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Abstract In this work, we present an anisotropic p-adaptation multigrid algorithm
for discontinuous Galerkin methods for steady-state problems that uses a p-multigrid
scheme both as a solver and as an anisotropic error estimator. To achieve this, we
develop a new anisotropic truncation error estimator based on the tau-estimation
method, that can be evaluated inside the multigrid cycle with a negligible extra cost.
The new error estimator is cheaper to evaluate and more accurate than previous
versions of the tau-estimation procedure. In our technique, a non-converged solution
in a reference mesh is used to estimate the truncation error with the multigrid
scheme for different combinations of polynomial orders in different directions inside
every element, and the mesh is adapted accordingly to target a desired truncation
error threshold. The accuracy and computational cost of the proposed p-anisotropic
adaptation algorithm is tested for the steady viscous flow past a NACA0012 airfoil.
A speed-up of 16 can be achieved in the proposed numerical example compared with
the uniformly refined simulation without multigrid.

Key words: High-order discontinuous Galerkin, Anisotropic p-adaptation, Multi-
grid

1 Introduction

In recent decades, high-order discontinuous Galerkin (DG) methods have been gain-
ing increasing popularity for high-accuracy solutions of systems of conservation
laws, such as the compressible Euler and Navier-Stokes equations [6, 22, 3]. The
lack of a continuity constraint on element interfaces makes DG methods robust for
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describing advection-dominated problems when an appropriate Riemann solver is
selected [22, 3, 11].

Multigridmethods speed up the iterative solution of large systems of equations us-
ing coarse-grid representations (lower levels). Iterativemethods (known as smoothers
in the multigrid community) are good at eliminating the high frequencies of the error
fast; therefore, when applied to coarse-grid representations, they also reduce the low
frequencies of the error. They have been broadly used in the high-order community
in recent years in the form of p-multigrid [8, 5] (where levels are constructed using
different polynomial orders) and hp-multigrid [21, 14] (where both the order and size
of the elements are changed). Two types of multigrid methods can be found in the
literature: linear and nonlinear multigrid. In our work, we make use of the nonlinear
multigrid scheme, also known as the Full Approximation Scheme (FAS), since it
enables the estimation of the truncation error of coarse representations, as will be
shown. The smoother can be either a time-marching scheme (implicit or explicit), or
an iterative method applied to the linearized problem.

Because of the allowed discontinuities on element interfaces, DG methods are
capable of handling non-conforming meshes with hanging nodes and/or different
polynomial orders efficiently [15, 13, 7]. It is possible to take advantage of this
feature to accelerate the computations through local adaptation strategies. Local
adaptation can be performed by subdividing or merging elements (h-adaptation) or
by enriching or reducing the polynomial order in certain elements (p-adaptation).
The main idea behind these methodologies is to reduce the number of degrees of
freedom (NDOF) while maintaining a high accuracy, which translates into shorter
computational times and reduced storage requirements. Furthermore, since several
2D and 3D implementations of the DGmethods use tensor-product basis functions, it
is possible to adapt the polynomial order in each coordinate direction independently.
In order to identify the localized regions that need increased or decreased accuracy,
an error estimator is commonly used.

There are several approaches to estimate the error and drive an adaptationmethod.
In this work, we focus on truncation error estimates since it has been shown that a
reduction of the truncation error controls the numerical accuracy of all functionals
[10], hence reducing the truncation error necessarily leads to a more accurate lift and
drag. The τ-estimationmethod [2] is away to estimate the truncation error locally that
has been used to drive mesh adaptation strategies in low-order [9, 20] and high-order
methods [17, 10, 18]. The adaptation strategy consists in converging a high order
representation (reference mesh) to a specified global residual and then performing a
single error estimation followed by a correspondingmesh adaptation process. Rueda-
Ramírez et al. [19] developed a new method for estimating the truncation error of
anisotropic representations that is cheaper to evaluate than previous implementations,
and showed that it produces very accurate extrapolations of the truncation error,
which enables the use of coarser reference meshes.

In this work, we employ the anisotropic truncation error estimator developed
in [19] and the anisotropic p-adaptation method detailed in [18] to accelerate the
computation of the compressible steady viscous flow past a NACA0012 at angle
of attack 5o, Re∞ = 200 based on the airfoil chord, and M∞ = 0.2. This particular
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settings correspond to a steady laminar flow, but the proposed method can be directly
used with any steady solution (e.g. RANS). The paper is organized as follows: In
section 2, we briefly describe themethods used in this paper. In section 3, we compare
the performance of the proposed methods with traditional strategies for solving the
flow past a NACA0012 and show the speed-up advantages for different accuracies.
Finally, the conclusions are summarized in section 4.

