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Abstract

In this paper, we show how to accurately estimate the local truncation error of partial dif-
ferential equations in a quasi-a priori way. We approximate the spatial truncation error using
the τ-estimation procedure, which aims to compare the discretisation on a sequence of grids
with different spacing. While most of the works in the literature focused on ana posteriori
estimation, the following work develops an estimator for non-converged solutions. First, we
focus the analysis on one- and two-dimensional scalar non-linear test cases to examine the ac-
curacy of the approach using a finite difference discretisation. Then, we extend the analysis to a
two-dimensional vectorial problem: the Euler equations discretised using a finite volume vertex-
based approach. Finally, we propose to analyse a direct application:τ-extrapolation based on
non-convergedτ-estimation. We demonstrate that a solution with an improved accuracy can be
obtained from a non-a posteriorierror estimation approach.

Keywords: quasi-a priori truncation error, finite volume solvers, multigrid, uncertainty
estimator

1. Introduction

In the past decades, due to the increasing demand for complex fluid flow simulations, great
effort has been done by the Computational Fluid Dynamics (CFD) community in order to in-
crease the accuracy and reduce the calculation costs. It is now well understood that numerical
errors play a crucial role in the balance between accuracy and computational time.

The errors commited in solving numerically a set of Partial Differential Equations (PDE) can
be broadly classified into three categories:

• Discretisation errors (DE). These errors arise when the mathematical problem is solved nu-
merically on discrete domains. The discretisation error is defined as the difference between
the exact solution to the PDE and the exact solution to the discretised PDE.

• Truncation errors (TE). They act as a source for the DE through thediscretisation error
transport equation(DETE, see Roy [1]). The truncation error is defined as the difference
between the discrete and continous PDE both applied to the exact solution of the mathe-
matical model.

Preprint submitted to Journal of Computational Physics May 28, 2013



• Iteration errors (IE). Iterative error is present in a solution when an iterative procedure is
used to solve the discrete equations. The iteration error isdefined as the difference between
the exact solution to the discrete equations and the solution at the current iteration.

The estimation of the numerical error provides valuable information that can be used in differ-
ent applications. The truncation/discretisation errors are directly related to the mesh distribution,
and thus, a careful estimation might be employed in mesh generation/mesh adaptation. These es-
timations might also be used to increase the accuracy of the partial differential equation solution.
However, the accurate evaluation of numerical errors is a challenging task.

The most commonly used strategy to study discretisation errors is based on Richardson ex-
trapolation [2]. Richardson extrapolation is derived froma power series expansion of the numer-
ical solution expanded about the exact solution to the PDE, thus, it assumes a smooth solution
in the asymptotic range. The success of Richardson extrapolation [3, 4, 5, 6, 7, 8] is due to its
generality as it can be applied to any set of PDE independently of the numerical scheme. Because
it is ana posteriorierror estimator, the method is not code intrusive and relatively easy to imple-
ment. However, this approach requires the computation of atleast three numerical solutions, on
grid of different spacing, in order to obtain the expression of the leading term of the Taylor se-
ries. Therefore, this makes this method hardly suitable forcomplex three-dimensional industrial
applications. Another family of discretisation error estimators comes from the solution of auxil-
iary equations like the DETE (Shih [9]) or the adjoint equations [10, 11]. While these methods
proved to be very reliable estimators, they however suffer from a very high computational cost
and are code intrusive.

The analysis of truncation error can be done in two manners. First, by deriving analytically
the Taylor series expansions [12, 13, 14, 15, 16]. This approach allows for ana priori analysis
and gives very valuable information on the quality of the mesh and on the accuracy of the numer-
ical scheme. However, the complexity of the related expressions for general three-dimensional
non-linear problems together with the dependence on the numerical scheme have prevented the
expansion of this approach. The second way of studying the truncation error arised from the
multigrid theory [5] and is known asτ-estimation. Given an exact (converged) solution to the
discrete PDE, this method relies on the evaluation of the discrete PDE operator on a coarser
mesh [4, 17, 18, 19, 20]. Because of its strong relation to mesh quality and accuracy, a careful
estimation can yield an increase in the order of the scheme (procedure known asτ-extrapolation)
and/or a reliable mesh adaptation indicator [21, 22]. However, truncation error estimation by
τ-estimation has always been useda posteriori, from converged solutions.

