grid. (a): Anaysf dynamic truncation error accuracy and (b) dynamic
T-extrapolation.
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3.2. Two-dimensional non-linear test case

The analysis performed for one-dimensional equations wisded in this section to two-
dimensional problems. The analysis of Sec. 2 does not makassumptions on the dimension-
ality of the problem. However, it states that the discréiigeand truncation error have the same
formulation both on coarse and fine mesh, requiring someistensy in the topology of both
grids. Therefore, under the assumption of topologicallyilsir grids, we indicate in this section
that the extension to two-dimensional partidteliential equations is straightforward.

As in the previous case, the two-dimensional forced Busgaguation is studied,

—Au+uux=f +b.c (22)

whereb.c represents boundary conditions. We considered the fatipwést function and bound-
ary conditions:

{ f(x,y) = 52 cos(X + 6y) — 4 sin(4x + 6y) cos(4 + 6y) 22)

U(X, y) = Uex(x’ y)’ V(X, y) € Q = [0’ 1]2
This problem has the following exact solution:

Uex(X, ) = cos(4X + 6By).

Similarly to the one-dimensional case, Eq. 21 is solvedgiaisecond-order spatial scheme.
A finite difference method associated with a second-order accuratalcaiteme for the com-
putation of the first and second derivatives was consideoethat A1) and A2) hold with
p = q = 2 for the uniform grids ang = q = 1 for the distorted grids (see Appendix A). In order
to restrict the solution from fine to coarse grid, an injectaperator has been used so thaB)
holds withs = co. Finally, at convergence, it follows th:ﬁ%q‘j -1 ~ O(h*) for the uniform

and 257 — 7 ~ O(h?) for the distorted grids (see Appendix A and Frayssel. [20]). In
order to study the influence of the iteration error, the stestdte solution was reached using a
Runge-Kutta relaxation scheme and a multigrid strategy.

We focused the analysis on the influence of the restricticaratpr acting on the fine grid
residual]ﬁ, for different mesh distributions: uniform and distorted grids. Sehgrid distribu-
tions follow Eqg. 19-20 and are represented in Fig. 4 (coanskeanbedded fine grids). Note
that in order to keep an accurate finitéfeience formulation, the distorted grid case only used a
perturbation in thg-direction.

Similarly to the precedent case, our aim was to validate EBapdE(Q. 8. In order to do so, we
solved Eq. 21-22 on 6% 65 grids using the two aforementioned topologies. At eachiignial
cycle, the truncation error estimation Eq. 5 has been coadpand added as a source term in the
extrapolated problem Eq. 8. The results and conclusioramdd for the one-dimensional prob-
lem hold for the two-dimensional test case (see Fig. 5-Ghdfsecond term of Eq. 5 is neglected
or restricted with an operator which does not satigfd) then the quantityiz}! (@ - oA (U)II,
decreases at a rate proportionalltpHLz, thus does not yield a substantial gain. Howevef,;if
is constructed such thaAd) holds, therj|}H (") — 7 (u")|l, decreases quadratically with the it-
eration error, validating Eq. 6. As a consequencerthgtrapolation from dynamie-estimation
follows the same tendency.
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Figure 4: 2D Burgers’ equation, (a): uniform and (b): digtdrgrids.
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Figure 5: 2D Burgers’ equation, uniform grid. (a): Analysisdynamic truncation error accuracy and (b) dynamic
T-extrapolation.
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Figure 6: 2D Burgers’ equation, distorted grid. (a): Anaysf dynamic truncation error accuracy and (b) dynamic
T-extrapolation.
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4. Numerical experiments on two-dimensional Euler equations

We finished our study by performing an analysis of the dynaraiccation error estimation
and extrapolation on the two-dimensional Euler equatiasgollows:

U OF oG

ot " ox " oy S (23)
with
P gu PV
u=| pu F_| Pu+P G- ,cz)uv
oV puv oV +p
pE pUH pVvH
and
u? + V2
p=tr - 1)fpe - 25) (24)

