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Abstract We present implicit Large Eddy Simulations for NACA0012 airfoils
at various Reynolds numbers (Re = 1× 104, Re = 1× 105 and Re = 1× 106)
and Angles of Attack (0 ◦ ≤ AoA ≤ 10 ◦) using two discontinuous Galerkin
formulations. On the one hand, we use a compressible solver based on a nodal
DGSEM formulation and supplemented with a stabilising split-form formula-
tion (Pirozzoli) and Roe interface fluxes. On the other hand, we use an incom-
pressible DG-Fourier formulation that uses the interior penalty parameter to
provide localised dissipation. Both solvers enable high order computations
by varying the polynomial order inside mesh elements, which are here set to
P=3 and P=4. We provide results of aerodynamic coefficients and pressure
distributions using both solvers to show how they are able to provide under-
resolved flows that agree well with experimental data and well established
solvers (Xfoil or Ansys-Fluent).
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1 Introduction

High order Discontinuous Galerkin (DG) methods provide accurate solutions
by enabling arbitrarily high polynomial approximations inside each grid el-
ement. For high order polynomials, the numerical errors are not distributed
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Cardenal Cisneros 3, 28040 Madrid, Spain
CCS-UPM - Centre for Computational Simulation - Universidad Politécnica de
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along all wave-numbers but localised at high wave-numbers [23, 32, 18, 33, 29].
This characteristic of high order methods results in very accurate simula-
tions with low dissipative and dispersive errors. Although this characteris-
tic seems a-priori beneficial for well resolved simulations, when computing
under-resolved Large Eddy Simulations (LES), it can prove difficult to ob-
tain stable simulations. In implicit (or under-resolved) Large Eddy Simula-
tions (iLES), the smallest numerical eddies are larger than would have been
in a finer mesh, leading to numerical under-resolution (i.e. coarse grid or
low polynomial order) and aliasing [7]. Various methods have been proposed
to stabilise under-resolved computations with aliasing. Among others, split
forms or skew symmetric variants [35, 6]), localised interior penalty fluxes
[12], over-integration [26, 25, 31] or filtering [5] may be incorporated into the
solver to stabilize the computations and remove or alleviate the aliasing.

Contrarily to low order methods, high order methods do not have enough
inherent numerical dissipation in under-resolved simulations, to dissipate
large flow structures (when compared to Kolmogorov scales). Therefore, com-
putation of iLES flows using high order DG solvers require localised dissipa-
tive mechanisms to dissipate flow structures close to cut-off size. In what
follows, we compare two dissipative stabilising mechanisms that enable the
simulation of turbulent under-resolved flows. On the one hand, we use a com-
pressible formulation with an energy conserving split-form and dissipation
through Roe fluxes [24]. On the other hand, the incompressible solver uses
the viscous discretisation through interior penalty formulation to enhance
stability [12]. We challenge both formulations with a NACA0012 airfoil at
various angles of attack in turbulent regimes, to explore both accuracy and
stability. We compare simulated results to experimental data and simulations
using low order methods (Xfoil and Ansys-Fluent).

2 Methodologies

We first introduce the two different mechanisms used to stabilise both com-
pressible and incompressible high order DG formulations. The explanation
included here is brief and aims only at introducing the fundamental concepts
and motivating ideas. Further details can be found in the following references
by the authors [24, 12].

The 3D Navier–Stokes equations can be written as:

ut +∇ · F e = ∇ · F v, (1)

where u is the vector of conservative variables u = (ρ, ρv1, ρv2, ρv3, ρe)
T in

compressible solvers. For incompressible solvers u = (v1, v2, v3)T and Eq.(1)
is complemented with ∇ ·u. Details on the definition of inviscid and viscous
solvers can be found in [24, 12]. To derive discontinuous Galerkin schemes, we
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consider Eq. (1) for one mesh element el, multiply by a locally smooth test
function φj , for 0 ≤ j ≤ P , where P is the polynomial degree, and integrate
on el: ∫

el

utφj +

∫
el

∇ · F eφj =

∫
el

∇ · F vφj . (2)