Here, we propose to extend the work of Bernert [18], Fulton [19] and Fraysseet al. [20, 23],
who focused their study on converged solutions, to non-converged solutions. We develop a trun-
cation error estimator and derive all of the necessary conditions to ensure accuracy. We discuss
the conditions for an accurate estimation as follows: the order of the transfer operators acting in
the truncation error estimator formula as a function of the order of the numerical scheme, the in-
fluence of distortion and the influence of the iteration erroron the accuracy of the estimation. In a
second step, aτ-extrapolation formula is presented accounting for the above conditions. Whereas
non-convergedτ-estimation/τ-extrapolation are performed on one- and two-dimensional scalar
equations using a finite difference method, a concrete application using the finite volume vertex-
based DLR TAU-Code [24] for the Euler equations is subsequently presented.

The present paper is organised as follows. First, we derive in Sec. 2 the mathematical
formulation and the conditions to be fulfilled for an accurate τ-estimation/τ-extrapolation for
non-converged solutions. In Sec. 3.1 and 3.2, we study the accuracy of theτ-estimation/τ-
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extrapolation for non-converged solutions of one-dimensional and two-dimensional reference
problems. We present the difficulties associated with this methodology as well as different so-
lutions. Finally, in Sec. 4, we address more realistic configurations with Euler equations on
quadrilateral- and triangle-based grids.

2. Problem formulation

Let us consider the discretisation of a partial differential equation on a gridΩh indexed by a
mesh size parameterh of the following form:

Ah(uh) = f h := Ih f (1)

where,Ih represents a continuum-to-gridΩh transfer for the specifiedf (e.g., pointwise restric-
tion) anduh represents the converged numerical solution. The discretisation errorǫh and the local
truncation errorτh corresponding to Eq. 1 are defined as follows:

ǫh = Ihu− uh

τh = Ah(Ihu) − IhA(u) (2)

In addition to the discrete equation Eq. 1 and considering a full approximation storage multi-
grid algorithm [5], the coarse grid equation may be written as follows:

AH(ûH) = AH(ÎH
h ũh) + IH

h ( f h −Ah(ũh)), ûH ≈ ÎH
h (ǫhit + ũh) (3)

corresponding to the discrete equation on a coarser meshΩH, with a mesh ratio ofρ = h/H <
1. In Eq. 3,ũh is the current approximation of the solution (relaxed on thefine grid and not
necessarily converged),ǫhit = uh− ũh is the fine grid iteration error, for which its high frequencies
must be smoothed,̂I H

h represents the fine to coarse transfer operator of the solution, whereasI H
h

represents the fine to coarse transfer operator of the residual. Note that these restriction operators
are not necessarily identical. Similarly, introducing therelative truncation errorτHh , Eq. 3 may
be written as follows:

AH(ûH) = f H + τHh with (4)

τHh = (AH(ÎH
h ũh) − f H) − IH

h (Ah(ũh) − f h) = T1+ T2 (5)

Our goal is to useτHh to estimateτH . If this estimation can be performed with sufficient
accuracy, then one can use this local error as a mesh adaptation indicator, as an uncertainty
estimator or as a means to increase the order of accuracy of the spatial scheme.

The following theorem provides the relationship between the accuracy ofτHh towardsτH and
the order of the restriction operators acting in Eq. 5.
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Theorem 1 (Truncation Error Estimate). Assume that there exists n, p, q, s ≥ 1 such that if u is
of classCn+p+q(Ω), the truncation error (2) satisfies:

• (A1) Local truncation error of order p:τh = hpIhv+ O(hp+q), with v of classCq(Ω)

• (A2) Local discretisation error of order p:ǫh = hpIhw+ O(hp+q), with w of classCq(Ω)

• (A3) Fine to coarse transfer operator of the solution of order s:ÎH
h I

hφ = IHφ + O(hs),
with φ of classCs(Ω)

then

τHh = (1− ρp)τH + IH
h

∂Ah

∂uh

∣

∣

∣

∣

∣

∣

ũh

ǫhit −
∂AH

∂uH

∣

∣

∣

∣

∣

∣

ÎH
h ũh

ÎH
h ǫ

h
it + O(max(hmin(s,p+q), ||ǫhit ||

2)) (6)

where∂A
h

∂uh and ∂A
H

∂uH represent the Jacobian on the fine and coarse grids.

Proof of this theorem can be found in Fraysseet al. [20].

