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AbstractWe present a multiphase model for incompressible flows of two immiscible
fluids. Our model solves one shared set of incompressible Navier–Stokes equations
for the two phase flow and an additional equation: the Cahn–Hilliard equation, for the
evolution of the two fluids distribution. The introduced model is discretised in space
using a high–order Discontinuous Galerkin Spectral Element Method (DGSEM).
Time discretisation is performed by means of an efficient implicit–explicit approach
that enables to maintain the time step restriction of a typical one phase Navier–
Stokes solver. We show the validity and efficiency of our model and implementation
in two classical two-dimensional test cases: the spinodal decomposition and the
rising bubble.

1 Introduction

Multiphase flow is not a canonical problem, therefore different models can be found
in the literature. VolumeOf Fluid (VOF)model [9] is amongst the simplest. It defines
a single set of momentum equations shared by all phases, whilst the volume fraction
(fraction of a particular infinitesimal control volume which is occupied by each
phase) is tracked throughout the domain following an advection equation. Phase-field
methods [11] conserve the simplicity of VOF whilst increasing the physical meaning
of the evolution equation of the fluids present in the simulation. The volume fraction
is substituted by a phase-field parameter, which identifies each phase. In this work,
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the Cahn–Hilliard equation [4] is chosen to model the evolution of the phase-field
parameter.

The introduced model is discretised in space using a high–order discontinuous
Galerkin method. These methods have been gaining popularity for the discretisation
of conservation laws, such as the Navier-Stokes equations [5, 6, 7, 13, 16, 20, 24].
Specifically, we use a Discontinuous Galerkin Spectral Element Method (DGSEM)
[2] that allows the generation of provably stable schemes [8]. These schemes pro-
vide enhanced robustness when compared to classical high–order methods [17]. As
far as the temporal discretisation is concerned, we use an efficient implicit–explicit
approach that permits maintaining the time step restriction of a typical one phase
Navier-Stokes solver. It should be noticed that similar approaches to model multi-
phase flows have been proposed in the past, see for example [26], where an algorithm
to model N immiscible incompressible fluids with high–order methods is described.
However, according to the authors knowledge, this is the first implementation using
the DGSEM.

The rest of the paper is organised as follows: in Section 2 the governing equations
of the model are described. In Section 3 the numerical techniques to discretise the
described model are introduced. Finally, in Section 4 the results of two validation
test cases are shown.

2 Governing equations

In this work we model multiphase flows with a phase field approach. The flow field
is modelled by means of the incompressible Navier–Stokes equations. The evolution
of each of the fluids is modelled with the Cahn–Hilliard equation, which defines a
phase field variable, φ ∈ [−1, 1], that identifies spatial coordinates occupied by fluid
1, φ = −1, fluid 2, φ = 1, or an interface φ ∈ (−1, 1). The value of the thermodynamic
properties of the fluids at each spatial coordinate can be computed as:

ρ(φ) = ρ1

(
1 − φ

2

)
+ ρ2

(
1 + φ

2

)
, η(φ) = η1

(
1 − φ

2

)
+ η2

(
1 + φ

2

)
, (1)

where ρi is the density of fluid i whilst ηi is the dynamic viscosity of fluid i. The
complete system is built considering first the momentum equation,

∂ (ρv)
∂t
+∇·(ρvv) = −∇p+

1
Re
∇·

(
η

(
∇v + ∇vT

))
+

3
√

2εReCa
µ∇φ+

1
Fr2 ρeg, (2)

with velocity v, static pressure p, Reynolds number Re = ρ1u0L
η1

(where uo is a
reference velocity whilst L is a reference length), Capillary number Ca = η1u0

σ
(where σ represents the surface tension), Froude number Fr = u0√

gL
, (where g

is the gravity acceleration) and eg is the gravity direction. Second, an artificial
compressibility method [23] is used to couple the divergence–free condition,
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∂p
∂t
+
ρ0
ρ1

1
M2

0
∇ · v = 0, (3)

where ρ0 = max (ρ1, ρ2) is a reference density, and M0 is the artificial compressibility
Mach number. Third, the Cahn–Hilliard equation for the phase field,

∂φ

∂t
+ ∇ · (φv) = M∇2µ, µ = −φ + φ3 − ε2∇2φ, (4)

with M the mobility, and ε the interface width, the two free parameters of the
model. In (2) and (4), µ represents the chemical potential. Moreover, this equation
is designed to minimize the free–energy functional [4], F ,

