
Advantages of static condensation in implicit
compressible Navier-Stokes DGSEM solvers

Wojciech Laskowskia, Andrés M. Rueda-Ramı́rezac, Gonzalo Rubioab,
Eusebio Valeroab, Esteban Ferrerab

aETSIAE-UPM (School of Aeronautics - Universidad Politécnica de Madrid) - Plaza de
Cardenal Cisneros 3, 28040 Madrid, Spain

bCenter for Computational Simulation - Universidad Politécnica de Madrid, Campus de
Montegancedo, Boadilla del Monte, 28660 Madrid, Spain

cDepartment for Mathematics and Computer Science, University of Cologne, Weyertal
86-90, 50931, Cologne, Germany

Abstract

We consider implicit time-marching schemes for the compressible Navier-

Stokes equations, discretised using the Discontinuous Galerkin Spectral El-

ement Method with Gauss-Lobatto nodal points (GL-DGSEM). We com-

pare classic implicit strategies for the full Jacobian system to our recently

developed static condensation technique for GL-DGSEM Rueda-Ramı́rez et

al. (2019), A Statically Condensed Discontinuous Galerkin Spectral Element

Method on Gauss-Lobatto Nodes for the Compressible Navier-Stokes Equa-

tions [1]. The Navier-Stokes system is linearised using a Newton-Raphson

method and solved using an iterative preconditioned-GMRES solver. Both

the full and statically condensed systems benefit from a Block-Jacobi pre-

conditioner.

We include theoretical estimates for the various costs involved (i.e. calcu-

lation of full and condensed Jacobians, factorising and inverting the precon-

ditioners, GMRES steps and overall costs) to clarify the advantages of using

Preprint submitted to Computers & Fluids May 28, 2020

Manuscript Click here to
access/download;Manuscript;Static_Paper_vol_3SecondReview.

Click here to view linked References

https://www.editorialmanager.com/caf/download.aspx?id=550820&guid=fb0cb64a-6066-4c2f-9258-881d4ecebf0d&scheme=1
https://www.editorialmanager.com/caf/download.aspx?id=550820&guid=fb0cb64a-6066-4c2f-9258-881d4ecebf0d&scheme=1
https://www.editorialmanager.com/caf/viewRCResults.aspx?pdf=1&docID=24519&rev=2&fileID=550820&msid=89be5c56-1b1f-4833-b7b3-3fc67c3eb5bc

static condensation in GL-DGSEM, for varying polynomial orders. These

estimates are then examined for a steady three-dimensional manufactured

solution problem and for an two-dimensional unsteady laminar flow over a

NACA0012 airfoil. In all cases, we test the schemes for high polynomial

orders, which range from 2 to 8 for a manufactured solution case and from

2 to 5 for the NACA0012 airfoil. The statically condensed system shows

computational savings, which relate to the smaller system size and cheaper

Block-Jacobi preconditioner with smaller blocks and better polynomial scal-

ing, when compared to the preconditioned full Jacobian system (not con-

densed). The advantage of using static condensation is more noticeable for

higher polynomial orders.

Keywords:

High-order discontinuous Galerkin, DGSEM, Gauss-Lobatto, Implicit

time-marching, preconditioned-GMRES, Compressible Navier-Stokes, Static

condensation, NACA0012 airfoil

Contents

1 Introduction 3

2 Methodology 8

2.1 Time-implicit discretisation and Jacobian computation 9

2.2 Static condensation . 11

2.3 Size of the full and the condensed Jacobians 12

2.4 Preconditioned-GMRES solver 16

2.5 Further implementation details 17

2

3 Theoretical costs of full and statically condensed systems 18

3.1 Cost of static condensation . 20

3.2 Cost of factorising the preconditioner 22

3.3 Cost of the preconditioned-GMRES solver 23

3.4 Summary of computational costs 25

4 Numerical results 27

4.1 Steady simulation: Manufactured Solution 28

4.2 Unsteady simulation: NACA0012 at AOA = 20o 33

5 Conclusion 39

Appendix A Preliminary assessment of preconditioners 42

Appendix B Influence of Mach and Reynolds 45

Appendix C Estimation of non-zero entries in the Jacobian

Matrix 46

Appendix C.1 Advection terms 47

Appendix C.2 Di↵usion terms 50

Appendix C.3 Total number of non-zero entries 55

1. Introduction1

The accurate simulation of aerodynamic characteristics over lifting sur-2

faces (airfoils and wings) is of major importance to the aeronautical industry3

and can potentially reduce fuel consumption by allowing lighter aircraft de-4

signs. High order methods, and particularly discontinuous Galerkin (DG)5

3

schemes, are well equipped to provide high accuracy on coarse meshes due6

to their spectral convergence property (i.e. exponential decay of the error).7

In the last decade, these methods have gained popularity for solving fluid8

flows governed by the incompressible, e.g. [2, 3, 4, 5, 6] and compressible9

Navier-Stokes equations, e.g. [7, 8, 9, 10]. DG solutions show improved ac-10

curacy over low order methods, but are often expensive to compute [11]. In11

recent years, acceleration techniques for DG schemes have focused on local12

p-adaption, see e.g. [7, 10] and on improved time-marching techniques, e.g.13

FAS p-multigrid [10], that allow for faster convergence and large time-steps,14

with important savings in computational cost.15

The Discontinuous Galerkin Spectral Element Method (DGSEM) [12],16

is a particular nodal version of DG, which has proved to be very e�cient17

on hexahedral elements (e.g. diagonal mass matrices). Additionally, the18

variant of the DGSEM where Gauss-Lobatto nodal points are selected, i.e.19

GL-DGSEM, is well suited for the development of provably stable schemes20

[13], fulfilling the summation-by-parts property [14]. These schemes have21

enhanced stability and are convenient for under-resolved simulations, if split-22

forms of the governing equations are discretised. Examples of provably stable23

formulations can be found for the Euler [14], the Magneto-Hydrodynamics24

[15], multiphase flows [16, 17] and the Navier-Stokes equations [18, 9, 19].25

We have recently shown an additional advantage of GL-DGSEM [1]: it26

is well suited for the static condensation approach, whilst the classic Gauss27

point version is not. In this work we exploit the statically condensed system,28

4

to accelerate implicit time advancement with and iterative GMRES solver,29

and compare the accelerations to the traditional full Jacobian system. Note30

that both approaches rely on Newton-Raphson linearisation to obtain the31

full and condensed systems. In this work, we do not include split-forms32

but propose a static condensation technique, which is perfectly applicable33

to formulations including stabilising split-forms (e.g. two point fluxes), and34

may be combined with the static condensation, in future work.35

Static condensation has been widely applied in the context of high order36

methods, and is a popular strategy in the continuous Galerkin community,37

e.g. [20, 21], where it has proved to be an e�cient strategy to solve large38

systems in both structural and fluid mechanics, e.g. [20, 22]. Static conden-39

sation can be combined with modern iterative techniques such as p-multigrid40

with domain decomposition smothers tailored for condensed systems [23].41

Recently, Pardo et al. [24] showed that static condensation proves beneficial42

when combined with iterative solvers, if the number of iterations is su�-43

ciently large, to compensate for the additional cost associated of computing44

the system’s Schur complement. Similar findings are included in this work45

for DGSEM.46

Static condensation has been applied to discontinuous Galerkin discreti-47

sations by Sherwin et al. [25] and Hybridized Discontinuous Galerkin (HDG),48

e.g. [26, 27, 28]. In the first work, Sherwin et al. reported advantages of stat-49

ically condensed systems when using tailored non-orthogonal basis functions50

(i.e. non-diagonal mass matrices). The remaining references were developed51

5

for HDG formulations, where the method decouples the degrees of freedom52

belonging to the mesh elements from the mesh skeleton, enabling static con-53

densation. However, HDG requires specific numerical fluxes [1, 26, 29], re-54

stricting the use of well known Riemann approximations, such as Roe’s. Our55

static condensation for GL-DGSEM allows any flux.56

In our previous work [1], we showed the detailed implementation of the57

static condensation approach in GL-DGSEM, and applied the method to58

solve steady cases using direct solvers and an implicit GMRES with a point-59

Jacobi preconditioner. In this work, we extend that analysis further by60

comparing the performance of statically condensed and full Jacobian (non-61

condensed) systems for Block-Jacobi preconditioner in steady and unsteady62

problems, and show that the statically condensed system can lead to faster63

iterative GMRES solves. We include theoretical estimates to analyse and64

extrapolate the costs involved with respect to the polynomial order. These65

include the calculation of full and condensed Jacobians, the factorisation and66

invertion of the preconditioner and the preconditioned-GMRES steps. Ad-67

ditionally, we briefly asses the use of ILU(k) preconditioners and include a68

section to verify that the advantages of the statically condensed GL-DGSEM69

are essentially independent of the Mach and Reynolds numbers.70

Both full and condensed systems can benefit from preconditioners to71

accelerate convergence. E�cient preconditioners should be cheap to con-72

struct and to parallelise, whilst enhancing the convergence of the system,73

e.g. reducing the number of iterations to reach convergence. Iterative strate-74

6

gies (including preconditioners) for DG discretisations of both compress-75

ible and incompressible flows have been widely explored in recent years76

[30, 31, 32, 33, 34, 35, 36, 37, 28, 38, 39]. Most authors employ block77

structured preconditioners/p-multigrid smothers, such as Block-Jacobi, Line-78

Jacobi, additive-Schwarz or Block-ILU. Among these, [37, 28, 39] focused on79

coarse grid accelerations and e�cient implementation of the state-of-the-art80

solvers for turbulent problems, which is out of the scope of this work. Point81

ILU has also been successfully used for aerodynamic applications in [40, 41].82

Persson and Peraire [32] or Gopalakrishnan and Kanschat [42] showed that83

element-block based preconditioners are essential to eliminate high p depen-84

dent errors. It is also very natural to exploit the element-block structure of85

the Jacobian (specially in the parallel computations due to the block locality86

that enables to perform block inversions locally), as most of these methods87

require the direct factorisation of block matrices. Note that this can become88

troublesome for high polynomial orders, especially in three-dimensional flows.89

In this work, we select Block-Jacobi preconditioner and show that when con-90

densing the system, the preconditioner scales more gently for high polyno-91

mials, than the preconditioner for the full system. This translates into lower92

costs for all the steps where the preconditioner is required (i.e. factorisation93

of the blocks and GMRES step involving the preconditioner), and paves the94

way to using high polynomial orders e�ciently.95

Our comparisons are novel in that the static condensation technique, re-96

cently developed for GL-DGSEM by the authors, is directly challenged to97

7

the state of the art implicit preconditioned-GMRES solvers to show com-98

putational savings for steady and unsteady flows and a range of polynomial99

order ranging from 2 to 8. The results are backed-up by the theoretical es-100

timates for the various costs. The beneficial e↵ect of statically condense the101

system is observed for various Mach and Reynolds numbers, suggesting that102

this technique can be exploited for a wide range of flow regimes in steady103

and unsteady flows.104

In what follows, we describe the methodology with emphasis on the time105

marching scheme and implementation details. We continue with the theo-106

retical estimates and the simulations, where we compare the full Jacobian107

and the static condensation for a 3D Manufactured Solution problem and108

the unsteady flow over a 2D NACA0012 airfoil. We finalise with conclusions109

and outlooks.110

2. Methodology111

We use the nodal Discontinuous Galerkin Spectral Element Method (DGSEM)112

introduced by Black [43], where the computational domain is tessellated into113

non-overlapping hexahedral elements. In the DGSEM, numerical fluxes are114

necessary to transfer information between discontinuous element solutions.115

Here, we retain Lax-Friedrichs fluxes for the convective fluxes and the Inte-116

rior Penalty method for viscous fluxes, but other fluxes with compact support117

could also be used (e.g. Roe for convection or BR2 for di↵usion). The se-118

lected fluxes yield a compact mesh stencil and are di↵erentiated to obtain119

8

an analytical Jacobian. Further details on how the Jacobian can be ob-120

tained along with the peculiarities and sparsity patterns resulting from using121