Corollary 1 (Dynamicτ-extrapolation). Let us consider the problem

AH(ūH) = f H +
1

1− ρp
τHh (7)

and assume that,

• (A4) Fine to coarse transfer operator of the residual such that:

IH
h =

∂AH

∂uH

∣
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∣
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ÎH
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∣

∣
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ũh

)−1

Then it follows,

ǭH = IHu− ūH = O(max(hmin(s,p+q), ||ǫhit ||
2, hp||ǫhit ||)) (8)

Proof. Let us first derive the DETE,

τH = AH(IHu) − IHA(u) =

AH(IHu) −AH(uH) =

AH(IHu) −AH(IHu− ǫH) =

∂AH

∂uH

∣

∣

∣

∣

∣
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IHu

ǫH + O(||ǫH ||2) =

∂AH

∂uH

∣

∣

∣

∣

∣

∣

ÎH
h (ũh+ǫh+ǫhit+O(hs))

ǫH + O(h2p) =

∂AH

∂uH

∣

∣

∣

∣

∣

∣

ÎH
h ũh

ǫH + O(max(hmin(sp,2p), hp||ǫhit ||)) (9)
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The above formulation of the DETE follows the advanced linearisation of Phillips and Roy
[26].

From(A1), (A2) and Eq. 9 it follows:

τH ∼ O(Hp), ǫH ∼ O(Hp), τH ∼
∂AH

∂uH
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≤ M, with M independent ofH (10)

Using Eq. 6 and(A4), Eq. 7 can be rewritten as,

AH(ūH) = f H +
1

1− ρp
τHh = f H + τH + O(max(hmin(s,p+q), ||ǫhit ||

2)) (11)

Then, using DETE Eq. 9, the truncation error ¯τH associated to Eq. 7 can be written as,

τ̄H = O(max(hmin(s,p+q), ||ǫhit ||
2)) =

∂AH

∂uH

∣

∣

∣

∣

∣

∣

ÎH
h ũh

ǭH + O(max(hmin(sp,2p), hp||ǫhit ||)) (12)

With Eq. 10, Eq. 12 becomes

ǭH = O(max(hmin(s,p+q), ||ǫhit ||
2, hp||ǫhit ||)) (13)

Discussion:
The two first assumptions state that the meshes employed are sufficiently refined so that both

discretisation and truncation errors decrease at the formal rate of convergence. Thus, this analysis
is only valid in the asymptotic range. The main conclusions of Eq. 6 are related to the order of the
restriction operator acting on the solution and on the magnitude of the iteration error. Examining
the exponent of the last term in Eq. 6, it can be deduced that itis necessary to use higher order
interpolations > p to transfer the solution from a fine to a coarse mesh. Ifs ≤ p, then the
truncation error estimation will be dominated by the termO(hs), reducing the accuracy of the
general results of the formula.

Another interesting conclusion of Eq. 6 concerns its dependence on the iteration error. It
can be remarked that if(A4) holds, then the accuracy of the truncation error estimationincreases
quadratically when the iteration error decreases until it falls belowO(hmin(s,p+q)); then an accurate
truncation error estimation can be obtained in the early stages of the iteration towards conver-
gence. Once an accurate truncation error estimation is available, Corollary 1 demonstrates that a
better approximation of the solution on the coarse grid can be computed.

In the linear case, by denotingAh(uh) = Lhuh, (A4) can be rewritten as:

IH
h = L

HÎH
h

(

Lh
)−1

(14)

If Eq. 14 is satisfied, it can be remarked that Eq. 6 and Eq. 8 do not depend at all on the itera-
tion error. Actually, the dependence on the iteration errorof the higher order terms (||ǫhit ||

2) is due
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to the linearisation of the discrete operatorAh, which does not take place ifA is linear. It means
that, constructing the restriction operator for the fine grid residualIH

h following Eq. 14 yields an
accurate truncation error estimation at the first stage of the iteration procedure. However, it is
of little practical interest since the fine grid differential operatorLh has to be inverted, which is
equivalent to solving the initial problem.

Another approach to fulfill Eq. 14 would be to computeÎH
h such that,

ÎH
h =

(

LH
)−1
IH

hL
h (15)

Eq. 15 only requires the inversion of the coarse grid differential operatorLH , which is much
cheaper than solving Eq. 14. However, we remind the reader that the above analysis assumes
(A3) and there is no guarantee that Eq. 15 yields to an operatorÎH

h of orders > p, except for
special cases that we will not discuss here.

Finally, Eq. 15 could be solved for the coarse grid operatorLH instead,

LH = IH
hL

h
(

ÎH
h

)+
(16)

where
(

ÎH
h

)+
stands for the Moore-Penrose pseudo-inverse ofÎH

h . However in our anaysis, we
assumed adiscretisation coarse grid approximation(dca) [27]. In the dca approach, the coarse
grid operator has the same stencil as the fine grid operator, thus the associated truncation errors
have the same expressions and (A1) and (A2) hold both onΩh andΩH .