F (φ,∇φ) =

∫
Ω

(
1
4
(1 − φ)2 (1 + φ)2 +

1
2
ε2 |∇φ|2

)
dx. (5)

Note that the set of equations (2)-(4) is written in non–dimensional form, where the
thermodynamic variables of fluid 1 are taken as reference values, e.g.,

ρ(φ) =
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)
+
ρ2
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)
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)
. (6)

The set (2)-(4) can be written as an advection–diffusion system:

∂u
∂t
+ ∇ · F(u) = ∇ · Fv(u, g) + S(u, g), (7)

where u = (φ, ρv, p) is the state vector, g = (gφ, gv, gµ) = (∇φ,∇v,∇µ) is the
gradients vector, F(u) and Fv(u, g) are the inviscid and viscous fluxes respectively,
and S(u, g) is a source term,

F(u) =


φv

ρvv + pI3
ρ0
ρ1

1
M2

0
v

 ,Fv(u, g) =


gµ
η

(
gv + gTv

)
0

 , S(u, g) =


0
3

√
2εReCa

µgφ +
1

Fr2 ρeg

0

 .
(8)

3 Numerical methods

The numerical implementation of (2)–(4) is performed using a high–order discon-
tinuous Galerkin scheme for the spatial discretisation (DGSEM variant) and an
implicit–explicit Euler scheme for the time discretisation.
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3.1 Spatial discretisation using a nodal discontinuous Galerkin scheme
(DGSEM)

Discontinuous Galerkin (DG) schemes (see [15]) are constructed by tessellating
the domain in non–overlapping elements, where the solution is approximated using
polynomials of an arbitrary order, N . In this particular implementation, we use a
nodal variant of the DG method, and we restrict ourselves to hexahedral elements.

In each element we approximate the solution using polynomials written in a set
of local spatial coordinates ξ = (ξ, η, ζ) ∈ [−1, 1]3, which are related to the physical
space by a transfinite mapping,

x = (x, y, z) = X(ξ) = X (ξ, η, ζ) . (9)

Using the local coordinates, we write the solution using tensor product Lagrange
polynomials,

u(x)
��
E
≈ U(ξ) =

N∑
i, j,k=0

Ui jk(t)li(ξ)lj(η)lk(ζ), (10)

where the time–dependent coefficients Ui jk(t) are the nodal values of the solution
U, and lj(ξ) are the Lagrange polynomials based on a set of Gauss points {ξj}Nj=0.
To handle curvilinear geometries, we use a mapping X that transforms local and
physical spaces. With this mapping, we can construct covariant ai and contravariant
ai basis, and their associated Jacobian J, and metrics matrix M:

ai =
∂X(ξ)
∂ξi

, ai = ∇ξi =
1
J

aj×ak, J = ai ·
(
aj ∧ ak

)
, M = [Jaξ, Jaη, Jaζ ]. (11)

Following [14], we transform the system of equations (7) to local coordinates,

∂

∂t


Jφ
Jρv
Jp

 + ∇ξ ·


MTvφ
MT ρvv +MT pI3

MT 1
M0

2 v

 = ∇ξ ·


MMTgµ
1
ReM

T (
η

(
gv + gTv

) )
0


+J


0

1
Fr2 ρeg + 3√

2ReCaε
µgφ

0

 ,
(12)

with gradients,

Jgv =M∇ξv, Jgφ =M∇ξφ, Jgµ =M∇ξ µ, (13)

and the chemical potential definition,

Jµ = −Jφ + Jφ3 − ε2∇ξ ·
(
MTgφ

)
. (14)
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We obtain the DG scheme replacing the continuous solution by their polynomial
counterpart (10), thenmultiplying (12), written in compact form (7), by a polynomial
test function (with same order N as the solution) ϑ, and we integrate the result in
one element E = [−1, 1]3,∫

E

Jϑ
∂U
∂t
+

∫
E

ϑ∇ξ · F(U) =
∫
E

ϑ∇ξ · Fv(U,G) +
∫
E

JϑS(U,G). (15)

Next, we integrate by parts the terms containing divergences, which yields surface
integrals. Since the solution is discontinuous at the inter–element faces, we replace
the surface flux by a numerical flux, F?,∫
E