Gauss-Lobatto nodal points, can be found in our previous works [1, 44].122

2.1. Time-implicit discretisation and Jacobian computation123

Let us briefly describe the implicit methods retained in this work. After124

discretising the compressible Navier-Stokes equations, we obtain the follow-125

ing system of equations126

M
@Q

@t
+ F (Q) = MS, (1)

where Q is a vector that stores the conservative variables in all degrees127

of freedom of the domain, F (Q) encompasses both discrete convective and128

di↵usive fluxes,M is the mass matrix, which is diagonal in the nodal DGSEM129

approach, and S is a source term.130

We replace the continuous in time derivative in (1) by a discrete implicit

time integration scheme using Backward Di↵erentiation Formulas (BDF) of

order 1 and 2 (BDF1 or BDF2),

@Q

@t

�Q

�t
(Qs+1,Qs, · · ·), (2)

where the operator �Q/�t is a function of the solution on the next time step,

Qs+1 (the unknown), the current time step, Qs, and possibly previous time

steps. When treated implicitly, the nonlinear operator F , in equation (1) is

9

evaluated for the unknown solutions, Qs+1. Considering this, equation (1)

can then be rewritten as

R(Qs+1) =
�Q

�t
(Qs+1,Qs, · · ·) +M

�1
F (Qs+1)� S = 0. (3)

Note that in the DGSEM approach the mass matrix M is diagonal and can131

be trivially inverted, leading to an e�cient discontinuous Galerkin method.132

When computing steady flows, we are not interested in producing an accurate133

solution in time, and therefore we use an implicit BDF of order 1 to advance134

until steady state. However, for unsteady cases we will use an implicit BDF135

of order 2 and shorter time steps to obtain accurate solutions in time.136

The nonlinear system of equations, (3), can be solved using Newton-137

Raphson iterations to obtain the linear system:138

A�Q = B, (4)

where A = @R
@Q(Q̃s+1) is the Jacobian matrix evaluated at Q̃s+1, which is139

an approximation to the unknown solution Qs+1. The right-hand-side is140

B = �R(Q̃s+1) . Equation (4) is a linear system that must be solved141

iteratively to approach Qs+1 Q̃s+1 + �Q. The Jacobian matrix A may142

be computed analytically or numerically, and here we retain the analytical143

approach, for its e�ciency. Equation (4) is what we refer as full system with144

A the full Jacobian.145

10

2.2. Static condensation146

In the GL-DGSEM framework, we can statically condense system (4) to147

obtain the following form148

2

64
A

bb
�A

ib
A

�1
ii
A

bi
0

A
bi

A
ii

3

75

2

64
�Qb

�Qi

3

75 =

2

64
Bb �A

ib
A

�1
ii
Bi

Bi

3

75 , (5)

where subindex b and i denote boundary and interior nodes, respectively.149

The main interest of the method is to obtain a block diagonal matrix A
ii
,150

that can be inverted cheaply and locally (element by element). Additionally,151

the boundary matrix including the degrees of freedom linking boundaries152

between elements, is greatly reduced by the use of Gauss-Lobatto points in153

DGSEM [1]. The resulting system is equivalent to the full system, but can154

be decoupled in two subsystems. The first one for the skeleton of the mesh,155

our condensed system of equations is156

A
cond

�Qb = Bcond, (6)

where A
cond

= A
bb
� A

ib
A

�1
ii
A

bi
and Bcond = Bb � A

ib
A

�1
ii
Bi. Once the157

condensed system (6), based on the Schur complement A
cond

, is solved, then158

it is trivial to substitute and solve for the second system �Qi = A
�1
ii
(Bi �159

A
bi

�Qb), since A
ii
is block diagonal and has already being factorised to160

compute A
cond

.161

11

2.3. Size of the full and the condensed Jacobians162

One of the main advantages of the static condensation is the reduced

size of the matrix A
cond

(with only the mesh skeleton degrees of freedom)

in comparison with the original Jacobian matrix A (with all the degrees of

freedom in the mesh). We can quantify the number of degrees of freedom for

our GL-DGSEM discretisation. The Jacobian matrix A has size

n = Nel · nb. (7)

where Nel is number of elements and nb is the size of each element-block.

Then, assuming mesh elements with isotropic polynomial order P , we can

describe the size of each block nb as a function of P , the dimension d (e.g.

d = 3 for 3D meshes) and the number of conservative variables (or equations)

in the computational domain for the Navier-Stokes equations Neq (e.g. Neq =

5 in 3D):

nb = Neq(P + 1)d. (8)

Equation (7) can also be used to describe the size of the matrices, A
ii
and

A
bb
, involved in the Schur complement computation and included in the

statically condensed system (5) with nii = Nel · nbii and nbb = Nel · nbbb,

with the only di↵erence being the block sizes. Here, the block size of the

element-skeleton matrix nbbb directly corresponds to the size of the block of

the final Schur complement A
cond

. The blocks for the condensed matrix arise

from having decoupled element interior i from the element boundary nodes

12

b, leaving fewer degrees of freedom per block. Thus, the size of the block of

matrix A
ii
, that corresponds to the interior of the elements is

nbii = Neq(P � 1)d. (9)

Consequently, the size of the block of A
bb

and A
cond

can be defined as the

di↵erence between the size of the element-block and the interior element part

nbbb = Neq

⇥
(P + 1)d � (P � 1)d

⇤
, (10)

and with these blocks, the final size of the matrices could be easily computed163

from equation (7).164

Additionally, it is possible to obtain estimates for the number of non-zero165

entries nnz in the full and condensed Jacobian. This is not a trivial task, and166

details are included in Appendix C. The final expressions are summarised in167

Table 1, for 3D and 2D.168

13

Table 1: Explicit formulas for the leading terms of block sizes, estimation of number of

non-zeros nnz per block, and matrix non-zero entries, for the full and condensed systems

in 2D and 3D. All provided as functions of the number of elements Nel, polynomial order P
and number of conservative variables in the 3D domain, i.e. Neq = 5 for the compressible

Navier-Stokes equations.

3D

Full system Condensed system

Block size Neq(P + 1)
3 Neq(6P 2

+ 2)

nnz per block 3N2
eqP (P + 1)

4 N2
eq(6P

2
+ 2)

2

nnz in matrix 3NelN2
eqP (P + 1)

4
25NelN2

eq(6P
2
+ 2)

2

2D

Full system Condensed system

Block size Neq(P + 1)
2 Neq4P

nnz per block N2
eq(P + 1)

4 N2
eq16P

2

nnz in matrix NelN2
eq(P + 1)

4
13NelN2

eq16P
2

Let us remark that the expressions for the block sizes are exact. How-169

ever, the expressions for the nnz per block are upper bounds derived in the170

appendix. The entry corresponding to the nnz for the full system, only in-171

cludes the diagonal blocks corresponding to the viscous terms, since these are172

asymptotically dominant, as they scale O(P 5) (all other blocks have weaker173

scaling, see appendix for details). The total number of non-zeros might be174

obtained multiplying by the number of elements. Regarding the condensed175

system, here the block stencil of this matrix is estimated to be 25 in 3D and176

13 in 2D (neighbor to neighbor coupling), and therefore to obtain the total177

number of nnz in the matrix, the nnz per block need to be multiplied by178

the number of elements and by the constant (25 or 13) accounting for the179

neighbour coupling.180

Finally, the condensed system presents smaller and denser blocks and181

14

the block stencil of the condensed system is wider than the one of the full182

system. As a result, the nnz of the condensed system is larger than the one183

of the full system. Regarding the total number of non-zero entries in the184

matrix, the scalings show that the full system will asymptotically contain185

more non-zero entries for large polynomial orders. However, due to the denser186

connectivity in the condensed system, the non-zero entries can be higher for187

low polynomial orders.188

In the Continuous Galerkin formulation for simple di↵usion or advection-189

di↵usion problems [24, 45], the number of non-zero entries in the condensed190

matrix decreases with respect to nnz in the full system. However, in our191

case for the GL-DGSEM of the compressible Navier-Stokes equations, the192

number of non-zeros increases. Increased number of non-zeros for the con-193

densed system have been reported by Habchi [46], for an elastohydrodynamic194

lubrication problem. There, the authors considered several meshes for the195

same contact problem, from extra coarse to extra fine. The results show that196

nnz in the condensed systems is reduced for coarse meshes, whereas for the197

others nnzcond > nnzfull.198

Complementary illustrations of the static condensation sparsity patterns199

for the GL-DGSEM approach may be found in our previous work [1]. In this200

work, we concentrate on comparing the e�ciency of solving the linear system201

of equations, i.e. solving full system (4) to solving the two subsystems for the202

condensed system (6) using iterative methods. To account for the iterative203

costs, we will use the matrix sizes and number of non-zeros, included in Table204

15

1.205

2.4. Preconditioned-GMRES solver206

We use preconditioned-GMRES to sove both the full system (4), and the207

statically condensed system (6). Previous works [33, 31, 32, 35, 36] have208

shown that combining GMRES and block preconditioners is e↵ective in solv-209

ing Eq. (4) for DG discretisations of Euler, Navier-Stokes or RANS equations.210

Here, we have considered several preconditioning strategies, namely element211

Block-Jacobi and incomplete LU factorisation with di↵erent factorisation lev-212

els, ILU(k). We conduct a preliminary evaluation of these preconditioners213

for the full and condensed systems in Appendix A. For the manufactured214

solution case (to be described later in detail), ILU(k) preconditioners per-215

form better in terms of iteration count and overall cost, but show high cost216

when computing the preconditioner. Block-Jacobi does not perform as well217

as ILU(k) in terms of overall solver cost, but provides a lower factorisa-218

tion cost (specially for the statically condensed system) and provides very219

competitive average iteration count and average solver cost. Additionally, a220

Block-Jacobi preconditioner is more suitable for parallel [28] and matrix-free221

[47, 48] computations, since the blocks can be inverted locally whilst exploit-222

ing the block-structure of the high order DGSEM discretisation, as well as223

requiring less memory [33, 47]. For this reason, in the following sections, we224

present all results with Block-Jacobi preconditioners for both the full (4) and225

the statically condensed (6) systems.226

16

The Block-Jacobi preconditioner ignores all the Jacobian o↵-diagonal227

blocks and performs a local LU decomposition (factorisation step) in each228

diagonal block. For the full system, these diagonal blocks include all the229

element degrees of freedom for each element, whilst the size for the blocks is230

reduced in the condensed system (only skeleton degrees of freedom): matrix231

A
cond

in (6). These blocks are smaller as shown in Table 1 and therefore con-232

structing the Block-Jacobi preconditioner for the condensed system is much233

cheaper, than for the full system, and especially for high polynomial orders234

(for a more detailed comparison of the factorisation costs, see next Section235

3).236

Finally, all the operations related to the preconditioned-GMRES solver237

(computing preconditioner and performing GMRES iterations) are performed238

using the well known open-source library PETSc [49, 50, 51]. The computa-239

tion of the condensed system (6), however, is done with our in-house code.240

Note that PETSc has been widely used in aeronautical publications, includ-241

ing DGSEM flow simulations [33, 52, 53]. By selecting this well validated242

implementation, we avoid in-house ine�ciencies that could mask the out-243

comes of our comparisons.244

2.5. Further implementation details245

In the result section, we also include explicit time-marching (ESRK3)246

[54] simulations for reference, but comparisons of overall computing time247

are not of interest in this work. Indeed, it is well known, that the explicit248

17

time integrator is easy to parallelise with appropriate domain partitioning249

[55, 56] and could produce very e�cient solutions when using large number250

of processors, whilst implicit schemes require a greater e↵ort and increased251

memory requirements for matrix-based solvers [31, 11]. Alternative matrix-252

free approaches have been proposed, e.g. Pazner and Persson [48], but are253

not explored in this text. For the above mentioned reasons, all cases are run254

in serial such that all approaches are fairly compared without taking into255

account parallelisation strategies or communication e�ciency.256

3. Theoretical costs of full and statically condensed systems257

In this section, a theoretical analysis of the main computational costs258

of the implicit time marching scheme are included. Algorithm 1 presents259

the essential steps of the time marching scheme to conduct the simulation260

until the finalisation criteria is met. We focus only in three main steps that261

constitute the majority of the computational costs, i.e.:262

• Step 8: cost for obtaining the statically condensed system A
cond

,263

• Step 9: cost for factorising (constructing and inverting) the precon-264

ditioning matrix P
�1. In the context of this work, it is the cost of265

factorising the element-diagonal blocks of the Jacobian system A or266

the condensed system A
cond

, which are then inverted and stored in the267

preconditioning matrix P
�1.268

• Step 13: cost for solving the linear system (4) for the full system or (6)269

18

for the condensed system, using the preconditioned-GMRES solver at270

each time step and as long as ||�Q||1 < TOLNewton.271

Algorithm 1 Time-marching scheme including Newton-Raphson linearisa-
tion
1: Q Initialise()
2: while Steady: ||M�1