On the other hand, for non-linear problems,(A4) requires the inversion of the Jacobian which
is a common practice when steady state solutions are obtained with an implicit scheme.

To validate Eq. 6 and Eq. 8, we employed a set of partial differential equations with known
analytic solutions in the following sections. For each testcase, first, an analysis is made on the
application of(A4) to verify Eq. 6 and second,τ-extrapolation is applied in order to verify Eq. 8.
First, we emphasised the analysis on one-dimensional equations, and then we investigated the
extension to two-dimensional scalar problems, both solvedusing a finite difference approach.
Finally the two-dimensional Euler equations are considered using a vertex-based finite volume
approach.

3. Detailed analysis on reference problems

In this section, we studied the effects on the dynamic truncation error estimation (TEI) of the
restriction operator acting on the fine grid residualIH

h for different mesh distributions. Emphasis
is given on how to get a truncation error estimate from a non-converged solution, while accuracy
towards exact truncation error is presented briefly in Appendix A and in more details in Fraysse
et al. [20]. The truncation error estimate is computed for different iteration error magnitudes
and compared against its converged value (TEC) (τHh (ũh) − τHh (uh))). Then, in a second step,
τ-extrapolation is applied from instantaneous (DEI) and converged (DEC) truncation error esti-
mates by solving Eq. 7 using distinct restriction operatorsIH

h and the effects on the discretisation
error are shown using analytic solutions. In this work, we considered three different operators to
restrict from fine to coarse grid, the termT2 in Eq. 5:

• T2 is neglected, the approach is referred to as (1)

• T2 is restricted using injection, the approach is referred to as (2)

6



• T2 is restricted following(A4), the approach is referred to as (3)

In order to verify the discretisation error of the initial problems as well as theτ-extrapolation
procedure, the Method of Manufactured Solutions [28, 30] (MMS) is used. This method is used
extensively in the context of CFD code verification. It consists in defining an analytic solution,
and modifying the governing equations accordingly, by adding a source term. This source term
is added such that the chosen analytic solution satisfies thegoverning equations.

Although the form of the manufactured solution is somewhat arbitrary, it should be chosen
to be smooth, infinitely differentiable (to avoid the cancelation of higher order derivatives) and
realisable (i.e., solutions should be avoided that have negative densities, pressures, and temper-
atures for example in the case of the Euler equations). Trigonometric functions were employed
because no derivative can be eliminated, which is of importance to analyse the order of accuracy.

3.1. One-dimensional non-linear test case

First, to illustrate the ability of the formulation of Eq. 5 to deal with non-converged solutions,
we considered the one-dimensional forced Burger’s equation with known exact solution.

The one-dimensional equation considered reads as follows:

−u′′ + uu′ = f + b.c (17)

whereb.c represents the boundary conditions. Furthermore, we considered the following forcing
function f and boundary conditions:

{

f (x) = 16 cos(4x) − 4 sin(4x) cos(4x)
u(0) = uex(0), u(1) = uex(1)

(18)

This problem has the following exact solution:

uex(x) = cos(4x).

Eq. 17 is solved using a second-order spatial scheme. A finitedifference method associated
with a second-order accurate central scheme for the computation of the first and second deriva-
tives was considered so that (A1) and (A2) hold with p = q = 2 for the uniform andp = q = 1
for the distorted grids (see Appendix A). The fine grid was extracted from the coarse grid by
inserting a new node in each coarse grid cell. In this way, in order to restrict the solution from
fine to coarse grid, an injection operator could be used so that (A3) holds withs= ∞. Finally, at
convergence, it follows that1

1−ρpτ
H
h − τ

H ∼ O(h4) for the uniform and 1
1−ρp τ

H
h − τ

H ∼ O(h3) for
the distorted grids (see Appendix A and Fraysseet al. [20]). In order to study the influence of
the iteration error, the steady-state solution was reachedusing a Runge-Kutta relaxation scheme
and a multigrid strategy.

We focused the analysis on the influence of the restriction operator acting on the fine grid
residualIH

h , for two different mesh distributions: uniform and distorted grids.
The uniform distribution was generated such that:

xi =
i − 1

imax− 1
i = 1, ..., imax (19)

while the distorted distribution was constructed in this way:
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xi = (i − 1)huni f + (rand(i) − 0.5)hq
uni f , huni f =

1
imax− 1

, q ≥ 1 (20)

Here, imax is the maximum number of nodes of the coarse gridΩH and the function rand
returns a random value between 0 and 1.q controls the skewness of the mesh in the case of
distorted grids. In this study,q was set to 1. A representation of the two mesh topologies can be
seen in Fig. 1.
τ-estimation using Eq. 5 uses two grid levels of similar characteristics. In order to fulfill this

condition the fine gridsΩh were generated by bisecting all segments of the gridsΩH . In this way,
the requirements for asystematic mesh refinement(Oberkampf and Roy [29]), who state that the
successively refined grids should satisfy auniform refinementand aconsistent refinement, were
fulfilled.