Jϑ
∂U
∂t
+

∫
∂E

ϑF?·n̂dS−
∫
E

∇ξϑ·F =
∫
∂E

ϑF?v ·n̂dS−
∫
E

∇ξϑ·Fv+

∫
E

JϑS(U,G),

(16)
where ∂E represents the six surfaces of the element E. For the inviscid numerical flux
F?, we use the exact Riemann solver derived in [1], whilst for the viscous numerical
flux we use the Symmetric Interior Penalty (SIP) method [19], with the penalty
parameter value derived in [22] and recently discussed for the DGSEM in [18].
In (16), n̂ is the surface outward normal vector in local coordinates. To obtain the
evolution equations for each nodal degree of freedomUi jk , we let ϑ = li(ξ)lj(η)lk(ζ),
and compute the integrals using the Gauss quadrature points (and weights {wi})
associated to the interpolation points (which provide an accuracy of 2N + 1),

Ji jk
dUi jk

dt
+

F?x
wi
(ξ, ηj, ζk)li(ξ)

����ξ=1

ξ=−1
+

F?y
wj
(ξi, η, ζk)lj(η)

����η=1

η=−1
+

F?z
wk
(ξi, ηj, ζ)lk(ζ)

����ζ=1

ζ=−1

−

N∑
m=0

(
wm

wi
DmiF

mjk
x +

wm

wj
DmjFimk

y +
wm

wk
DmkFi jm

z

)
=

F?i jkv,x

wi
(δiN − δi0) +

F?i jkv,y

wj
(δjN − δj0) +

F?i jkv,z

wk
(δkN − δk0)

−

N∑
m=0

(
wm

wi
DmiF

mjk
v,x +

wm

wj
DmjFimk

v,y +
wm

wk
DmkFi jm

v,z

)
+ Ji jkSi jk,

(17)

where Fi jk = F(Ui jk) and Fi jk
v = Fv(Ui jk,Gi jk), being Gi jk the nodal values of the

gradient G. The symbol δik represents the Kronecker delta. The derivation matrix
Di j is defined as Di j = l ′j (ξi). To compute the gradient G, we perform the weak
formulation of (13),∫

E

Jτ ·G =
∫
∂E

U?MT
· τdS −

∫
E

U∇ξ ·
(
MT
· τ

)
, (18)

where τ is an arbitrary vector test function (from the order N polynomials space).
Since we use the SIP method, we use solution averages to couple inter–element
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fluxes, U? = {{U}}. All the integrals involved in (18) are computed discretely similar
to those in (16), i.e.,

Ji jkτdijkGi jk
d
=

U?(ξ, ηj, ζk)Jaξ
d
(ξ, ηj, ζk)

wi
li(ξ)

����ξ=1

ξ=−1

+
U?(ξi, η, ζk)Jaη

d
(ξi, η, ζk)

wj
lj(η)

����η=1

η=−1
+

U?(ξi, ηj, ζ)Jaζ
d
(ξi, ηj, ζ)

wk
lk(ζ)

����ζ=1

ζ=−1

−

N∑
m=0

(
wm

wi
Jaξ,i jk

d
DmiUmjk +

wm

wj
Jaη,i jk

d
DmjUimk +

wm

wk
Jaζ,i jk

d
DmkUi jm

)
.

(19)

The gradient nodal values Gi jk
d

are introduced in the viscous fluxes Fv(Ui jk,Gi jk)

of (17) hence completing the discretisation of (16). Note that one needs to compute
gφ before computing µ and its gradient gµ.

3.2 Time integration using IMplicit–EXplicit (IMEX) and
Runge–Kutta schemes

The time integration of (17) is performed with a combination of forward and back-
wards Euler and explicit Runge–Kutta schemes. On the one hand, the Navier–Stokes
equations are integrated by means of a third order explicit Runge–Kutta (RK3)
scheme [25]. On the other hand, the Cahn–Hilliard equation is integrated with a
combination of explicit RK3 for the phase field advection, forward Euler for the
chemical free–energy, and backwards Euler for the interfacial energy,

φn+1 − φn

∆t
+ ∇ · (vφ)RK3 = ∇2

(
−φn + (φn)3 − ε2∇2φn+1

)
. (20)