We can now integrate by parts the inviscid fluxes, F e, integral to obtain a
local weak form of the equations (one per mesh element):∫

el

utφj +

∫
∂el

F e · nφj −
∫
el

F e · ∇φj =

∫
el

∇ · F vφj , (3)

where n is the normal vector at element boundaries ∂el. We replace discontin-
uous fluxes at inter–element faces by a numerical inviscid flux, F ∗

e, to obtain
a weak form for the equations for each element,∫

el

ut · φj +

∫
∂el

F ∗
e · nφj −

∫
el

F e · ∇φj =

∫
el

∇ · F vφj , (4)

where, we have omitted the fluxes at external boundaries, for simplicity. This
set of equations for each element is coupled through the inviscid fluxes F ∗

e and
governs flow behaviour. Note that one can proceed similarly and integrate by
parts the viscous terms (see [3, 12]), but here for simplicity we retain the
volume integral.

∫
el

ut · φj +

∫
∂el

F ∗
e · n︸ ︷︷ ︸

Riemann solver

φj −
∫
el

F e · ∇φj =

∫
el

( ∇ · F v︸ ︷︷ ︸
Viscous term

) · φj (5)

The non-linear inviscid and viscous terms that can be discretised to control
dissipation in the numerical scheme have been underlined.

Riemman solvers are the classic option to include numerical dissipation
in DG schemes [34, 4], since they naturally arise when discretising the non-
linear terms. Comparison of different fluxes for homogeneous turbulence can
be found in [17, 24]. A different option is to modify the viscous terms to
enhance its dissipative properties. The latter has been proposed in [12] using
an increased penalty parameter (compared to the minimum required to ensure
coercivity of the scheme) when discretising the viscous terms using a interior
penalty formulation.

2.1 Compressible DGSEM solver

The compressible solver uses conservative variables to solve the Navier-
Stokes equations. We use a particular nodal variant of DG methods: the
Discontinuous Galerkin Spectral Element Method (DGSEM), see for exam-



4 Esteban Ferrer et al.

ple [8]. In addition, the compressible formulation is modified to be energy
preserving [20]. The required split–form necessitate Gauss–Lobatto points
to cancel out boundary terms using the summation–by–parts simultaneous–
approximation–term property (SBP–SAT). The interested reader is referred
to [19, 9, 29, 20]. These energy conserving schemes are designed to remain
stable and energy conserving and consequently do not necessitate additional
localised numerical dissipation. Nonetheless, in this work we introduce dissi-
pation through Roe fluxes, to enhance robustness at high Reynolds numbers.
Additionally, viscous terms are discretised using the Bassi–Rebay 1 (BR1)
scheme, which is equivalent to the interior penalty formulation when using
Gauss-Lobatto points and hexahedral elements [30]. Let us note that this for-
mulation for the viscous fluxes is neutrally stable [21] and adds the minimum
dissipation required to achieve a stable scheme, whilst others may introduce
some extra dissipation. Other techniques are available to discretise second
order derivatives and can be found in the classic review by Arnold et al. [3].

2.2 Incompressible DG-Fourier solver

Flow solutions of the incompressible Navier-Stokes equations, are obtained
from the 3D unsteady high order h/p Discontinuous Galerkin-Fourier solver
[16, 11, 15, 14, 12]. The solver uses a second order stiffly stable approach
to discretise the NS equations in time whilst spatial discretisation is pro-
vided by the discontinuous Galerkin-Symmetric Interior Penalty formula-
tion with modal basis functions in the x-y plane. Here, x represents the
streamwise flow direction and y is the normal direction. Spatial discretisa-
tion in the z-direction (here defining the spanwise airfoil length) is provided
by a purely spectral method that uses Fourier series and allows computation
of spanwise periodic three-dimensional flows. Since high order methods (e.g.
discontinuous Galerkin and Fourier) are unable to provide enough numeri-
cal dissipation to enable under-resolved high Reynolds computations (e.g. as
necessary in Large Eddy Simulations), we have adapted the original laminar
version of the solver to increase (controllably) the dissipation and enhance
the stability in under-resolved simulations [12]. This dissipative formulation
has minimal impact on well resolved flow regions and its implicit treatment
does not restrict the use of relatively large time steps, thus providing an ef-
ficient stabilization mechanism for Large Eddy Simulations. The solver has
been widely validated for a variety of flows, including bluff body flows, airfoil
and blade aerodynamics and vertical axis turbines under static and rotating
conditions [16, 11, 15, 14, 12, 28, 13].
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b)a)

Fig. 1 Meshes for NACA0012 airfoil: a) Hexahedral mesh for compressible solver
and b) mixed tri-quad mesh for incompressible solver. Inset figures show high order
polynomial mesh for order P=4.