In order to validate Eq. 6, Eq. 17 was solved on an imax=65 nodes grid for each of the
two mesh topologies. At each multigrid cycle, the truncation error estimation from Eq. 5 was
computed using either injection forIH

h or (A4) and compared to its converged value. Results are
reported in Fig. 2(a) and Fig. 3(a) for the uniform and distorted grids respectively.

In these graphs, the solver tolerance, theL2 norms of the converged truncation error esti-
mate (TEC), the iteration error, the squared iteration error, and the difference between the in-
stantaneous truncation error estimate and its converged value (TEI-TEC=τHh (ũh) − τHh (uh))) are
represented. TEI-TEC (1) stands for the method one, where the second term of Eq. 5 is ne-
glected. TEI-TEC (2) is the second approach where the termT2 in Eq. 5 was computed using
an injective operatorIH

h . Finally, TEI-TEC (3) means thatIH
h was computed such that (A4) was

satisfied. It can be seen for all mesh topologies that neglecting the fine grid residual (second term
of Eq. 5) or restricting it using injection does not yield to aquadratic convergence. Typically,
||τHh (ũh)−τHh (uh))||L2 decreases at the same rate as||ǫhit ||L2, therefore these former approaches do not
allow to reach a faster convergence and the condition that the iteration error (or a typical solver
tolerance) be smaller than the truncation error is recovered. However, whenIH

h fulfills (A4) it
can be seen that the quantity||τHh (ũh)−τHh (uh))||L2 decreases quadratically with the iteration error,
which is the result expected from Eq. 6.

Once a truncation error estimate was available through the use of Eq. 5, we performed the
so-calledτ-extrapolation technique by solving Eq. 7 on gridΩH . This procedure has been re-
peated at each multigrid cycle in order to measure the influence of the iteration error arising
from the discretisation of the initial problem on gridΩh. As for the verification of Eq. 6, Eq. 8
was checked with and without assumption (A4) using the two grid topologies of Eq. 19-20. The
results of this analysis are reported in Fig. 2(b) and Fig. 3(b) for the uniform and distorted grids
respectively. In these plots, the discretisation errors obtained from the converged solutions on
gridsΩh andΩH are also displayed and compared against theτ-extrapolation obtained onΩH

from a converged (DEC) and non-converged solutions (DEI). The first comment, common to the
two mesh topologies, concerns the discretisation error obtained by solving Eq. 7 from a con-
vergedτ-estimation. It can be seen that theτ-extrapolation procedure improves substancially the
accuracy of the discretised solution. The extrapolated discretisation errors are at least two orders
of magnitude smaller than the discretisation error obtained from the initial problem solved onΩh.
This can be easily explained by remarking that the second term of the Taylor expansions associ-
ated to the central discretisations are of orderp+q = 4. Thus, from Eq. 7, the discretisation error
associated to Eq. 8 computed from a convergedτ-estimation is of orderp+ q = 4. The second
important comment is related to the discretisation error associated to the extrapolated problem
obtained with a dynamicτ-estimation approach. It can be seen that, as a natural consequence of
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the dynamicτ-estimation analysis, the same conclusions hold. When (A4) does not hold or if
the second term of Eq. 5 is neglected, then the discretisation error associated to the extrapolated
problem Eq. 8 reaches its converged value at a rate of convergence proportional to||ǫhit ||L2, so
that no special gain is obtained. However, if (A4) holds, it can be seen that the discretisation
error associated to Eq. 8 reaches its converged value at a rate proportional to||ǫhit ||

2
L2

, therefore
validating Eq. 7.

x
0 0.2 0.4 0.6 0.8 1

Uniform grids

Distorted grids

Figure 1: 1D Burgers’ equation, uniform and distorted grids.
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Figure 2: 1D Burgers’ equation, uniform grid. (a): Analysisof dynamic truncation error accuracy and (b) dynamic
τ-extrapolation.
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Figure 3: 1D Burgers’ equation, distorted grid. (a): Analysis of dynamic truncation error accuracy and (b) dynamic
τ-extrapolation.
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3.2. Two-dimensional non-linear test case

The analysis performed for one-dimensional equations was extended in this section to two-
dimensional problems. The analysis of Sec. 2 does not make any assumptions on the dimension-
ality of the problem. However, it states that the discretisation and truncation error have the same
formulation both on coarse and fine mesh, requiring some consistency in the topology of both
grids. Therefore, under the assumption of topologically similar grids, we indicate in this section
that the extension to two-dimensional partial differential equations is straightforward.