The reason behind this choice, is that the numerical stiffness of the bi–Laplacian
(∇4φ) operator prevents from using an explicit method, as restricts the time–step ∆t
to unpractical values. We only treat implicitly the interfacial energy since it yields
a constant Jacobian matrix, represented by J∇2 . In particular, the linear system to
solve is, [

J∇2 +
I

∆t

]
φn+1 =

φn

∆t
− ∇ · (vφ)RK3 + ∇2

(
−φn + (φn)3

)
. (21)

The Jacobian matrix is computed numerically (see [3]) and a LU factorisation is
performed only at the first time step. In each following iteration, the RHS of (21)
is computed and the linear system is solved by means of forward and backward
substitutions. Both the LU factorisation and the forward and backward substitutions
are performed with the library MKL�PARDISO [21].
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4 Validation

The proposed methodology is tested with two test cases. First, the validity of the
discontinuous Galerkin discretisation of the Cahn-Hilliard equation is tested with a
benchmark spinodal decomposition problem [12]. Second, the validity of the coupled
Cahn-Hilliard / Navier-Stokes system is tested with a two dimensional rising bubble
test [10].

4.1 Spinodal decomposition

This test problem considers an initial mixture of two fluids. These fluids are immis-
cible, therefore they tend to separate to minimise their free energy (5). As stated
before, the geometry, initial condition and fluid parameters are taken from [12]. In
particular, the initial condition for this benchmark problem is:

φ(x, y) = −0.05
[
cos (0.105x) cos (0.11y) + [cos (0.13x) cos (0.087y)]2

+ cos (0.025x − 0.15y) cos (0.07x − 0.02y)] .
(22)

The physical domain is a “T” shape with a total height of 120 units, a total width
of 100 units, and horizontal and vertical section widths of 20 units (Fig. 1). No-flux
boundary conditions are applied at the boundaries. Following [12] mobility is set
to M = 10, whilst the interface width is set to ε = 3.16. The physical domain is
discretised with an unstructured mesh of 326 elements and a polynomial order of
N = 4. For the time discretization, we use a time step ∆t = 10−3.

Fig. 1 shows qualitatively how the different phases separate, whilst Fig. 2 shows
quantitatively the evolution of the total free energy with time. In Fig. 2 the results of
this work are compared with those obtained in [12], validating the proposed method.

Fig. 1 “T” domain for the spinodal decomposition. Initial condition (left figure) and evolution with
time (the right figure is the steady–state solution).
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Fig. 2 Evolution of total free energy (5) with time.

4.2 Rising bubble

This test case considers a bubble of light fluid submerged in a heavy fluid, both
subjected to a gravitational field. Following [10] the initial configuration, see Fig. 3,
consists of a bubble of radius r = 0.25 centred at [0.5, 0.5] in a [1 × 2] domain. A
no–slip boundary condition is used at the top and the bottom of the domain whilst
a free slip condition is enforced at the vertical walls. Following [10], the Reynolds
number is set to Re = 35 whilst σ and ε are set to 24.5 and 0.03125 respectively
(this gives a Eötvös number Eo = 10) whilst both density and viscosity ratios are
set to ρ1/ρ2 = µ1/µ2 = 10. The gravitational acceleration is g = 0.98. The problem
is discretised with 16 × 32 elements with a polynomial order of N = 4, and a time
step ∆t = 4 · 10−6.

This test case is quantitively compared with the results of [10] in Fig. 4 with
satisfactory results. It should be mentioned that the benchmark results of [10] are
obtained with a sharp-interface model which may explain the small disagreement in
the evolution of the center of mass shown in Fig. 4.

5 Conclusions

A method to model incompressible two phases flows is introduced. The model
solves the incompressible Navier–Stokes equations coupled with the Cahn–Hilliard
equation to track the evolution of the different fluids. The model is discretised in
space using a discontinuous Galerkin spectral element method (DGSEM) whilst an
efficient implicit–explicit approach is used to advance in time. The validity of the
model is shown with two test cases. A spinodal decomposition benchmark problem
is solved to validate the Cahn–Hilliard solver whilst a rising–bubble test problem is
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Fig. 3 Initial condition of the
rising bubble test problem.

Fig. 4 Evolution of the center of mass of the bubble with time.

solved to validate the coupled Cahn–Hilliard–Navier–Stokes system. Both test cases
are solved showing good agreement with the literature, and proving the accuracy
and robustness of the proposed method.
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