F (Q)� S||1 < 10�8 or Unsteady: t < Tend do
3: t t+ �t
4: while ||�Q||1 < TOLNewton do
5: if InaccurateJacobian then
6: A ComputeFullSystJacobian(Q,�t)
7: if CondensedSystem then
8: A ComputeCondensedJacobian(A)

9: P
�1
 FactorisePreconditioner(A)

10: B ComputeFullSystRHS(�R(Q))
11: if CondensedSystem then
12: B ComputeCondensedRHS(A,B)

13: �Q GMRES-Solve(A,P�1,B)
14: if CondensedSystem then
15: �Q ComputeInteriorSolution(A,�Q,B)

16: Q = Q+ �Q

Step 13 solves the linear system using preconditioned-GMRES (further272

discussed below) and one must account for its cost in every Newton iteration273

and for every time step. Steps 5 to 9 need to be computed when the Jaco-274

bian matrix A(Q,�t) (or the condensed version), has significantly changed,275

which leads to a quasi-Newton method. Naturally, re-using the Jacobian276

matrix from the previous time steps may inhibit quadratic convergence of277

the Newton-Raphson method [57]. To ensure a su�ciently high convergence278

rate, we follow ideas from Zahr and Persson [58] and define a condition that279

19

secures at least 1/4 of an order of magnitude decay per Newton iteration (see280

step 5 of Algorithm 1). Therefore, if the aforementioned condition is met, the281

Jacobian A and preconditioner P�1 are still useful and are not recomputed.282

In all the simulations, the Newton tolerance is set to TOLNewton = 10�5,283

which yields accurate results. Furthermore, as in Nastase and Mavriplis [59],284

the preconditioned-GMRES solver tolerance is set according to the maximum285

norm of the residual, e, such that TOLGMRES = e ·0.7i, where i is the current286

Newton iteration.287

Sections 3.1, 3.2 and 3.3 present the estimation of the computational costs288

related to the static condensation (Step 8), the preconditioner factorisation289

(Step 9) and the GMRES solver (Step 13). Subsequently, comparisons with290

the simulated costs are included in Section 4, and summarised in table 2.291

3.1. Cost of static condensation292

The necessary operations to obtain the condensed system (6) are detailed293

here:294

• Factorisation and inverting the block diagonal matrix representing inner-295

element A�1
ii
,296

• Computing A
�1
ii
A

ib
and assembling the RHS of the equation (6),297

• Computing the A
cond

= A
bb
�A

bi
A

�1
ii
A

ib
, equation (6),298

• Obtaining the solution for the interior nodes: �Qi = A
�1
ii
(Bi�Aib

�Qb).299

20

All of these operations are included in one unique cost, referred to as con-300

densation cost, in the following sections. These operations are performed in301

Step 8 in Algorithm 1. The only exceptions are obtaining the solution for the302

interior nodes, which is performed in step 15, and assembling the RHS of the303

equation (6), which is performed in step 12. The most computationally de-304

manding part of condensation is the factorisation of the inner-element matrix305

A
�1
ii
. It is known [60] that the standard factorisation (including LU decom-306

position) algorithms have a cost O(n3). Considering that the size of A
ii
can307

be described with equations (7) and (9), the resulting cost of factorising this308

matrix is NelN3
eq
(P � 1)9 in 3D and NelN3

eq
(P � 1)6 in 2D.309

The second important operation is the Sparse Matrix-Matrix multiplica-310

tions (SpGEMM). In our computations we rely on PETSc libraries to perform311

SpGEMM on compressed sparse row matrices. An upper bound for the cost312

of for matrix-matrix SpGEMM can be easily calculated assuming n matrix-313

vector SpMV. If the sparse matrix has nnz non-zero entries, then the matrix-314

matrix cost scales as O(n⇥nnz). This estimate is not optimal and improved315

algorithms can be found in the literature [61, 62, 63], but this upper bound is316

accurate enough to analyse our condensed costs. To compute the condensed317

system, we perform two SpGEMM operations to compute A
bi
A

�1
ii
A

ib
. We318

assume thatA�1
ii

has dense blocks of size nbii = Neq(P�1)d and that the num-319

ber of non-zeros is larger in A
�1
ii

than in the very sparse A
ib
(see Appendix320

C.27 for the estimation of the number of non-zeros in o↵-diagonal blocks of321

the Jacobian matrix, which scales as N2
eq
(P + 1)2(4P + 1)). Taking into ac-322

21

count that the size of the blocks of the Schur complement is nbbb = Neq(6P 2+323

2) in 3D and nbbb = Neq4P in 2D, we approximate the cost of the SpGEMM324

operation as O(NelN3
eq
(6P 2+2)(P � 1)6) in 3D and O(NelN3

eq
4P (P � 1)4) in325

2D. These upper bounds for matrix-matrix SpGEMM show that the inversion326

of the matrix A
�1
ii
, which scales as O((P � 1)9) in 3D and as O((P � 1)6) in327

2D is the dominant cost in calculating the Schur complement and obtaining328

the condensed system.329

Finally, let us note that the estimation for nnz in Appendix C provides an330

upper bound that assumes full coupling between conservative variables. The331

real non-zero entries of A
bi
and A

ib
have few non-zeros, therefore in practical332

computations one would always expect a lower computational costs.333

3.2. Cost of factorising the preconditioner334

After computing the condensed system A
cond

in Algorithm 1 (step 8), we335

compute the preconditioner (step 9). As mentioned in section 2.4, we employ336

an element Block-Jacobi preconditioner to speed-up the convergence. If the337

full system (4) is considered, we factorise the whole element-blocks of matrix338

A of size Nelnb, which has an operation count of NelN3
eq
(P + 1)9 in 3D and339

NelN3
eq
(P + 1)6 in 2D. If the condensed system is considered, we factorise340

the skeleton-element blocks of matrix A
cond

of size Nelnbbb, which has a cost341

NelN3
eq

⇥
(P + 1)d � (P � 1)d

⇤3
. This can be simplified to NelN3

eq
(6P 2 + 2)3342

in 3D and NelN3
eq
(4P)3 in 2D. The cost of factorising the preconditioner343

is henceforth referred to as preconditioner cost. At this stage, we can al-344

22

ready foresee that the cost of preconditioning the condensed system is much345

cheaper, since it scale as O(P 6) whilst for the full the cost scales as O(P 9).346

Pardo et al. [24] concluded that their hp-FEM static condensation im-347

plementation for single, linear, second order PDE was computationally more348

e�cient than the full system of equations when the number of iterations is349

high enough, since shorter times per iteration compensate the condensation350

cost. For time-dependent problems, like the compressible flow simulations351

considered here, this cost becomes even less important, as we can store the352

condensed matrix (in our matrix-based approach) and re-use it.353

3.3. Cost of the preconditioned-GMRES solver354

Step 13 in Algorithm 1 is detailed in Algorithm 2 where a preconditioned355

version of GMRES developed by Saad and Schultz [64] is presented. This is356

implemented in the PETSc library [49, 50, 51] and has been used in this work.357

In Algorithm 2, R and V represent the residual and its normalised version.358

m is dimension of the Krylov subspace W
m

with orthonormal vectors Wj359

and H
m
is the reduced Hessenberg matrix. A, �Q and B represents either360

the full Jacobian matrix A, approximate solution �Q and the right had361

side (RHS) B for the full system. Alternatively, when the condensed system362

is solved, we use the condensed Jacobian A
cond

, �Qb and condensed RHS363

Bcond.364

23

Algorithm 2 Preconditioned GMRES-Solver

1: function GMRES-Solve(�Q,A,P�1,B)
2: R0 B�A�Q
3: V1 R0/||R0||2

4: for j = 1, ...,m do
5: Zj P

�1Vj

6: W AZj

7: H
i,j
 WTVi, i = 1, ..., j

8: W W �
P

j

i=1 H i,j
Vi

9: W H
j+1,j/||W||2

10: Vj+1 W/H
j+1,j

11: �Q �Q+Z
m
Ym, where Ym minimizes ||�e1 �H

m
Y||

12: return �Q

The main costs within the GMRES iterative solver, arise from Sparse365

Matrix-Vector products (SpMV) (see steps 5 and 6 of Algorithm 2), which366

are governed by the number of non-zero entries nnz [65], in matrices P�1 and367

A [65]. Note that each nnz performs one multiplication and one addition, and368

we omit operation counts related to loading/storing variables. In addition to369

SpMV operations, GMRES also incorporates a large amount of purely vector370

operations (mainly dot products used to update the Hessenberg matrix, step371

in Algorithm 2). Their cost is proportional to the matrix size n, and have372

typically lower cost than sparse matrix-vector products. Therefore we focus373

only on SpMV operations.374

The cost of Jacobian-SpMV (Step 6) is a function of nnzfull for full system375

A and nnzcond for the condensed system A
cond

. In Appendix C, we have376

detailed the derivation of an upper bound for the number of non-zero entries377

for the Jacobian DGSEM matrix, see table 1 and Appendix C. Similarly, we378

24

also express the number of non-zero entries in the condensed matrix nnzcond,379

see equation (C.30) in Appendix C. This enables the calculation the costs of380

step 6: Precondition-SpMV Z = P
�1V and Jacobian-SpMV W = AZ in381

terms of (P,Neq, d), as summarised in Table 2. Since the preconditioner is a382

locally dense matrix (block diagonal part is dense, while the o↵-diagonal parts383

are empty), we can bound the number of non-zero entries by the number of384

total entries in the diagonal blocks nnz = Nelnb2. Therefore, the cost of the385

preconditioner-SpMV Z = P
�1V, presented in step 5 in Algorithm 2 can be386

expressed as NelN2
eq
(P+1)6 in 3D and NelN2

eq
(P+1)4 in 2D, if the full system387

is considered. For the condensed system, the costs are NelN2
eq
(6P 2 +2)2 and388

NelN2
eq
16P 2 for 3D and 2D, respectively. The main preconditioned-GMRES389

costs are included in Table 2.390

These estimates show asymptotic advantages for the condensed system,391

as P increases, for the two main steps within the preconditioned GMRES392

solver, further discussion can be found in the next section. In Section 4,393

Figures 2a and 6a report measured computational costs of GMRES in detail394

for the range of polynomial orders P = 2, ..., 8. The cost of GMRES (step395

13 in Algorithm 1) is referred to as solver cost, in the following sections.396

3.4. Summary of computational costs397

Table 2 presents a summary of the estimated costs for the essential oper-398

ations considered in the time stepping algorithm Algorithm 1, including the399

preconditioned-GMRES main steps. The biggest computational e↵ort relates400

25

to the factorisation of element-blocks needed to factorise the preconditioner401

for the full system and inner-element matrix A
ii
for the Schur complement,402

both scaling as O(P 9). As shown in the Table 2, factorising the blocks for the403

condensed preconditioner has a significant lower cost O(P 6). Similarly, the404

main GMRES steps favor from the use of static condensation. In 3D, both405

steps scale as O(P 4) for the condensed system, whilst they scale as O(P 5)406

and O(P 6) for the full system. These advantages are also expected in 2D407

simulations.408

Table 2: Summary of the estimated leading costs of main operations in Algorithm 1 for

2D and 3D. Full and condensed systems are included.