As in the previous case, the two-dimensional forced Burger’s equation is studied,

−∆u+ uux = f + b.c (21)

whereb.c represents boundary conditions. We considered the following test function and bound-
ary conditions:

{

f (x, y) = 52 cos(4x+ 6y) − 4 sin(4x+ 6y) cos(4x+ 6y)
u(x, y) = uex(x, y),∀(x, y) ∈ Ω = [0, 1]2

(22)

This problem has the following exact solution:

uex(x, y) = cos(4x+ 6y).

Similarly to the one-dimensional case, Eq. 21 is solved using a second-order spatial scheme.
A finite difference method associated with a second-order accurate central scheme for the com-
putation of the first and second derivatives was considered so that (A1) and (A2) hold with
p = q = 2 for the uniform grids andp = q = 1 for the distorted grids (see Appendix A). In order
to restrict the solution from fine to coarse grid, an injection operator has been used so that (A3)
holds withs = ∞. Finally, at convergence, it follows that11−ρpτ

H
h − τ

H ∼ O(h4) for the uniform

and 1
1−ρpτ

H
h − τ

H ∼ O(h2) for the distorted grids (see Appendix A and Fraysseet al. [20]). In
order to study the influence of the iteration error, the steady-state solution was reached using a
Runge-Kutta relaxation scheme and a multigrid strategy.

We focused the analysis on the influence of the restriction operator acting on the fine grid
residualIH

h , for different mesh distributions: uniform and distorted grids. These grid distribu-
tions follow Eq. 19-20 and are represented in Fig. 4 (coarse and embedded fine grids). Note
that in order to keep an accurate finite difference formulation, the distorted grid case only used a
perturbation in they-direction.

Similarly to the precedent case, our aim was to validate Eq. 6and Eq. 8. In order to do so, we
solved Eq. 21-22 on 65× 65 grids using the two aforementioned topologies. At each multigrid
cycle, the truncation error estimation Eq. 5 has been computed and added as a source term in the
extrapolated problem Eq. 8. The results and conclusions obtained for the one-dimensional prob-
lem hold for the two-dimensional test case (see Fig. 5-6). Ifthe second term of Eq. 5 is neglected
or restricted with an operator which does not satisfy (A4), then the quantity||τHh (ũh)− τHh (uh))||L2

decreases at a rate proportional to||ǫhit ||L2, thus does not yield a substantial gain. However, ifIH
h

is constructed such that (A4) holds, then||τHh (ũh)−τHh (uh))||L2 decreases quadratically with the it-
eration error, validating Eq. 6. As a consequence, theτ-extrapolation from dynamicτ-estimation
follows the same tendency.
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Figure 4: 2D Burgers’ equation, (a): uniform and (b): distorted grids.
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Figure 5: 2D Burgers’ equation, uniform grid. (a): Analysisof dynamic truncation error accuracy and (b) dynamic
τ-extrapolation.
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Figure 6: 2D Burgers’ equation, distorted grid. (a): Analysis of dynamic truncation error accuracy and (b) dynamic
τ-extrapolation.
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4. Numerical experiments on two-dimensional Euler equations

We finished our study by performing an analysis of the dynamictruncation error estimation
and extrapolation on the two-dimensional Euler equations,as follows:

∂U
∂t
+
∂F
∂x
+
∂G
∂y
= S (23)

with
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
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
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
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and

p = (γ − 1)

(

ρE −
ρ(u2 + v2)

2

)

(24)

A source termS is added such that the following chosen analytic solution satisfies the gov-
erning equations:

ρ(x, y) = 1+ cos(2xy)

u(x, y) = (2+ cos(4x) − sin(6y))/10

v(x, y) = (2+ cos(4x) + sin(6y))/12

p(x, y) = 1+ cos(2x) + sin(y) (25)