2 Methods

2.1 DG Method

We consider the approximation of systems of conservation laws,

∂tq + ∇ ·F = s, (1)

where q is the vector of conserved variables, F is the flux dyadic tensor, and s
is a source term. The domain Ω is partitioned in a mesh T = {e} consisting of
K non-overlapping elements Ωe. Multiplying equation (1) by a test function v and
integrating by parts over each subdomain Ωe yields the weak formulation:∫

Ωe

∂tqvdΩe −

∫
Ωe

F · ∇vdΩe +

∫
∂Ωe

F · nvdσe =

∫
Ωe

svdΩe . (2)

Let q, s, F and v be approximated by piece-wise polynomial functions defined in
the space of L2 functions: V N = {vN ∈ L2(Ωe) : vN |Ωe ∈ PN (Ωe) ∀ Ωe ∈ T },
where PN (Ωe) is the space of polynomials of degree at most N . The functions in
V N can be represented in each element as a linear combination of basis functions
φN
i ∈ PN (Ωe) (e.g. qN |Ωe =

∑
i QN

i φ
N
i ), where φN

i are usually tensor product
expansions. After some manipulations, the discontinuous Galerkin finite element
discretization system is obtained:

[M]∂tQN + F(QN ) = [M]SN, (3)

where [M] is the mass matrix and F is a nonlinear operator, which are the assembled
global versions of the element-wise mass matrices and nonlinear operators:

[M]ei, j =
∫
Ωe

φiφ jdΩe, (4)

Fe(Q)j =
NDOFe∑
i=1

[
−

∫
Ωe

FFF e
i · φi∇φ jdΩe

]
+

∫
∂Ωe

F ∗N (Q,Q−, n) φ jdσe, (5)

whereFFF e
i is the i

th position of the vectorFFF e, which contains the value of F e for all
the degrees of freedom of element e. In the rest of this paper, bold uppercase Roman
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letters and bold Greek letters are used to note vectors spanning several degrees of
freedom, unless specified.

The numerical flux function F ∗ allows to uniquely define the flux at the element
interfaces and to weakly prescribe the boundary data as a function of the conserved
variable on both sides of the boundary/interface and the normal vector. In the present
work, we use Roe [16] as the advective Riemann solver and Bassi-Rebay 1 [4] as the
diffusive Riemann solver.

2.2 Full Approximation Scheme p-Multigrid

TheFullApproximation Scheme (FAS) is a nonlinear version of themultigridmethod
that is specially suited to solve systems of nonlinear equations [2]. Departing from
equation (3) and defining the operator A(QN ) = [M]−1F(QN ), the steady-state
problem of order P yields

A(QP) = SP . (6)

After β1 sweeps of a smoother, a non-converged solution Q̃P is obtained that
has an associated discretization error εεεP = QP − Q̃P . The FAS multigrid procedure
consists in obtaining an approximation to the discretization error in a coarse grid of
order N and projecting it to the original problem of order P:

εεεP = IPNεεε
N = IPN (Q

N − INP Q̃P), (7)

where IPN is an L2 projection operator N → P and QN is the solution to the
coarse-grid problem:

AN (QN ) = SN, (8)

where the source term is defined as

SN = AN (INP Q̃P) + INP
(
SP − AP(Q̃P)

)
. (9)

In practice, several p-multigrid levels are used in V- or W-cycles. The smoothing
steps that are performed when coarsening are called pre-smoothing sweeps, and the
ones performed when refining back are called post-smoothing sweeps. Furthermore,
QN is not obtained exactly in the coarse grids, but approximated using an iterative
method Q̃N → QN . In this work, we use a third order low-storage Runge-Kutta
(RK3) as the smoother and V-cycles.

2.3 τ-Based p-adaptation

In this section we show how to drive an anisotropic p-adaptation procedure using
the truncation error, which is estimated in the multigrid procedure.
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2.3.1 The Anisotropic τ-Estimation Method

The non-isolated truncation error of a discretization of order N is defined as

τN = RN (INq) − R(q), (10)

where q is the exact solution to the problem, IN is a discretizing operator, R is the
continuous partial differentiation operator, and RN is the discrete partial differenti-
ation operator. From equations (1) and (3):

R(q) = s − ∇ ·F , (11)

RRRN (IIINq) = [M]SN − F(IIINq), (12)

where IIIN is an operator that samples the exact solution on the points that correspond
to the degrees of freedom of a representation of order N , and therefore equation (12)
corresponds to the sampled values of RN (INq).