3D

Full system Condensed system

A
�1
ii - NelN3

eq(P � 1)
9

SpGEMM - NelN3
eqP

8

P
�1 NelN3

eq(P + 1)
9 NelN3

eqP
6

GMRES Az NelN2
eqP

5
25NelN2

eqP
4

GMRES P
�1v NelN2

eq(P + 1)
6 NelN2

eq6P
4

2D

Full system Condensed system

A
�1
ii - NelN3

eq(P � 1)
6

SpGEMM - NelN3
eqP

5

P
�1 NelN3

eq(P + 1)
6 NelN3

eq64P
3

GMRES Az NelN2
eqP

4
13NelN2

eqP
2

GMRES P
�1v NelN2

eq(P + 1)
4 NelN2

eq16P
2

In Section 4, we study the di↵erence in computational costs for both,409

full and condensed Block-Jacobi preconditioners. There simulated costs are410

compared to the summarised estimated. We present the results in Figures 3a411

and 7a together with the condensation costs. Finally, we note that the use of412

26

block preconditioners, that exploit the structure of DGSEM, has proven to be413

an important part in obtaining faster convergence rates for DG based solvers414

[33, 31, 32, 35, 36]. It has been advocated that Block-Jacobi preconditioner415

do not scale well in DG, which is indeed the case for the full system, since416

the block size scales with (P +1)3, and associated cost O(P 9). However, the417

static condensed block size scales with 6P 2 + 2 with costs O(P 6) in 3D and418

with 4P and cost O(P 3) in 2D, which renders Block-Jacobi preconditioner an419

interesting scalable preconditioner for the condensed GL-DGSEM approach.420

4. Numerical results421

We consider two test cases: a 3D manufactured solution and a 2D flow422

over NACA0012 airfoil at a high Angle of Attack (AOA) leading to an un-423

steady regime. The manufactured solution case illustrates the use of implicit424

time-marching solvers to reach a steady state solution, whilst the NACA0012425

test case quantifies the improved cost in an unsteady flow simulation, with426

vortex shedding. The Mach number is set to Ma=0.1 for manufactured solu-427

tion problem (other Ma and Re can be found in Appendix A) and Ma=0.3428

for the NACA cases. For all the steady cases, we fix the final residual of the429

simulations to ||M
�1
F (Q) � S||1 = 10�8 (see Algorithm 1) such that we430

compare the various schemes for the same accuracy.431

The objective of the test cases is to validate the theoretical findings pre-432

sented in the previous section. Therefore the main costs of the time marching433

scheme (see Algorithm 1) are compared with the theoretical cost estimations434

27

(summarised in Table 2) for the two test cases. Additionally, the total cost435

to perform the simulations is included, to quantify the overall e�ciency of436

the implicit statically condensed system compared to the full system.437

4.1. Steady simulation: Manufactured Solution438

The manufactured solution case is obtained by selecting an exact solution439

to the compressible Navier-Stokes equations:440

⇢ = p = e�5·(4(x� 1
2)

2+(y� 1
2)

2+(z� 1
2)

2) + 1,

u = v = w = 1,
(11)

to then extract the balancing source terms:441

s =

2

66666666664

s⇢

s⇢u

s⇢v

s⇢w

s⇢E

3

77777777775

=

2

666666666664

40(x� 1
2) + 10(y � 1

2) + 10(z � 1
2))

80(x� 1
2) + 10(y � 1

2) + 10(z � 1
2))

40(x� 1
2) + 20(y � 1

2) + 10(z � 1
2))

40(x� 1
2) + 10(y � 1

2) + 20(z � 1
2))

⇥
40(x� 1

2) + 10(y � 1
2) + 10(z � 1

2)
⇤ h

5
2 +

1
��1

i

3

777777777775

·

· e�5(4(x� 1
2)

2+(y� 1
2)

2+(z� 1
2)

2).

(12)

We select the computational domain to be a [0, 1]3 cube with 64 hexa-442

hedral uniform elements. The solutions to the compressible Navier-Stokes443

equations (1) with the source term (12) can be seen in the Figure 1. Neither444

28

Figure 1: 3D Manufactured Solution: Solution of x-momentum ⇢u for a mesh of 64 hex-

ahedral and polynomial order P=8. Figure a) 3D view, Figure b.1) and b.2) show cross-

sections of yz and xy planes, respectively.

Mach nor Reynolds numbers have an impact on the final solution, however,445

both those parameters have a strong influence on the numerical scheme. We446

set the Reynolds number to Re = 1000 and the Mach to Ma = 0.1, but447

results for other Re and Ma can be found in Appendix B. The time-step448

size in the implicit computations is set �t = 0.1 for all the polynomial orders449

and both systems.450

Table 3 presents a summary of the conducted simulations for the full and451

condensed systems. We include the number of Jacobian updates iJac (iden-452

tical for both full and condensed systems), the averaged number of Newton453

iterations per one time step iNewton
i�t

, the averaged number of GMRES itera-454

tions per one Newton solve iGMRES
iNewton

along with number of non-zero entries in455

full nnzfull and condensed nnzcond systems. We observe that the number of456

29

Newton iterations per one time step iNewton
i�t

is constant for all polynomials457

and almost identical for the full and condensed system, consequently with us-458

ing the same number of Jacobian updates in the full and condensed systems.459

The averaged number of GMRES iterations per one Newton solve iGMRES
iNewton

,460

increases when using higher polynomial orders, scales similarly for both full461

and condensed systems. We also observe that the number on non-zeros is462

larger for the condensed system. This is not the expected behaviour for high463

polynomials, but due to the tight coupled stencil of the condensed system,464

this can be expected for low polynomial orders.465

Table 3: 3D Manufactured Solution: Number of Jacobian updates iJac (identical for both

full and condensed systems), averaged number of Newton iterations per one time step
iNewton

i�t
and averaged number of GMRES iterations per one Newton solve

iGMRES
iNewton

along

with number of non-zero entries in full nnzfull and condensed nnzcond systems. For all

cases considered in the table number of time steps needed to reach the steady state is

i�t = 50, for polynomial orders P = 2, .., 8.

Full system Condensed system Nonzero entries

P iJac
iNewton

i�t

iGMRES
iNewton

iNewton
i�t

iGMRES
iNewton

nnzfull nnzcond

2 3 6.4 3.5 6.4 3.5 6.5⇥10
5

1.2⇥10
6

3 3 6.1 4.4 6.1 4.4 2.2⇥10
6

6.6⇥10
6

4 3 5.9 5.7 6.1 5.5 6.0⇥10
6

2.2⇥10
7

5 3 6.1 6.7 6.1 6.5 1.3⇥10
7

5.6⇥10
7

6 4 6.3 7.7 6.4 7.6 2.8⇥10
7

1.2⇥10
8

7 4 6.5 8.6 6.6 8.5 5.3⇥10
7

2.2⇥10
8

8 5 6.6 10.0 6.6 9.9 9.4⇥10
7

3.9⇥10
8

Although the averaged linear solver iteration count is the same for both466

systems, this can be interpreted as an advantage of using static condensation467

with the cheaper skeleton-element Block-Jacobi. The similar iteration count468

has been observed in the past [24, 66] for finite element formulations (and469

30

moderate polynomials P). There, the authors argued that even if the condi-470

tion number of condensed Jacobian scales much better with P , the spectral471

radius of the iteration matrix, with a good preconditioner, is very similar for472

both systems, leading to similar number of iterations. Coherently with the473

findings of the aforementioned publications, we find almost the same number474

of iterations for full and condensed systems, but the latter being cheaper due475

to its smaller size, see Figure 2b.476

The table is completed with Figures 2 and 3, where the total GMRES cost,477

the averaged solver cost per one linear system solve, the timing of factorising478

the preconditioner and the total simulation cost are depicted for the full479

and condensed systems and for polynomial orders P = 2, .., 8. The figures480

include the slopes for the theoretical estimates found in previous sections.481

Figure 2a splits the solver costs into the two main preconditioned-GMRES482

solver steps: preconditioner-SpMV TP�1v and Jacobian-SpMV TAz. Note483

that the rest of the GMRES costs are negligible. As estimated in Section 3,484

TAz is larger for the condensed system due to higher number of non-zeros nnz,485

however the preconditioner-SpMV TP�1v is much cheaper and compensates486

TAz, which results in faster overall iterations. Additionally, the advantage of487

using static condensation in terms of solver costs becomes more noticeable488

for high polynomial orders. In all cases, the theoretical estimates are in good489

agreement with the numerical results.490

Figure 3 presents the factorisation costs of the preconditioner along with491

condensation cost and the total time of the simulation. The factorisation of492

31

the preconditioner matches well the theoretical estimates (see Table 2) for493

high enough polynomial orders. Discrepancies at low orders are attributed494

to the relatively small 3D problem considered and the e↵ect of boundary495

conditions. In any case, it can be seen that despite the cost of condensing the496

system, the solver cost benefits from the condensation (Figure 2b), leading to497

overall faster solves, which illustrates the beneficial e↵ect of using a condensed498

system for the higher polynomial orders.499

2 3 4 5 6 7 8
10

-2

10
0

10
2

10
4

6

1

4

1

(a)

2 3 4 5 6 7 8
10

-3

10
-2

10
-1

10
0

10
1

10
2

6

1

4

1

(b)

Figure 2: 3D Manufactured Solution: a) Total cost of the GMRES split in two major

operations (in seconds) and b) Averaged GMRES solver cost (in seconds) per one linear

system solve, for full and condensed systems for polynomial order P = 2, .., 8. Theoretical
slopes are included depicted with a triangle.

32

2 3 4 5 6 7 8
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

9

1

6

1

(a)

2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

6

1

4

1

(b)

Figure 3: 3D Manufactured Solution: a) Timing of factorising the preconditioner (in

seconds) and b) Total simulation cost (in seconds) to reach a tolerance 1 ⇥ 10
�8

for the

full and condensed systems for P = 2, .., 8. Theoretical slopes are included depicted with

a triangle.