We solved Eq. 23 and Eq. 24 on quad- and triangle-based geometries using the node-based fi-
nite volume DLR TAU-Code [24]. DLR TAU-Code solves the Reynolds Averaged Navier-Stokes
equations on unstructured hybrid grids by employing a second-order finite volume discretisa-
tion. The multigrid strategy implemented in TAU uses the full approximation scheme algorithm
to compute the correction term on the coarse grids. The coarse grids are obtained by agglom-
eration of the fine grid dual cells (control volumes obtainedby joining the barycenters of all
connected elements). When the primary grid is composed of quadrilaterals (or hexahedrons for
3D computations), then the advanced front method is capableof agglomerating 4 quadrilaterals
(8 hexahedrons) to create a coarse quadrilateral (hexahedron), as in a structured solver. However,
when the primary grid is unstructured, the agglomeration algorithm creates coarse grid elements
that do not necessarily maintain the fine grid characteristics. In the context of multigrid, this
situation is not a strong limitation, particularly in TAU, where the coarse grid fluxes are com-
puted with a first-order accuracy. However, in the context oftruncation error estimation, as we
discussed earlier, it is of importance that the truncation error is identical between fine and coarse
grids (see Fraysseet al. [20]). This goal clearly cannot be accomplished if the elements differ
from fine to coarse mesh. To circumvent this issue and to obtain estimations of the truncation
error for unstructured grids, in the following analysis, the fine mesh (where the flow solution is
actually computed) was obtained from the coarse mesh by bisecting all of the edges. In this way,
all coarse grid vertices also belong to the fine grid so that this method allows the use of injection
to restrict the solution from fine to coarse grids.
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Eq. 23 and Eq. 24 have been discretised using the Jameson-Schmidt-Turkel second order
scheme [25], so that we expect Eq. 6 to hold withp = 2, q = 1, s = ∞. The geometries em-
ployed in this study follow the distributions of Eq. 19-Eq. 20 with 65 nodes in each direction (see
Fig. 7). Similarly to the previous one- and two-dimensionaltest cases, we studied the dynamic
τ-estimation andτ-extrapolation as a function of the magnitude of the iteration error. Truncation
error maps, exact and estimates can be seen in Appendix A. Letus detail the procedure in the
case that (A4) holds.

For convenience, we rewrite Eq. 5

τHh = (AH(ÎH
h ũh) − f H) −

∂AH

∂uH

∣

∣

∣

∣

∣

∣

ÎH
h ũh

ÎH
h

(

∂Ah

∂uh

∣

∣

∣

∣

∣

∣

ũh

)−1

(Ah(ũh) − f h)

= T1 + T2 (26)

While T1 can be easily computed, in order to avoid explicit inversionof the Jacobian matrix,
T2 is computed in this way:

• Solve the linear system:
∂Ah

∂uh

∣

∣

∣

∣

∣

∣

ũh

φh
1 = A

h(ũh) − f h

• Restrictũ andφh
1 usingÎH

h

• Multiply by coarse grid JacobianT2 =
∂AH

∂uH

∣

∣

∣

∣

∣

∣

ÎH
h ũh

ÎH
h φ

h
1

In the current analysis, the linear system is solved using the GMRES/ILU routines from
the PETSc package [31] using an exact representation of the Jacobian matrix associated to the
Jameson-Schmidt-Turkel scheme, already implemented intothe DLR TAU-Code. Due to the
computational cost, the simulations have been performed for selected solver tolerances
(0.5, 0.1, 0.05, 0.01,0.005, 0.001), instead of at each multigrid cycle for the previous cases. How-
ever, as we shall see in the following, this is sufficient in order to verify Eq. 6 and Eq. 7.

Similar conclusion of previous tests are obtained (see Fig.8-11): if the second term of
Eq. 5 is neglected or restricted with an operator which does not satisfy (A4), then the quantity
||τHh (ũh) − τHh (uh))||L2 decreases at a rate proportional to||ǫhit ||L2, thus does not yield a substantial
gain. However, ifIH

h is constructed such that (A4) holds, then||τHh (ũh) − τHh (uh))||L2 decreases
quadratically with the iteration error, validating Eq. 6. As a consequence, theτ-extrapolation
from dynamicτ-estimation follows the same tendency.
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Figure 7: Euler equations, (a): quad-based uniform, (b): triangle-based uniform, (c): quad-based distorted and (d):
triangle-based distorted grids.
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Figure 8: 2D Euler equations, quad-based uniform grid. (a):Analysis of dynamic truncation error accuracy and (b)
dynamicτ-extrapolation.
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Figure 9: 2D Euler equations, quad-based distorted grid. (a): Analysis of dynamic truncation error accuracy and (b)
dynamicτ-extrapolation.
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Figure 10: 2D Euler equations, triangle-based uniform grid. (a): Analysis of dynamic truncation error accuracy and (b)
dynamicτ-extrapolation.
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Figure 11: 2D Euler equations, triangle-based distorted grid. (a): Analysis of dynamic truncation error accuracy and (b)
dynamicτ-extrapolation.
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5. Conclusions