Note that in steady cases, R(q) = 0 holds. Since the exact solution q is usually not
at hand, we utilize the quasi a-piori τ-estimation method, which approximates the
exact solution with the non-converged solution on a high-order grid q ≈ q̃P , where
N < P. Therefore, the steady non-isolated truncation error estimation yields

τNP = R
N (INP q̃P) → τττNP = RRR

N (INP Q̃P) = [M]SN − F(INP Q̃P). (13)

On the left side of the arrow is the estimation of the truncation error that lives in the
spaceV N , and on the right side is the sampled form of the truncation error estimation
on the points that correspond to the degrees of freedom. In a DG representation, one
can also define the isolated truncation error τ̂ as

τ̂̂τ̂τNP = R̂̂R̂R
N (INP Q̃P) = [M]SN − F̂(INP Q̃P), (14)

where F̂ is the assembled version of the isolated nonlinear operator, defined elemen-
twise as

Fe(Q)j =
NDOFe∑
i=1

[
−

∫
Ωe

FFF e
i · φi∇φ jdΩe

]
+

∫
∂Ωe

F N · nφ jdσe . (15)

Note that equation (15) is (5) without substituting F by the numerical flux F ∗.
This change eliminates the influence of the neighboring elements and boundaries on
the truncation error of each element. We drop the hat notation in the next statements
since they are valid for both the isolated and non-isolated truncation error.

The τ-estimation method can also be used with anisotropic representations, i.e.

τN1N2
P1P2

= RN1N2 (IN1N2
P1P2

q̃P1P2 ), (16)

where Ni and Pi are the polynomial orders in the direction i of the analyzed repre-
sentation and the high-order reference solution, respectively, where Ni < Pi . Addi-
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tionally, Rueda-Ramírez et al. [19] showed that the truncation error of an anisotropic
representation can be estimated using directional components:

τN1N2 ≈ τN1N2
1 + τN1N2

2 ≈ τN1P2
P1P2

+ τP1N2
P1P2

, (17)

where the directional components in discrete form are therefore,

τττ1 = τττ
N1P2
P1P2

= [M]SN1P2 − [M]A(IN1P2
P1P2

Q̃P1P2 ), (18)

and that these directional components decrease exponentially with the polynomial
order in smooth solutions. Consequently, it is possible to use a semi-converged
solution q̃P1P2 to estimate τN1N2 (Ni < Pi) and then extrapolate the directional
components τi to obtain the values of τN1N2 for Ni > Pi . Fig 1(a) shows a graphical
representation of the truncation error τN1N2 as estimated with a semi-converged
solution of order P1 = P2 = 5.

2.3.2 The p-Adaptation Multigrid Scheme

It has been shown that the use of FAS p-multigridmethods speeds up the computation
of steady-state and unsteady solutions of the compressible Navier-Stokes equations
[5, 8]. In addition, Rueda-Ramírez et al. [18] showed that the truncation error of
an anisotropic representation can be inexpensively obtained inside an anisotropic
p-multigrid cycle that performs the coarsening in one coordinate direction at a time.
In fact, the second term of equation (18) is naturally computed in an anisotropic
multigrid for obtaining the coarse-grid source term (equation (9)).

Therefore, we propose a p-adaptation multigrid scheme that makes use of the
multigrid as a solver, but also as an error estimator. Every time the error is estimated,
an anisotropic p-multigrid strategy is used to generate a truncation error map for
each element, like the one in Fig 1(a). Afterwards, the polynomial orders in the
different coordinate directions are selected for each element, such that a truncation
error threshold τmax is achieved with the minimum NDOF possible, as illustrated in
Fig. 1(b). In the simulations shown in this paper, the reference representation, q̃P , is
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converged to a residual τmax/10 before the p-adaptation stage, so that the truncation
error is accurately estimated down to τmax, as was shown necessary by Kompenhans
et al. [10].

3 Flow Past a NACA0012 Airfoil

In this section, we compare the performance of the proposed p-adaptation multigrid
scheme with a uniformly adapted p-multigrid method (without local p-adaptation)
and a uniformly adapted RK3 method when solving the steady viscous flow past a
NACA0012 airfoil at angle of attack 5o, Re∞ = 200 (L∞ = Lchord) and M∞ = 0.2.
This particular settings correspond to a steady laminar flow, but the proposedmethod
can be directly used with any steady solution (e.g. RANS). An unstructured mesh of
2011 quadrilateral elements is employed (Fig. 2).