For completeness, we include a brief study for this problem, in Ap-500

pendix B, for a range of Mach numbers, 0.1Ma0.8 and Reynolds numbers,501

200Re1000 and show that the advantages of the static condensation are502

maintained for a wide range of flow conditions, and for a variety of polynomial503

orders.504

4.2. Unsteady simulation: NACA0012 at AOA = 20o505

In this section, we challenge the static condensation technique for un-506

steady flows with application to aerodynamics. We simulate an unsteady507

NACA0012 case using a 2D computational squared domain of size 20 ⇥ 20508

chords, with 1730 quadrilateral elements. Figure 4 depicts the h-mesh (in509

black) and the Gauss-Lobatto mesh (in gray) near the NACA0012 airfoil,510

and also the contours of x-momentum for the wake flow. To trigger vortex511

33

shedding and study the performance of the implicit time-marching method512

for unsteady regimes, we set the Reynolds number to Re=200 and the angle513

of attack to AOA = 20o (see Figure 4).514

In steady problems, one of the main advantages of implicit time-integration515

schemes is that it is possible to increase the time-step size several orders of516

magnitude without losing accuracy or a↵ecting stability [67]. However, in517

unsteady simulations the time-step size is bounded by accuracy constraints.518

This means that the time step in the implicit time-marching schemes has519

to be low enough to capture the physics of the problem, hence the perfor-520

mance of implicit time-marching schemes depends on the underlying physical521

problem at hand. In NACA0012, the characteristic physical time (one vortex522

shedding cycle) is 200 times larger than the time step selected for the implicit523

time-marching scheme. This restriction precludes the use of very large time524

steps in implicit solvers. For this reason, in the unsteady case, the implicit525

time step as been restricted to maintain accuracy (as shown in Figure 5). The526

time-step size in the explicit computations (ERK3), provided as reference for527

accuracy, is limited to �t = 2.0⇥ 10�5, which is the maximum permitted by528

stability constraints for P = 5. In contrast, the time-step size in the implicit529

computations is set to �t = 1.0 ⇥ 10�2, which is su�ciently low to capture530

the flow features accurately.531

In this section, we show that the statically condensed DGSEM is able to532

outperform the standard full system for the same step size and that both533

methods provide accurate results. We provide results using an explicit RK3534

34

Figure 4: Unsteady 2D NACA0012: unsteady flow at Re=200 and AOA = 20
o
. Zoomed

regions showing h-mesh (in black) and Gauss-Lobatto mesh (in gray) in a) and wake flow

field in b). All figures include x-momentum contours.

scheme as a reference. The comparison shows that the additional operations535

necessary to calculate the Schur complement, in the condensed system, do536

not damage the accuracy of the final solution with round-o↵ errors.537

Before proceeding with the costs, we present comparisons for the schemes538

in terms of accuracy, in Table 4. We simulate the unsteady flow for 10 vortex539

shedding cycles and compute mean lift, mean drag, and the Strouhal number.540

Let us note that once the polynomial order is fixed, the di↵erences in mean541

lift, mean drag and Strouhal are negligible (i.e. below 10�5) when using542

di↵erent time-marching schemes.543

For completeness, Figure 5 depicts drag and lift curves for P = 3, com-544

puted with the explicit and implicit methods. We observe that explicit and545

implicit results match remarkably well, illustrating that there is no loss of546

accuracy when using implicit time-marching with moderate time steps.547

35

Table 4: Unsteady 2D NACA0012: Time step, mean drag, mean lift and Strouhal number

St; for explicit (ERK3) and implicit solver (GMRES) and polynomial orders P = 2, 3, 4, 5.

P = 2 P = 3

ERK3 BDF2 full BDF2 cond. ERK3 BDF2 full BDF2 cond.

�t 2.7⇥10
�5

1.0⇥10
�2

1.0⇥10
�2

2.7⇥10
�5

1.0⇥10
�2

1.0⇥10
�2

Mean Drag 0.4383 0.4383 0.4383 0.4342 0.4342 0.4342

Mean Lift 0.6753 0.6753 0.6753 0.6677 0.6677 0.6677

St 0.3535 0.3530 0.3530 0.3565 0.3565 0.3565

P = 4 P = 5

ERK3 BDF2 full BDF2 cond. ERK3 BDF2 full BDF2 cond.

�t 2.7⇥10
�5

1.0⇥10
�2

1.0⇥10
�2

2.7⇥10
�5

1.0⇥10
�2

1.0⇥10
�2

Mean Drag 0.4345 0.4345 0.4345 0.4342 0.4342 0.4342

Mean Lift 0.6664 0.6664 0.6664 0.6651 0.6651 0.6651

St 0.3577 0.3576 0.3576 0.3558 0.3558 0.3558

865 866 867 868 869

Physical Time [s]

0.4338

0.434

0.4342

0.4344

0.4346

D
ra

g

GMRES

ERK3

(a)

865 866 867 868

Physical Time [s]

0.664

0.666

0.668

0.67

0.672

L
if

t

GMRES

ERK3

(b)

Figure 5: Unsteady 2D NACA0012: Close-up comparison of explicit and implicit results

for drag and lift for a single shedding cycle.

36

We now explore the di↵erent costs. Table 5 shows detailed information548

about number of Jacobian updates iJac, the averaged number of Newton549

iterations per one time step iNewton
i�t

and averaged number of GMRES itera-550

tions per one Newton solve iGMRES
iNewton

. As in the previous Manufactured Solu-551

tion problem, conducting the simulation based on a smaller (but with more552

non-zeros) Jacobian matrix has almost no impact in the number of Newton553

iterations. Also like in the previous steady-state case, the averaged num-554

ber of GMRES iterations is similar for both systems, but the iterations are,555

again, more e�cient for the condensed system (Figure 6b). Unlike in the556

previous problem, the solver set-up costs (factorisation and condensation)557

do not constitute a big portion of the total simulation time, see Figure 7a,558

thus the advantage for the condensed system is clearly seen in Figure 7b.559

This is due to the fact that the Jacobian matrix is updated less frequently in560

this problem, and therefore the relative cost of the solver set-up in the total561

simulation cost is smaller. For this particular test case and range of poly-562

nomial orders, the solver set-up cost for the full system is cheaper than the563

theoretical prediction. However, it is still more costly than the condensation564

cost.565

It can be seen that the static-condensation method provides the same566

accuracy up to given tolerance as the full system, but it is up to 40 % faster567

for the highest polynomial orders (P = 4, 5). As in the previous section,568

we also present the detailed results of the solver cost, Figures 6a and 6b.569

Again, the condensed system has more non-zeros nnz (Table 5), but the faster570

37

preconditioner-SpMV compensates this cost and leads to faster simulations.571

Theoretical and measured preconditioner-SpMV operations for both systems572

agree well.573

Finally, we can conclude that our static condensation time-marching574

method is more e�cient for large polynomials, than the full system tech-575

nique, even for unsteady problems, whilst providing accurate results.576

Table 5: Unsteady 2D NACA0012: Number of Jacobian updates iJac (computed only once

and identical for both full and condensed systems), averaged number of Newton iterations

per one time step
iNewton

i�t
and averaged number of GMRES iterations per one Newton

solve
iGMRES
iNewton

along with number of non-zero entries in full nnzfull and condensed nnzcond
systems. For all cases considered in the table number of time steps needed to compute

one cycle is i�t = 280, for polynomial orders P = 2, .., 5.

Full system Condensed system Nonzero entries

P iJac
iNewton

i�t

iGMRES
iNewton

iNewton
i�t

iGMRES
iNewton

nnzfull nnzcond

2

1

5.5 5.0 5.5 5.0 1.9⇥10
7

4.9⇥10
7

3 11.2 10.0 11.1 9.8 4.5⇥10
7

1.2⇥10
8

4 11.7 11.7 11.7 11.5 9.0⇥10
7

2.4⇥10
8

5 11.6 13.5 11.6 13.2 1.5⇥10
8

3.9⇥10
8

38

2 3 4 5
10

2

10
3

10
4

10
5

10
6

4

1

2

1

(a)

2 3 4 5

10
0

10
1

4

1

2

1

(b)

Figure 6: Unsteady 2D NACA0012: a) Total cost of the GMRES split in two major

operations (in seconds) and b) Averaged GMRES solver cost (in seconds) per one linear

system solve, for the full and condensed systems for P = 2, .., 5. Theoretical slopes are

included depicted with a triangle.

2 3 4 5
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

6

1

2

1

(a)

2 3 4 5
10

3

10
4

10
5

4

1

2

1

(b)

Figure 7: Unsteady 2D NACA0012: a) Timing of factorising the preconditioner and b)

Total simulation cost (in seconds) to complete one shedding period for full and condensed

systems for P = 2, .., 5. Theoretical slopes are included depicted with a triangle.

5. Conclusion577

We have analysed the advantages of performing static condensation on the578

compressible Navier-Stokes equations discretised with DGSEM and Gauss-579

39

Lobatto points. The work focuses on the implicit preconditioned-GMRES580

time discretisations, and we have compared computational costs of solving581

the standard full Jacobian system to the static condensation technique for582

GL-DGSEM, detailed in Rueda-Ramı́rez et al. [1], both preconditioned us-583

ing Block-Jacobi. To allow for fair comparisons, we split the costs into three584

categories: computation of the preconditioner, condensation costs for the585

statically condensed system and the solver GMRES cost to solve the full and586

condensed systems. We compare our numerical results with theoretical com-587

putational costs (Table 2), which include unpublished estimates for DGSEM.588

The theoretical estimates agree well with our simulations and provide solid589

bases for understanding the di↵erent costs involved.590

For all cases included (steady-state 3D Manufactured Solution and un-591

steady 2D NACA0012), the static condensation shows accelerations (for large592

polynomial orders) due to the significantly faster solver time per single linear593

system solve. The accelerations are up to 30% for the Manufactured Solution594

and up to 40% for NACA0012 case, for the highest polynomial considered.595

Block-Jacobi preconditioner do not scale well with the polynomial order,596

which is indeed the case for the full system, since the element block Jacobian597

scales with (P + 1)3. However, we have shown that the statically condensed598

block size scales with 6P 2 + 2 in 3D and with 4P in 2D, which renders599

Block-Jacobi preconditioner an interesting preconditioner for the condensed600

GL-DGSEM approach. Let us note that recent sum-factorisation techniques601

have been developed for high polynomials in discontinuous [48] and continu-602

40

ous Galerkin [68] approaches hat decrease cost of factorising the blocks and603

show improved scalings for Block-Jacobi preconditioners. In the future, this604

approach may be applied to decrease the computational cost of condensed605

systems to further enhance the presented methodology. One drawback as-606

sociated to the statically condensed system is the additional cost related to607

assembling the Schur complement (see Section 2.2 for more details). How-608

ever, this cost is not high enough to mask the advantages of using static609

condensation, for high polynomial orders.610

This manuscript compares iterative time-marching methods in serial, to611

avoid discrepancies due to parallelisation when comparing implicit tech-612

niques. Taking into account that Block-Jacobi preconditioners can be eas-613

ily parallelised, we expect that future parallel implementation will lead to614

cheaper parallelised costs and less communication that when using the full615

system, as well as lower memory requirements. Future work, will assess616

the improvements in performance of implicit schemes (and especially of the617

static condensation methods) in many-core parallel environments and with618

more sophisticated preconditioners, including multilevel p-multigrid, specifi-619

cally tailored for statically condensed systems.620

Acknowledgements621

Wojciech Laskowski and Esteban Ferrer would like to thank the Euro-622

pean Union’s Horizon 2020 Research and Innovation Program under the623

Marie Sk lodowska-Curie grant agreement No 813605 for the ASIMIA ITN-624

41

EID project. Additionally, Andrés Rueda-Ramı́rez acknowledges the fund-625

ing received by the project SSeMID under the Marie Sk lodowska-Curie grant626

agreement No 675008. Gonzalo Rubio acknowledges the funding received627

by the grant Ayudas dirigidas al PDI para el fomento de la participación628

en solicitudes de proyectos H2020 from Universidad Politécnica de Madrid.629

Finally, the authors gratefully acknowledge the Universidad Politécnica de630

Madrid (www.upm.es) for providing computing resources on Magerit Super-631

computer. Finally, the authors thank the reviewers for suggesting a deeper632

analysis by means of theoretical estimates, which have clearly improved the633

manuscript.634

Appendix A. Preliminary assessment of preconditioners635

In this section, we perform a preliminary study to assess the e�ciency636

of several preconditioners: Block Jacobi and Incomplete LU (i.e. ILU(0),637

ILU(1) and ILU(2)). We compare the e↵ect of the preconditioning and re-638

ordering in both the full and statically condensed systems.639

For this preliminary selection, a manufactured with 8 hexahedral elements640

is selected. This case is smaller that the one considered in Section 4.1. We641

also increased the tolerance for the linear solver to TOLGMRES = e · 0.3i642

along with decreasing time step to dt = 1e�2 for more accurate results. The643

source term and rest of the parameters are maintained and can be found in644

Section 4.1.645

Figure A.8.a, Figure A.8.b and Figure A.8.c show the average number of646

42

iterations per Newton-Raphson step, the average solver cost and the cost of647

factorising the preconditioner. As can be seen in Figure A.8.a, even the sim-648

plest preconditioners considered (Block-Jacobi and ILU(0)) keep the average649

number of iterations low, even for high polynomial orders. The number of650

iterations remains unaltered by the use of static condensation. Figures A.8.b651

and A.8.c show the averaged solver cost and factorisation cost. Both of them652

present shorter times for the condensed system than for the full system. The653

di↵erence between full and condensed systems, in the cost of factorisation for654

ILU(k), increases when increasing the filling k, as expected for more evolved655

preconditioners, but we note that the cost is lower for the condensed system,656

since the system size is smaller. Also the di↵erence between the full and the657

condensed system in the average solver cost increases for ILU(k) for higher658

fillings k. Again, the condensed system cost is smaller.659

From this preliminary analysis, we have chosen the Block-Jacobi for the660

rest of the paper. The reason is that, although non being optimal in terms661

of average iteration count, it presents a low memory cost, takes advantage662

of the element structure in DGSEM and can be easily parallelised, therefore,663

the results with element Block-Jacobi may provide better bases for further664

research.665

43

2 3 4 5
0

5

10

15

2 3 4 5

10
-2

10
0

2 3 4 5

10
-2

10
0

Figure A.8: a) Averaged iteration count (per linear system solve), b) averaged solver cost

(per linear system solve) and c) factorisation cost of various types of preconditioners:

Block-Jacobi, ILU(0), ILU(1), ILU(2).