Dynamicτ-estimation has been successfully performed on finite difference solvers as well as
in a finite volume solver on uniform and distorted grids. Conditions on the order of accuracy of
the restriction operators and the magnitude of the iteration error to ensure accurate estimations
have been derived and verified numerically on the scalar Poisson equation and on Euler equa-
tions. In this approach, a special attention has been paid tothe use of non-converged solutions
to estimate the truncation error in the early stages of the iterative procedure. The results demon-
strated that if the restriction operators are chosen carefully, then the accuracy of the estimation
increases quadratically with the decreasing of the iteration error. Otherwise, the estimation is ac-
curate as long as the magnitude of the iteration error remains lower than the truncation error. In
this paper, a direct application is presented, dynamicτ-extrapolation, and we demonstrated that
it can be performed from a non-convergedτ-estimation. The latter conclusion is of importance
as for a given accuracy, important savings in terms of computational time may be obtained.

Appendix A. Accuary of τ-estimation and τ-extrapolation approaches

We analysed the magnitude of the error in the estimation as the mesh spacing is reduced for
the 1D and 2D scalar problems when the solution is converged.In this aim, a set of successively
refined grids was built fromimax = 9 to imax = 65, by performing edge bisection both for
uniform and distorted grids, thus following the requirements of Oberkampf [29] for asystematic
grid refinementstudy.

TheL2 norm of the discretisation error, the exact truncation error and the error in the estima-
tion || 1

1−ρpτ
H
h − τ

H ||L2 have been computed and are reported in Fig. A.12-A.13 for uniform and
distorted grids and for both 1D and 2D Burgers’ equations.

When the second order discretisation is used in conjunctionwith injection to restrict the
solution, Eq.6 holds withp = q = 2 on uniform grids. Then, the error in the estimation is of the
order of min(s, p+ q). When injection is used to transfer the solution from fine tocoarse mesh,
s = ∞ and the estimation is accurate. However, when the second-orders = 2 operator is used,
the estimation of the local truncation error is no longer accurate because the exact truncation
error for this specific problem is also of the order of two.

In the case of distorted grids, the discretisation error maintains a second order accuracy while
the truncation error drops to first order accuracy, which is aknown issue of the discretisation on
bad quality meshes (see Katz [32]). In this case, as can be seen in Fig.A.12(b) and Fig.A.13(b)
for 1D and 2D scalar problems respectively, when an accuraterestriction operator is used (e.g.
injection), the error in the estimation drops to second order which is one order of magnitude
higher than the exact truncation error itself.
τ-extrapolation results are shown in Fig.A.14 and Fig.A.15 for the 1D and 2D scalar equa-

tions and for uniform and distorted grids. The discretisation error is computed both for the initial
problem and the extrapolated problem where the truncation error estimate is added as a source
term to the original equations. The tendency follows the previous analysis: when a second or-
der restriction operator is used to compute the truncation error estimate, then no particular gain
can be obtained, whereas if injection is used, the extrapolated problems reaches a fourth order
accuracy.

The extension to system of equations is straightforward, and truncation error maps for all
conservative equations of the MMS problem are displayed in Fig.A.16, using a 9× 9 triangle-
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based distorted grid. It can be seen that, even for this very bad quality grid, the shape of the
truncation error is well predicted.
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Figure A.12:||.||L2 of the DE, TE and error in the TE estimate for 1D (a): uniform, (b): distorted grids.
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Figure A.13:||.||L2 of the DE, TE and error in the TE estimate for 2D (a): uniform, (b): distorted grids.
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Figure A.14:||.||L2 of the DE and extrapolated DE for 1D (a): uniform, (b): distorted grids.
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Figure A.15:||.||L2 of the DE and extrapolated DE for 2D (a): uniform, (b): distorted grids.
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Figure A.16: Truncation error contours for the Euler MMS problem. Left column: exact, and right column: estimation
of the truncation error. Rows: continuity, x- and y-momentum and energy equation respectively.

29



References

[1] C. J. Roy,Review of discretisation error estimators in scientific computing, AIAA Paper 2010-126, 2010
[2] L. F. Richardson,The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving

Differential Equations, with an Application to the Stresses in aMasonry Dam, Transactions of the Royal Society
of London, Series A, Vol. 210, pp. 307-357, 1910.

[3] W. Briggs, V. E. Henson, S. McCormick,A Multigrid Tutorial, second edition, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2000
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