3 Numerical Results

This section considers a NACA0012 airfoil at Re = 1 × 104, Re = 1 × 105

and Re = 1 × 106 (based on the airfoil chord c) for a range of Angles of
Attack (AoA): 0 ◦ ≤ AoA ≤ 10 ◦. In what follows we compare incompressible
and compressible simulations using polynomial orders P = 3 and P = 4.
The averaged values have been computed after the development of three
dimensional flow. The compressible solver uses a hexahedral mesh with 18000
elements, which for P=3 and 4 result in 1.1 and 2.2 million degrees of freedom.
The incompressible solver, uses a mixed tri-quad 2D mesh and is expanded
using Fourier in the homogeneous third direction (here 16 Fourier modes).
Depending on the angle of attack, the resulting meshes include 0.6 to 1 million
degrees of freedom. Meshes for the two solvers and for AoA = 0 ◦ are depicted
in figure 1. Finally, all the simulations are computed with both DG solvers
and consider a periodic spanwise lengths of Lz/c = 0.1. Note that we have not
observed significant differences in the results when increasing the spanwise
length.

3.1 Re = 1 × 106 and various Angles of Attack

We start by illustrating the highest Reynolds number case, which is the most
challenging in terms of stability and robustness. To illustrate the range of the
flow behaviour at various AoAs, we show in figure 2, velocity contours for
AoA: 0 ◦,5 ◦ and 10 ◦, computed using the incompressible DG solver. It can
be seen that at Re = 1 × 106 the flow remains attached for all angles, and
that only mild separation is seen near the trailing edge. We will see in the
next section that at lower Reynolds numbers this is not necessarily the case.
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Fig. 2 NACA0012 airfoil at Re = 1× 106, from left to right: AoA: 0 ◦, AoA: 5 ◦ and
AoA: 10 ◦. Simulations are obtained using the incompressible DG solver.
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Fig. 3 NACA0012 airfoil at Re = 1×106: a) Lift coefficient vs angle of attack and b)
Lift-Drag Polar. Compressible (comp.) and incompressible (incomp.) DG simulations
are compared to experimental data sets of Ladson [27] , Gregory & O’Reilly [22],
Abbot & Von Doenhoff [2] .

Figure 3 compares the aerodynamic coefficients with experimental data
for various angles of attack and the two solvers. Figure 3.a) shows the lift
coefficient against the AoA and figure 3.b) depicts the Lift-Drag Polar for
Re = 1 × 106. We observe very good agreement with experimental data for
both solvers.

3.2 AoA=5 ◦ and various Reynolds numbers

Having shown the overall good performance in terms of aerodynamic quan-
tities at the most challenging Reynolds numbers, we now focus our attention
on the angle AoA=5 ◦ and compare the usability of the solvers to study the
NACA0012 boundary layer evolution.

First, we compare the aerodynamic coefficients for AoA=5 ◦, and Reynolds
numbers Re = 1× 105 and Re = 1× 106, using the incompressible and com-
pressible solvers, both with polynomial order P=3 and P=4, in table 1. We
observe good agreement for the highest polynomial order. Small discrepancies
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Fig. 4 NACA0012 airfoil at Re = 1 × 105 and AoA=5 ◦ for P=4: a) Compressible
DG solver b) Incompressible DG solver.

are attributed to post-processing of statistics and lack of near wall resolution
when using P=3. For completeness, we depict the flow evolution within the

Re = 1× 105 Re = 1× 106

Cl Cd Cl Cd

DG comp. P=3 0.588 0.028 0.567 0.005
DG comp. P=4 0.575 0.025 0.558 0.008

DG incomp. P=3 0.484 0.028 0.538 0.017
DG incomp. P=4 0.545 0.018 0.551 0.007

Table 1 NACA0012 airfoil at AoA=5 ◦ for Re = 1 × 105 and Re = 1 × 106. Com-
parison of Lift and Drag using the DG compressible and DG incompressible solvers
and two polynomial orders P=3 and P=4.