44

Appendix B. Influence of Mach and Reynolds666

2 3 4 5 6 7 8
2

4

6

8

10

12

14

(a)

2 3 4 5 6 7 8
0

5

10

15

20

(b)

Figure B.9: Influence of a) Mach number (Ma) and b) Reynolds number (Re) on averaged

number of iterations. All the di↵erent cases for Mach number were simulated with Re =

1000. The Reynolds study was conducted using Ma = 0.1.

In this section, we compare full and statically condensed systems for a667

range of Mach numbers, 0.1Ma0.8 and Reynolds numbers, 200Re1000.668

We use Block-Jacobi preconditioning for all cases.669

Figure B.9 depicts iteration count for three di↵erent Mach numbers B.9a670

and three di↵erent Reynolds numbers B.9b. As expected, an increase in671

the Mach number (in the subsonic range) or in the Reynolds number, has672

a positive impact on the averaged iteration count for both condensed and673

full systems. We have not observed significant di↵erences in computational674

e�ciencies. In most cases, the static condensation provided very similar675

speed-up as depicted in the Figures 2 and 3. Overall, the static condensation676

system shows small improvements, over the full system, for this test case.677

45

Appendix C. Estimation of non-zero entries in the Jacobian Ma-678

trix679

The number of non-zero entries in the Jacobian matrix of a DGSEM680

discretisation depends on the nodes chosen (Gauss or Gauss-Lobatto), on the681

specifics of the flux (whether it has advection and/or di↵usion terms), and682

on the surface numerical fluxes used. In this section, we derive the analytical683

expressions for the number of non-zero entries in the Gauss-Lobatto DGSEM684

Jacobian matrix for systems of nonlinear conservation laws with advection685

and di↵usion terms, and surface numerical fluxes with compact support, as686

these are the subjects of the present study.687

To facilitate the analysis, we will note the number of non-zero entries in a688

single diagonal block of the Jacobian matrix as nnzd, and the number of non-689

zero entries in a single o↵-diagonal block as nnzo. These expressions should690

be considered as an upper bound, since the number of non-zeros might be691

smaller due to the nonlinearities of the problem or the specific properties of692

the curvilinear mapping, as will be evident in next sections.693

A system of nonlinear conservation laws reads

@tq+ ~r ·

⇣$
fa �

$
f⌫
⌘
= 0, (C.1)

where q is the state vector of conserved quantities,
$
fa is the advective flux,694

and
$
f⌫ is the di↵usive flux. Let us analyse the advection and di↵usion terms695

separately.696

46

Appendix C.1. Advection terms697

Given a DGSEM discretisation of the advection terms in (C.1), an entry

in the diagonal block that connects degrees freedom h and w of a specific

element reads [44, 1]

DTa

hw
= �

Z

⌦

(Ja�)w·~r�hd⌦+

I

@⌦

f̂aq+�w�hdS+

I

@⌦\�
f̂aq�q�

q+�w�hdS, (C.2)

where ⌦ is the domain of the element where the degrees of freedom h and w698

are located, @⌦ is the boundary of that domain, @⌦ \ � is the part of that699

boundary that belongs to a physical boundary, Ja = @
$
fa/@q is the Jacobian700

of the advective flux, �w and �h are the basis functions that correspond to701

the degrees of freedom w and h, q+ and q� are the inner and outer solutions702

on an element boundary, respectively, f̂a is the so-called (advective) surface703

numerical flux, f̂aq± is its Jacobian with respect to the solution on the element704

boundary, and q�
q+ is the Jacobian of the boundary condition.705

The first term of (C.2) generates the densest sparsity. This term can be

rewritten using the contravariant fluxes [69] as

(Ja�)w · ~r�h = (J̃
a

�)w · ~r⇠�h

| {z }
Contravariant form

= (J̃
a

1�)w
@�h

@⇠
+ (J̃

a

2�)w
@�h

@⌘
+ (J̃

a

3�)w
@�h

@⇣
,

(C.3)

where ~⇠ = (⇠, ⌘, ⇣) are the coordinates on a reference element ⌦⇠ = [�1, 1]3

47

that is mapped to physical space with high order polynomials

⌦⇠

~x(~⇠)
��! ⌦. (C.4)

The degrees of freedom indexes h and w can be replaced by the tensor

product coordinate indexes h (i, j, k) and w (r, s, t). This allows us

to rewrite the basis functions as a tensor product combination of Lagrange

interpolating polynomials,

�h(~x(~⇠)) = `⇠
i
(⇠)`⌘

j
(⌘)`⇣

k
(⇣) (C.5)

�w(~x(~⇠)) = `⇠
r
(⇠)`⌘

s
(⌘)`⇣t (⇣). (C.6)

As a result, (C.3) can be rewritten as

(J̃
a

�)w · ~r⇠�h =(J̃
a

1)rst
@`⇠

i

@⇠
`⇠
r
`⌘
s
`⌘
j|{z}

�sj

`⇣t `
⇣

k|{z}
�tk

+(J̃
a

2)rst
@`⌘

j

@⌘
`⌘
s
`⇠
r
`⇠
i|{z}

�ri

`⇣t `
⇣

k|{z}
�tk

+(J̃
a

3)rst
@`⇣

k

@⇣
`⇣t `

⇠

r
`⇠
i|{z}

�ri

`⌘
s
`⌘
j|{z}

�sj

, (C.7)

where � is Dirac’s delta function. Equation (C.7) only takes non-zero values

if

(s = j and t = k) or (t = k and t = k) or (s = j and r = i). (C.8)

48

In consequence, there are connectivities between each degree of freedom

h (i, j, k) and all degrees of freedom w (r, s, t) that lie along lines

of the reference element coordinates. These connectivities appear as non-

zero values in the Jacobian matrix, which leads to the following number of

non-zeros for the diagonal blocks:

nnza
d

����
2D

= N2
eq
(P + 1)2[2(P + 1)� 1]. (C.9)

nnza
d

����
3D

= N2
eq
(P + 1)3[3(P + 1)� 2]. (C.10)

An entry in the o↵-diagonal block that connects the degrees of freedom

h and w reads [44, 1]

ODTa

hw
=

I

@⌦\�
f̂aq���

w
�hdS, (C.11)

where ��
w

is the basis function that corresponds to the degree of freedom706

w, which belongs to an element that is a neighbor of ⌦ across the interface707

@⌦ \ �.708

It is evident that ODTa

hw
only takes non-zero values if h and w are both

degrees of freedom on the boundary @⌦ \ �. As a result, the number of

49

non-zero entries for each o↵-diagonal block reads

nnza
o

����
2D

= Neq(P + 1) (C.12)

nnza
o

����
3D

= Neq(P + 1)2 (C.13)

Appendix C.2. Di↵usion terms709

Neglecting the advective and time-dependent terms in (C.1), an entry

in the diagonal block that connects degrees freedom h and w of a specific

element reads [44, 1]

DT⌫

hw
=

Z

⌦

(J⌫�)w · ~r�hd⌦

+
(P+1)3X

m=1

1

Jm!m

✓Z

⌦

Gm�m · ~r�hd⌦

◆
·

✓
�

Z

⌦

�w
~r�md⌦

+

I

@⌦

q̂q+�w�m~ndS +

I

@⌦\�
q̂q�q�

q+�w�m~ndS

◆�

�

I

@⌦\�

⇣
f̂⌫q+�w + f̂⌫~rq+ · ~r�w

⌘
�hdS

�

I

@⌦\�

@ f̂⌫�
@q+

�w +
@ f̂⌫�

@~rq+
· ~r�w

!
�hdS, (C.14)

where J⌫ = @
$
f⌫/@q is the Jacobian of the di↵usive flux with respect to

q, Jm is the Jacobian of the mapping (C.4) at the node m, !m are the

quadrature weights for the volume integral, G = @
$
f⌫/@(~rq) is the Jacobian

of the di↵usive flux with respect to ~rq, q̂ is the numerical trace of the

solution on the element boundary, q̂q± is the derivative of this numerical

50

trace with respect to the solutions on the element boundary, ~n is the outward-

pointing normal vector on the boundary, f̂⌫q+ and f̂⌫
~rq+ are the Jacobians of the

viscous surface numerical flux with respect to the solution and its gradient,

respectively, and @ f̂⌫�/@q
+ and @ f̂⌫�/@(~rq

+) are the Jacobians of the viscous

surface numerical flux on the physical boundaries. Note that the terms with

the subscript � contain all the information of the boundary condition on the

viscous surface numerical flux:

@ f̂⌫�
@q+

= f̂⌫q+ + f̂⌫q�q�
q+ + f̂⌫~rq�(~rq

�)q+ , and (C.15)

@ f̂⌫�
@~rq+

= f̂⌫~rq+ + f̂⌫~rq�(~rq
�)~rq+ , (C.16)

The term first term of the summation in (C.14) is the one that generates

the densest sparsity, as it is the multiplication of two volume integrals. This

term can be expanded as

✓
densest

term

◆
=

(P+1)3X

m=1

1

Jm!m

✓Z

⌦

Gm�m · ~r�hd⌦

◆
·

✓
�

Z

⌦

�w
~r�md⌦

◆�

= �
(P+1)3X

m=1

1

Jm!m

✓Z

⌦

(G1�)m · ~r�hd⌦

◆✓Z

⌦

�w

@�m

@x
d⌦

◆

+

✓Z

⌦

(G2�)m · ~r�hd⌦

◆✓Z

⌦

�w

@�m

@y
d⌦

◆

+

✓Z

⌦

(G3�)m · ~r�hd⌦

◆✓Z

⌦

�w

@�m

@z
d⌦

◆�
.