A source ternSis added such that the following chosen analytic solutidisfas the gov-
erning equations:

p(X.y) = 1+ cos(y)

u(x, y) = (2 + cos(4) — sin(6y))/10

V(X Y) = (2 + cos(4) + sin(6y))/12

p(x,y) = 1+ cos(X) + sin(y) (25)

We solved Eq. 23 and Eq. 24 on quad- and triangle-based gaemesing the node-based fi-
nite volume DLR TAU-Code [24]. DLR TAU-Code solves the ReljdmAveraged Navier-Stokes
equations on unstructured hybrid grids by employing a seawder finite volume discretisa-
tion. The multigrid strategy implemented in TAU uses thé &piproximation scheme algorithm
to compute the correction term on the coarse grids. The eagaids are obtained by agglom-
eration of the fine grid dual cells (control volumes obtaifgdjoining the barycenters of all
connected elements). When the primary grid is composedadmjaterals (or hexahedrons for
3D computations), then the advanced front method is capdlalgglomerating 4 quadrilaterals
(8 hexahedrons) to create a coarse quadrilateral (hexagds in a structured solver. However,
when the primary grid is unstructured, the agglomeratigothm creates coarse grid elements
that do not necessarily maintain the fine grid charactesstin the context of multigrid, this
situation is not a strong limitation, particularly in TAU here the coarse grid fluxes are com-
puted with a first-order accuracy. However, in the contextwfcation error estimation, as we
discussed earlier, it is of importance that the truncatioorés identical between fine and coarse
grids (see Fraysset al.[20]). This goal clearly cannot be accomplished if the eletaealiter
from fine to coarse mesh. To circumvent this issue and to wlestimations of the truncation
error for unstructured grids, in the following analysisg fine mesh (where the flow solution is
actually computed) was obtained from the coarse mesh bygthigeall of the edges. In this way,
all coarse grid vertices also belong to the fine grid so thatrttethod allows the use of injection
to restrict the solution from fine to coarse grids.
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Eq. 23 and Eqg. 24 have been discretised using the Jamesonidscfurkel second order
scheme [25], so that we expect Eq. 6 to hold with= 2, = 1,5 = . The geometries em-
ployed in this study follow the distributions of Eq. 19-E@.®ith 65 nodes in each direction (see
Fig. 7). Similarly to the previous one- and two-dimensiaiesat cases, we studied the dynamic
T-estimation and-extrapolation as a function of the magnitude of the iteragrror. Truncation
error maps, exact and estimates can be seen in Appendix AisLeéetail the procedure in the
case thatA4) holds.

For convenience, we rewrite Eq. 5

(AR - £7) -

~
ST
1

dAH m@ﬁ r by h
—_— —_— ANO) - f
ouH igm h 6uh ( ( ) )

= T+ T (26)

ah

While T, can be easily computed, in order to avoid explicit invergibthe Jacobian matrix,
T, is computed in this way:

: oA
e Solve the linear system:aW

¢ = A - 1"
th

e Restrictiandg! usingZ!!

H

 Multiply by coarse grid Jacobiaf, = % THeh

THeh
Ija

In the current analysis, the linear system is solved usieggGMRESILU routines from
the PETSc package [31] using an exact representation obttebihn matrix associated to the
Jameson-Schmidt-Turkel scheme, already implementedtfiedLR TAU-Code. Due to the
computational cost, the simulations have been performestiected solver tolerances
(0.5,0.1,0.05,0.01,0.005 0.001), instead of at each multigrid cycle for the previoussasiow-
ever, as we shall see in the following, this igistient in order to verify Eq. 6 and Eq. 7.