In the cases where multigrid is employed, the RK3 scheme is used as the itera-
tive method (smoother), so that additional speed-ups are only due to the methods
exposed in section 2. As in [18], a residual-based smoothing strategy is performed.
The minimum number of smoothing sweeps is β = 200 for the coarsest multigrid
level (N = 1) and β = 50 for any other level. After every β pre-smoothing sweeps, the
residual in the next (coarser) representation is checked. If



RN



∞
< 1.2



RN−1



∞
,

the pre-smoothing is stopped; otherwise, β additional sweeps are performed. Sim-
ilarly, the norm of the residual after the post-smoothing is forced to be at least as
low as it was after the pre-smoothing,




RN
post





∞
≤



RN
pre




∞
. If that condition is not

fulfilled, additional β sweeps are taken until it is.
The isolated truncation error estimate is used to drive the p-adaptation method

since it has been shown to provide better results than the non-isolated one [17, 18, 19].
The conservative form (equation (1)) of the compressible Navier-Stokes equations is
discretized using the Discontinuous Galerkin Spectral Element Method (DGSEM)
[1, 11], which is a nodal (collocation) version of a DGmethod that uses Gauss points
as the solution nodes and quadrature points, obtaining diagonal mass matrices.
However, the methods that are exposed here can be applied to any DG scheme with
tensor-product basis functions.

In [18] it was explained that, when using the DGSEM in general 3D curved
meshes and p-nonconforming representations, the order of the mapping must be at
most M ≤ N/2 for the numerical representation to be free-streampreserving. For this
reason, the use of a conforming algorithmwas proposed, which forces the polynomial
orders to be conforming in the first layer of elements on a curved boundary. The use
of a conforming algorithm is necessary to retain the well-known M ≤ N condition
of the DGSEM [12]. In this work, we use the conforming algorithm on the airfoil
surface since it showed to produce better results, although its use is not imperative
as the considered test case is 2D.

For the uniformly adapted cases, the polynomial order is varied between N = 2 and
N = 7. For the cases with local p-adaptation, a single-stage anisotropic p-adaptation
procedure is performed, and the minimum polynomial order after adaptation is set to
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Fig. 2 Pressure contours of the flow past a NACA0012 at angle of attack 5◦.

Nmin = 1, whereas themaximumpolynomial order after adaptation is set to Nmax = 7.
The relative drag and lift errors of the adapted meshes are assessed by comparing
with a reference solution of order N = 8:

eN=8
drag =

|Cd − CN=8
d
|

CN=8
d

, eN=8
lift =

|Cd − CN=8
l
|

CN=8
l

. (19)

Fig. 3 shows a comparison between the errors obtained using the τ̂-based adap-
tation procedure and the ones using uniform p-refinement. As can be observed, the
number of degrees of freedom is substantially reduced for the same accuracy when
using the τ̂-based p-adaptation. This reduction translates into a reduction of the
CPU-times. It is interesting to point out that, as the isolated truncation error thresh-
old τ̂max is decreased, the polynomial orders of the mesh tend to the maximum
specified polynomial order, Nmax = 7. Consequently, the lift and drag coefficients
also tends to CN=7

l
. Using Fig. 3, it is possible to compute a speed-up for different

levels of accuracy. Table 1 summarizes the speed-up calculations for the maximum
level of accuracy that was achieved for the drag and lift coefficients.

Table 1 Computation times and speed-up for the different methods after converging until ‖r‖∞ <
10−9

Drag coefficient (edrag ≤ ×4.1 × 10−5) Lift coefficient (elift ≤ 2.4 × 10−5)
Method CPU-time[s] Time [%] Speed-up CPU-time[s] Time [%] Speed-up
RK3 1.95 × 107 100.00% 1.00 1.95 × 107 100.00% 1.00
FAS 2.36 × 106 12.10% 8.26 2.36 × 106 12.10% 8.26
FAS + p-adaptation 1.21 × 106 6.20% 16.13 1.48 × 106 7.58% 13.19

Fig. 4 shows the distribution of polynomial orders after the single-stage adaptation
procedure for a threshold of τmax = 5 × 10−4, which has related errors of eN=8

drag =

4.10 × 10−5 and eN=8
lift = 7.31 × 10−5. As can be observed, the elements that are
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Fig. 3 Relative error in the drag and lift coefficients for different methods for the flow past the
NACA0012 airfoil. The blue lines represent uniform refinement, and the red lines represent the
τ̂-based p-adaptation procedure with Nmax = 7.
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Fig. 4 Polynomial order distribution after the anisotropic p-adaptation. Naverage = (N1 + N2)/2.

enriched are mainly the ones on the boundary layer (specially leading and trailing
edge), and the zones of the wake where the element size changes significantly.
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4 Conclusions

In this work, we have applied recently developed error estimators and anisotropic
p-adaptation methods in conjunction with multigrid solving strategies for solving the
compressible Navier-Stokes equations. In particular, we have shown that the coupling
of anisotropic truncation error-based p-adaptationmethodswith p-multigrid schemes
can speed up the computation of steady-state solutions of PDEs. The achieved speed-
up depends on the desired accuracy, being this method optimal when high accuracy
is required (low errors). In particular, a speed-up of 16.13 was achieved for the
computation of the steady compressible viscous flow past a NACA0012 airfoil at
angle of attack 5◦ with respect to the uniformly adapted representation without
multigrid.
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