(C.17)

51

The volume integrals on the left, that depend on the third-order tensors

Gm, imply two-point connectivities (as in (C.8)) for the degrees of freedom

m and h. The volume integrals on the right imply two-point connectivities

for the degrees of freedom w and m. In consequence, each degree of freedom

h (i, j, k) is connected with non-zeros with all degrees of freedom w

(r, s, t) that lie on the same ⇠� ⌘, ⌘� ⇣ and ⇠� ⇣ planes of reference element

coordinates. Hence, the number of non-zero entries for in the Jacobian matrix

in each diagonal block is

nnz⌫
d

����
2D

= N2
eq
(P + 1)4 (C.18)

nnz⌫
d

����
3D

= 3N2
eq
P (P + 1)4. (C.19)

It is important to point out that the sparsity pattern generated by (C.17)710

contains all the non-zero entries needed for the other di↵usive terms and711

for the advective terms. As can be seen, the di↵usive terms generate dense712

diagonal blocks in 2D.713

An entry in the o↵-diagonal block that connects the degrees of freedom

h and w reads [1]

ODT⌫

hw
=

(P+1)3X

m=1

1

Jm!m

✓Z

⌦

Gm�m · ~r�hd⌦

◆
·

✓I

@⌦\�
��
w
�m~ndS

◆�

�

I

@⌦\�

⇣
f̂⌫q���

w
+ f̂⌫~rq�

~r��
w

⌘
�hdS. (C.20)

52

In this case, both the summation term and the single surface integral of714

(C.20) play an important role in the sparsity of the o↵-diagonal blocks.715

Let us analyse the summation term first. The volume integral implies

two-point connectivities for the degrees of freedom m and h, and the surface

integral only takes non-zero values if the degrees of freedom w and m lie on

an element boundary. As a result, each degree of freedom h (i, j, k) is

connected with non-zeros with the degree of freedom (of a neighbor element)

w (r, s, t) that lies on the element boundary and on the same iso-⇠i line

as h. Therefore, the number of non-zeros due to the summation term is

nnz⌫
o

����
1,2D

= N2
eq
(P + 1)2. (C.21)

nnz⌫
o

����
1,3D

= N2
eq
(P + 1)3. (C.22)

The single surface integral in (C.20) is important for the sparsity pattern

since it contains the gradient of the basis functions on the neighbor element,

~r��
w
. This term can be written explicitly as

~r��
w
=

0

BBBB@

@�
�
w

@x

@�
�
w

@y

@�
�
w

@z

1

CCCCA
=

0

BBBB@

P
d

p=1
@�

�
w

@⇠p

@⇠p

@x

P
d

p=1
@�

�
w

@⇠p

@⇠p

@y

P
d

p=1
@�

�
w

@⇠p

@⇠p

@z

1

CCCCA
. (C.23)

Note that the sparsity pattern that this term generates depends on the

geometry mapping (@~⇠/@~x) and on the position of the degrees of freedom w

and h. For a general curvilinear mapping, the second term of (C.20) is zero

53

when h is not a degree of freedom on the element boundary or when

@��
w

@⇠
=

@��
w

@⌘
=

@��
w

@⇣
= 0. (C.24)

Therefore, for each h on the element boundary, there are non-zeros for the

degrees of freedom w of a neighbor element that are arranged along lines of

the reference coordinates. In summary, the number of non-zero entries for

each o↵-diagonal block due to the second term of (C.20) is

nnz⌫
o

����
2,2D

= N2
eq
(P + 1)[2(P + 1)� 1]. (C.25)

nnz⌫
o

����
2,3D

= N2
eq
(P + 1)2[3(P + 1)� 2]. (C.26)

Remark that the term that leads to the non-zero pattern (C.21) shares

some non-zeros with the term that leads to (C.25). Combining (C.21) and

(C.25), and accounting for the repeated non-zero entries, the total number

of non-zeros in an o↵-diagonal block is

nnz⌫
o

����
2D

= N2
eq
[P (P + 1) + (P + 1)[2(P + 1)� 1]]

= N2
eq
(P + 1)(3P + 1). (C.27)

nnz⌫
o

����
3D

= N2
eq

⇥
P (P + 1)2 + (P + 1)2[3(P + 1)� 2]

⇤

= N2
eq
(P + 1)2(4P + 1). (C.28)

54

Appendix C.3. Total number of non-zero entries716

The number of non-zero entries in the diagonal and o↵-diagonal blocks717

depends on the position of the element, i.e. both blocks are more dense718

for interior elements connected purely to other interior elements. In our719

calculations, we disregard the boundary elements and estimate the upper720

bound for the total number of non-zero entries in the Jacobian Matrix:721

nnzfull = Nelnnzd + (CNeighNel �NOut)nnzo, (C.29)

where CNeigh is an upper bound of neighbouring elements (CNeigh2D = 4722

and CNeigh3D = 6) and NOut is total number of element faces (3D) or edges723

(2D) on the boundary of computational domain. For the cubic mesh used724

for Manufactured Solution problem NOutMS3D = 6(N
1
3
el
)
2

= 96 and for the725

NACA0012 case NOutNACA0012 = 880. The accuracy of theses estimations726

can be found in Figure C.10. The theoretical curve overestimate the number727

of non-zero entries due to the assumptions that were undertaken to estimate728

non-zeros in each block and the fact that all the estimated blocks disregard729

physical boundary conditions (boundary blocks have significantly less non-730

zero entries). The slopes however, follow the same trend within considered731

range of polynomials. The reason for the undershoot is twofold. First, the732

Jacobian matrices for the Navier-Stokes equations (G, Ja and J⌫) are far733

from dense (see [44, 1]). Second, the mesh for this case is Cartesian and734

55

therefore @⇠i/@xj = 0 for i 6= j.735

736

Now we estimate the number of non-zeros in the condensed system. Due

to the two matrix-matrix products (see Section 3.1) needed to compute the

Schur complement, the number of non-zero entries in the condensed system

significantly increases. The non-zero entries in each block are constrained

by the block size, which has complexity (10) (nbbb = Neq4P in 2D and

nbbb = Neq(6P 2 + 2) in 3D). However, the SpGEMM operations introduce

new non-zero entries into the matrix A
cond

. Additionally, the stencil of the

block structure in the Schur complement is wider (non-compact) than in the

Jacobian matrix. Therefore, the upper bound for the non-zero entries in the

condensed system is

3D: nnzcond = CNeighNeighNelN
2
eq
(6P 2 + 2)2, (C.30)

2D: nnzcond = CNeighNeighNelN
2
eq
(4P)2, (C.31)

where the constants CNeighNeigh3D = 25 and CNeighNeigh2D = 13 place an737

upper bound on the total number of blocks per row in the condensed sys-738

tem. Note that these constants have been obtained based on the connectives739

of structured meshes and can be slightly bigger for particular unstructured740

meshes.741

Finally, Figure C.10 compares the theoretical estimated number of non-742

zero entries nnz, for the full and the condensed systems, to the values ex-743

56

tracted from the simulations, using the 3D manufactured solution, see section744

4.1, and the 2D NACA0012 airfoil, see section 4.2. The slopes agree well and745

it can be seen that the estimates over-predict the simulations in all cases,746

which follows for having derived upper bounds. Small slope discrepancies for747

the 2D cases can be explained as follows. Our 2D simulations are not truly748

2D, but instead we have performed a 3D simulation with only one element in749

the third direction (and polynomial Pz = 2). An approximated upper bound750

for the nnz (and associated cost) for this particular situation has been ob-751

tained by assuming three two-dimensional simulations. For this reason when752

depicting the estimated value in Figure C.10, the estimate has been multi-753

plied by a constant factor of three. This estimate does not properly account754

for boundary conditions, which explains small di↵erences.755

57

2 3 4 5 6 7 8

10 6

10 7

10 8

10 9

Computed

Estimated

(a) Manufactured Solution Full System

2 3 4 5 6 7 8
10 6

10 7

10 8

10 9

10 10

Computed

Estimated

(b) Manufactured Solution Condensed Sys-

tem

2 3 4 5

10 8

Computed

Estimated

(c) NACA0012 Full System

2 3 4 5

10 8

10 9

Computed

Estimated

(d) NACA0012 Condensed System

Figure C.10: Comparison of computed non-zero entries against estimations derived in

(C.29), (C.31) and (C.30) for full and condensed systems of two cases considered in this

work (Manufactured Solution and NACA0012).