Similar conclusion of previous tests are obtained (see &itjl): if the second term of
Eq. 5 is neglected or restricted with an operator which dag¢satisfy @4), then the quantity
l[7H(@") — 7H (uM)ll., decreases at a rate proportionallf}|L,, thus does not yield a substantial
gain. However, iff}! is constructed such tha#@) holds, therj|z} (@) - 7} (u")ll., decreases
qguadratically with the iteration error, validating Eq. 6.s A consequence, theextrapolation
from dynamicr-estimation follows the same tendency.
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Figure 7: Euler equations, (a): quad-based uniform, (b@ngle-based uniform, (c): quad-based distorted and (d):
triangle-based distorted grids.
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5. Conclusions

Dynamicr-estimation has been successfully performed on finfterdince solvers as well as
in a finite volume solver on uniform and distorted grids. Citinds on the order of accuracy of
the restriction operators and the magnitude of the itemagiwor to ensure accurate estimations
have been derived and verified numerically on the scalarsBoisquation and on Euler equa-
tions. In this approach, a special attention has been pdlietase of non-converged solutions
to estimate the truncation error in the early stages of #rative procedure. The results demon-
strated that if the restriction operators are chosen cllyefoen the accuracy of the estimation
increases quadratically with the decreasing of the itemagiror. Otherwise, the estimation is ac-
curate as long as the magnitude of the iteration error resriawer than the truncation error. In
this paper, a direct application is presented, dynarnegtrapolation, and we demonstrated that
it can be performed from a non-convergedstimation. The latter conclusion is of importance
as for a given accuracy, important savings in terms of coatpmrtal time may be obtained.

Appendix A. Accuary of T-estimation and r-extrapolation approaches

We analysed the magnitude of the error in the estimationessh spacing is reduced for
the 1D and 2D scalar problems when the solution is convelgddtis aim, a set of successively
refined grids was built fronimax = 9 to imax = 65, by performing edge bisection both for
uniform and distorted grids, thus following the requirersssf Oberkampf [29] for @ystematic
grid refinemenstudy.

TheL, norm of the discretisation error, the exact truncationregira the error in the estima-
tion ||1%ppq'j — 71|, have been computed and are reported in Fig. A.12-A.13 fdotmiand
distorted grids and for both 1D and 2D Burgers’ equations.

When the second order discretisation is used in conjunetitim injection to restrict the
solution, Eq.6 holds witlp = g = 2 on uniform grids. Then, the error in the estimation is of the
order of ming, p + ). When injection is used to transfer the solution from finedarse mesh,

s = oo and the estimation is accurate. However, when the secatet-®E 2 operator is used,
the estimation of the local truncation error is no longeruaate because the exact truncation
error for this specific problem is also of the order of two.

In the case of distorted grids, the discretisation errontaéns a second order accuracy while
the truncation error drops to first order accuracy, whichka@wn issue of the discretisation on
bad quality meshes (see Katz [32]). In this case, as can loeiséég.A.12(b) and Fig.A.13(b)
for 1D and 2D scalar problems respectively, when an accueateiction operator is used (e.g.
injection), the error in the estimation drops to second owdeaich is one order of magnitude
higher than the exact truncation error itself.

T-extrapolation results are shown in Fig.A.14 and Fig.A.d5the 1D and 2D scalar equa-
tions and for uniform and distorted grids. The discretmagrror is computed both for the initial
problem and the extrapolated problem where the truncati@m estimate is added as a source
term to the original equations. The tendency follows thesiotes analysis: when a second or-
der restriction operator is used to compute the truncatimr estimate, then no particular gain
can be obtained, whereas if injection is used, the extrégablaroblems reaches a fourth order
accuracy.

The extension to system of equations is straightforward,taumcation error maps for all
conservative equations of the MMS problem are displayeddm=16, using a % 9 triangle-
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based distorted grid. It can be seen that, even for this vadyduality grid, the shape of the
truncation error is well predicted.
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Figure A.12:||.|l, of the DE, TE and error in the TE estimate for 1D (a): uniforby); @istorted grids.
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Figure A.16: Truncation error contours for the Euler MMSigdem. Left column: exact, and right column: estimation
of the truncation error. Rows: continuity, x- and y-momentand energy equation respectively.
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