boundary layer using both solvers in figure 4. It can be seen that detachment
near the trailing edge is similar for both solvers. Regarding transition to tur-
bulence (represented by fluctuations in velocity contour), both solvers capture
transition on the suction side. The compressible solver shows a transition lo-
cation near the maximum thickness (x/c ≈ 0.4), whilst the incompressible
solver shows transition closer to the leading edge (x/c ≈ 0.2). We have ob-
served significant variations of the transition location for the compressible
solver when varying the polynomial order, that we have not seen in the in-
compressible solver. Further studies are necessary to completely assess the
influence of discretisation in the transition location for the two solvers.

Second, we explore the pressure coefficient distribution along the airfoil
profile when varying the Reynolds number. We only depict results for the
incompressible DG solver since these are very similar to the results provided
by the compressible solver. Note that this is not surprising, since the lift
coefficients at Re = 1 × 105 and Re = 1 × 106 are very similar for P=4 at
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Fig. 5 NACA0012 airfoil at AoA: 5 ◦ for a) Re = 1 × 104 b) Re = 1 × 105 and
c) Re = 1 × 106. Velocity magnitude isocontours and unstructured mesh details are
included.

AoA = 5 ◦, see table 1. Figure 5 shows velocity contours for Re = 1 × 104,
Re = 1 × 105 and Re = 1 × 106 at AoA = 5 ◦. It can be seen that for the
lowest Reynolds, the boundary layer remains laminar until it detaches after
the maximum thickness, showing a highly unsteady wake. When the Reynolds
number increases, the boundary layer shows transition to turbulence before
the maximum thickness, as appreciated by the fluctuations and small scales
appearing in figure 5.

To quantify these results, we depict in figure 6, the pressure distribution
(Cp) for the three Reynolds numbers. In the top row, we show instanta-
neous Cp against averaged for incompressible DG solver. In the bottom row,
we compare mean Cp distributions against Xfoil [10] (with critical N-factor
Ncr = 1) and Fluent SST (fully turbulent simulation) [1]. At Re = 1 × 104,
the top figure shows that the boundary layer detaches before transition occurs
and after the maximum thickness, as shown by the velocity contours in figure
5. Since the flow detaches leading to a highly unsteady wake, there is little
hope that the averaged Cp captures the actual behaviour of the boundary
layer. This is why, in the bottom figure, the mean values obtained using the
incompressible DG solver do not agree with the mean Xfoil and Fluent values
that assume steady turbulent flow. At Re = 1×105 and At Re = 1×106, the
instantaneous Cp values (top row) show scattering in the data associated to
transition. This occurs close to the leading edge on the suction side, whilst
it is delayed towards the trailing edge on the pressure side. The bottom row
shows that the DG results compare very well to Xfoil when using a critical
N=1 (to set the transition point close to the leading edge), whilst Fluent SST
(fully turbulent) shows lower Cp values associated to simulating the complete
boundary layer as turbulent (no laminar region). This results suggest that DG
solvers using iLES approaches (compressible and incompressible) can capture
transitional behaviour in boundary layers even when relatively coarse meshes
are selected.
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Fig. 6 NACA0012 airfoil at AoA: 5 ◦ for a) Re = 1 × 104 b) Re = 1 × 105 and c)
Re = 1 × 106. Top row show instantaneous and mean Cp for DG-Fourier solver, and
bottom row shows comparison of mean Cp values to other solvers: Xfoil and Fluent
SST (fully turbulent simulation).

4 Conclusions

In this contribution, we have presented results for turbulent flows over a
NACA0012 airfoil. High order discontinuous Galerkin formulations require
localised dissipation to remain stable for under-resolved turbulent flow con-
ditions, often referred to as implicit Large Eddy Simulations. Here we have
presented compressible and an incompressible DG formulations (with differ-
ent stabilising mechanisms) that are able to cope with high Reynolds number
flows. Both DG formulations provide aerodynamic coefficients and boundary
layer information that compare favorably to experimental data and well es-
tablished low order solvers. We conclude that the compressible and incom-
pressible formulations included in this work can be very useful in aeronautical
applications.
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