58

References756

[1] A. Rueda-Ramı́rez, E. Ferrer, D. Kopriva, G. Rubio, E. Valero, A757

statically condensed discontinuous Galerkin spectral element method758

on Gauss-Lobatto nodes for the compressible Navier-Stokes equations,759

2019. arXiv:1911.02366.760

[2] B. Cockburn, C.-W. Shu, The local discontinuous Galerkin method for761

time-dependent convection-di↵usion systems, SIAM Journal on Numer-762

ical Analysis 35 (1998) 2440–2463.763

[3] E. Ferrer and R.H.J. Willden, A high order discontinuous Galerkin finite764

element solver for the incompressible Navier–Stokes equations, Comput-765

ers & Fluids 46 (2011) 224–230.766

[4] E. Ferrer, R. H. Willden, A high order discontinuous Galerkin - Fourier767

incompressible 3D Navier-Stokes solver with rotating sliding meshes,768

Journal of Computational Physics 231 (2012) 7037–7056.769

[5] E. Ferrer, An interior penalty stabilised incompressible discontinuous770

Galerkin–Fourier solver for implicit large eddy simulations, Journal of771

Computational Physics 348 (2017) 754–775.772

[6] N. Fehn, M. Kronbichler, C. Lehrenfeld, G. Lube, P. W. Schroeder,773

High-order DG solvers for underresolved turbulent incompressible flows:774

A comparison of L2 and H(div) methods, International Journal for775

Numerical Methods in Fluids 91 (2019) 533–556.776

59

[7] M. Kompenhans, G. Rubio, E. Ferrer, E. Valero, Adaptation strategies777

for high order discontinuous Galerkin methods based on Tau-estimation,778

Journal of Computational Physics 306 (2016) 216–236.779

[8] M. Kompenhans, G. Rubio, E. Ferrer, E. Valero, Comparisons of p–780

adaptation strategies based on truncation– and discretisation–errors for781

high order discontinuous Galerkin methods, Computers & Fluids 139782

(2016) 36 – 46. 13th {USNCCM} International Symposium of High-783

Order Methods for Computational Fluid Dynamics - A special issue784

dedicated to the 60th birthday of Professor David Kopriva.785

[9] J. Manzanero, E. Ferrer, G. Rubio, E. Valero, Design of a Smagorin-786

sky spectral Vanishing Viscosity turbulence model for discontinuous787

Galerkin methods, Computers & Fluids (2020) 104440.788

[10] A. M. Rueda-Ramı́rez, J. Manzanero, E. Ferrer, G. Rubio, E. Valero,789

A p-multigrid strategy with anisotropic p-adaptation based on trunca-790

tion errors for high-order discontinuous Galerkin methods, Journal of791

Computational Physics 378 (2019) 209–233.792

[11] Z. J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary,793

H. Deconinck, R. Hartmann, K. Hillewaert, H. T. Huynh, et al., High-794

order CFD methods: current status and perspective, International Jour-795

nal for Numerical Methods in Fluids 72 (2013) 811–845.796

60

[12] K. Black, A conservative spectral element method for the approximation797

of compressible fluid flow, Kybernetika 35 (1999) 133–146.798

[13] J. Manzanero, G. Rubio, E. Ferrer, E. Valero, D. A. Kopriva, Insights799

on aliasing driven instabilities for advection equations with application800

to Gauss–Lobatto discontinuous Galerkin methods, Journal of Scientific801

Computing 75 (2018) 1262–1281.802

[14] G. J. Gassner, A. R. Winters, D. A. Kopriva, Split form nodal dis-803

continuous Galerkin schemes with summation-by-parts property for the804

compressible Euler equations, Journal of Computational Physics 327805

(2016) 39–66.806

[15] A.R. Winters and G.J. Gassner, A↵ordable, entropy conserving and807

entropy stable flux functions for the ideal MHD equations, Journal of808

Computational Physics 304 (2016) 72 – 108.809

[16] J. Manzanero, G. Rubio, D. A. Kopriva, E. Ferrer, E. Valero, A810

free–energy stable nodal discontinuous Galerkin approximation with811

summation–by–parts property for the Cahn–Hilliard equation, Journal812

of Computational Physics 403 (2020) 109072.813

[17] J. Manzanero, G. Rubio, D. A. Kopriva, E. Ferrer, E. Valero, Entropy–814

stable discontinuous Galerkin approximation with summation–by–parts815

property for the incompressible Navier–Stokes/Cahn–Hilliard system,816

Journal of Computational Physics (2020) 109363.817

61

[18] G. J. Gassner, A. R. Winters, F. J. Hindenlang, D. A. Kopriva, The BR1818

scheme is stable for the compressible Navier–Stokes equations, Journal819

of Scientific Computing 77 (2018) 154–200.820

[19] J. Manzanero, G. Rubio, D. A. Kopriva, E. Ferrer, E. Valero, An821

entropy–stable discontinuous Galerkin approximation for the incom-822

pressible Navier–Stokes equations with variable density and artificial823

compressibility, Journal of Computational Physics 408 (2020) 109241.824

[20] G. Karniadakis and S.J. Sherwin, Spectral/hp Element Methods for825

Computational Fluid Dynamics, Oxford Scholarship, 2005.826

[21] L. Haupt, J. Stiller, W. Nagel, A fast spectral element solver combining827

static condensation and multigrid techniques, Journal of Computational828

Physics 255 (2013) 384 – 395.829

[22] E. Wilson, The static condensation algorithm, International Journal for830

Numerical Methods in Engineering 8 (1974) 198–203.831

[23] I. Huismann, J. Stiller, J. Fröhlich, Scaling to the stars – a linearly832

scaling elliptic solver for p-multigrid, Journal of Computational Physics833

398 (2019) 108868.834

[24] D. Pardo, J. Álvarez Aramberri, M. Paszynski, L. Dalcin, V. Calo, Im-835

pact of element-level static condensation on iterative solver performance,836

Computers and Mathematics with Applications 70 (2015) 2331–2341.837

62

[25] S. J. Sherwin, R. M. Kirby, J. Peiró, R. L. Taylor, O. C. Zienkiewicz,838

On 2D elliptic discontinuous Galerkin methods, International Journal839

for Numerical Methods in Engineering 65 (2006) 752–784.840

[26] B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of841

discontinuous Galerkin, mixed, and continuous Galerkin methods for842

second order elliptic problems, SIAM J. Numer. Anal 47 (2009) 1319–843

1365. doi:10.1137/070706616.844

[27] J. Carrero, B. Cockburn, D. Schoetzau, Hybridized globally divergence-845

free LDG methods. part I: The Stokes problem, Math. Comput. 75846

(2006) 533–563. doi:10.1090/S0025-5718-05-01804-1.847

[28] M. Franciolini, K. Fidkowski, A. Crivellini, E�cient discon-848

tinuous Galerkin implementations and preconditioners for implicit849

unsteady compressible flow simulations, arXiv preprint (2018).850

arXiv:physics.comp-ph/1812.04789.851

[29] J. Peraire, N. C. Nguyen, B. Cockburn, An embedded discontinuous852

Galerkin method for the compressible Euler and Navier-Stokes equa-853

tions, 20th AIAA Computational Fluid Dynamics Conference 2011854

(2011). doi:10.2514/6.2011-3228.855

[30] K. J. Fidkowski, T. A. Oliver, J. Lu, D. L. Darmofal, p-Multigrid so-856

lution of high-order discontinuous Galerkin discretizations of the com-857

63

pressible Navier-Stokes equations, Journal of Computational Physics858

207 (2005) 92–113. doi:10.1016/j.jcp.2005.01.005.859

[31] P. O. Persson, An e�cient low memory implicit DG algorithm for860

time dependent problems, Collection of Technical Papers - 44th AIAA861

Aerospace Sciences Meeting 2 (2006) 1421–1431. doi:10.2514/6.2006-862

113.863

[32] P. O. Persson, J. Peraire, Newton-GMRES preconditioning for864

discontinuous Galerkin discretizations of the Navier–Stokes equa-865

tions, SIAM Journal on Scientific Computing 30 (2008) 2709–2733.866

doi:10.1137/070692108.867

[33] L. T. Diosady, D. L. Darmofal, Preconditioning methods for discontinu-868

ous Galerkin solutions of the Navier-Stokes equations, Journal of Com-869

putational Physics 228 (2009) 3917–3935. doi:10.1016/j.jcp.2009.02.035.870

[34] K. Shahbazi, D. J. Mavriplis, N. K. Burgess, Multigrid algorithms for871

high-order discontinuous Galerkin discretizations of the compressible872

Navier-Stokes equations, Journal of Computational Physics 228 (2009)873

7917–7940. doi:10.1016/j.jcp.2009.07.013.874

[35] P. O. Persson, A sparse and high-order accurate line-based discon-875

tinuous Galerkin method for unstructured meshes, Journal of Com-876

putational Physics 233 (2013) 414–429. doi:10.1016/j.jcp.2012.09.008.877

arXiv:1204.1533.878

64

[36] W. Pazner, P. O. Persson, Stage-parallel fully implicit Runge–Kutta879

solvers for discontinuous Galerkin fluid simulations, Journal of Com-880

putational Physics 335 (2017) 700–717. doi:10.1016/j.jcp.2017.01.050.881

arXiv:1701.07181.882

[37] M. Franciolini, L. Botti, A. Colombo, A. Crivellini, p-Multigrid matrix-883

free discontinuous Galerkin solution strategies for the under-resolved884

simulation of incompressible turbulent flows, 2018. arXiv:1809.00866.885

[38] P. Bastian, E. H. Müller, S. Muthing, M. Piatkowski, Matrix-free multi-886

grid block-preconditioners for higher order discontinuous Galerkin dis-887

cretisations, Journal of Computational Physics 394 (2019) 417 – 439.888

doi:https://doi.org/10.1016/j.jcp.2019.06.001.889

[39] M. Franciolini, S. M. Murman, Multigrid preconditioning for a space-890

time spectral-element discontinuous-galerkin solver, AIAA Scitech 2020891

Forum (2020). doi:10.2514/6.2020-1314.892

[40] A. Pueyo, D. Zingg, An e�cient Newton-GMRES solver for aerodynamic893

computations, 13th Computational Fluid Dynamics Conference (1997)894

712–721. doi:10.2514/6.1997-1955.895

[41] W. Anderson, R. D. Rausch, D. L. Bonhaus, Implicit/multigrid896

algorithms for incompressible turbulent flows on unstructured897

grids, Journal of Computational Physics 128 (1996) 391 – 408.898

doi:https://doi.org/10.1006/jcph.1996.0219.899

65

[42] J. Gopalakrishnan, G. Kanschat, A multilevel discontinuous Galerkin900

method, Numer. Math. 95 (2003) 527–550. doi:10.1007/s002110200392.901

[43] K. Black, A conservative spectral element method for the approximation902

of compressible fluid flow, Kybernetika 35 (1999) 133–146.903

[44] A. M. Rueda-Ramı́rez, E�cient Space and Time Solution Techniques for904

High-Order Discontinuous Galerkin Discretizations of the 3D Compress-905

ible Navier-Stokes Equations, Ph.D. thesis, Universidad Politécnica de906

Madrid, 2019.907

[45] A. Huerta, A. Angeloski, X. Roca, J. Peraire, E�ciency of high-order ele-908

ments for continuous and discontinuous galerkin methods, International909

Journal for Numerical Methods in Engineering 96 (2013) 529–560. URL:910

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4547.911

doi:10.1002/nme.4547. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4547.912

[46] W. Habchi, Model Order Reduction (MOR) Techniques, 2018, pp. 297–913

338. doi:10.1002/9781119225133.ch8.914

[47] P. Bastian, E. H. Müller, S. Müthing, M. Piatkowski, Matrix-free multi-915

grid block-preconditioners for higher order discontinuous Galerkin dis-916

cretisations, Journal of Computational Physics 394 (2019) 417 – 439.917

[48] W. Pazner, P. O. Persson, Approximate tensor-product preconditioners918

for very high order discontinuous Galerkin methods, Journal of Com-919

66

putational Physics 354 (2018) 344–369. doi:10.1016/j.jcp.2017.10.030.920

arXiv:1704.04549.921

[49] S. Balay, W. D. Gropp, L. C. McInnes, B. F. Smith, E�cient man-922

agement of parallelism in object oriented numerical software libraries,923

in: E. Arge, A. M. Bruaset, H. P. Langtangen (Eds.), Modern Software924

Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–202.925

[50] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-926

man, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev,927

D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T.928

Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini,929

H. Zhang, H. Zhang, PETSc Users Manual, Technical Report ANL-930

95/11 - Revision 3.12, Argonne National Laboratory, 2019. URL:931

https://www.mcs.anl.gov/petsc.932

[51] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-933

man, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev,934

D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills,935

T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang,936

H. Zhang, PETSc Web page, https://www.mcs.anl.gov/petsc, 2019.937

URL: https://www.mcs.anl.gov/petsc.938

[52] F. Bassi, A. Crivellini, D. A. Di Pietro, S. Rebay, An implicit939

high-order discontinuous Galerkin method for steady and unsteady940

67

incompressible flows, Computers and Fluids 36 (2007) 1529–1546.941

doi:10.1016/j.compfluid.2007.03.012.942

[53] B. R. Ahrabi, D. J. Mavriplis, An implicit block ILU smoother for pre-943

conditioning of Newton–Krylov solvers with application in high-order944

stabilized finite-element methods, Computer Methods in Applied Me-945

chanics and Engineering 358 (2020) 112637.946

[54] J. Williamson, Low-storage Runge-Kutta schemes, Journal of Com-947

putational Physics 35 (1980) 48 – 56. doi:https://doi.org/10.1016/0021-948

9991(80)90033-9.949

[55] R. Biswas, K. Devine, J. Flaherty, Parallel, adaptive finite element meth-950

ods for conservation laws, Applied Numerical Mathematics 14 (1994)951

255–283.952

[56] N. Chalmers, G. Agbaglah, M. Chrust, C. Mavriplis, A parallel hp-953

adaptive high order discontinuous Galerkin method for the incompress-954

ible Navier-Stokes equations, Journal of Computational Physics: X 2955

(2019) 100023. doi:https://doi.org/10.1016/j.jcpx.2019.100023.956

[57] P. Birken, G. Gassner, M. Haas, C. D. Munz, E�cient time integra-957

tion for discontinuous Galerkin method for the unsteady 3D Navier-958

Stokes equations, ECCOMAS 2012 - European Congress on Computa-959

tional Methods in Applied Sciences and Engineering, e-Book Full Papers960

(2012) 4334–4353.961

68

[58] M. J. Zahr, P.-O. Persson, Performance tuning of newton-gmres methods962

for discontinuous galerkin discretizations of the navier-stokes equations,963

in: 21st AIAA Computational Fluid Dynamics Conference, 2013, p.964

2685.965

[59] C. R. Nastase, D. J. Mavriplis, High-order discontinuous Galerkin meth-966

ods using an hp-multigrid approach, Journal of Computational Physics967

213 (2006) 330–357. doi:10.1016/j.jcp.2005.08.022.968

[60] G. H. Golub, C. F. Van Loan, Matrix Computations, third ed., The969

Johns Hopkins University Press, 1996.970

[61] F. G. Gustavson, Two fast algorithms for sparse matrices: Multiplica-971

tion and permuted transposition, ACM Trans. Math. Softw. 4 (1978)972

250–269.973

[62] M. Deveci, C. Trott, S. Rajamanickam, Multi-threaded sparse matrix-974

matrix multiplication for many-core and gpu architectures, Parallel975

Computing 78 (2018).976

[63] A. Buluc, J. Gilbert, Parallel sparse matrix-matrix multiplication and977

indexing: Implementation and experiments, SIAM Journal on Scientific978

Computing 34 (2011).979

[64] Y. Saad, M. H. Schultz, GMRES: A Generalized Minimal Residual980

Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on981

Scientific and Statistical Computing 7 (1986).982

69

[65] W. Yang, K. Li, Z. Mo, K. Li, Performance optimization using parti-983

tioned spmv on gpus and multicore cpus, IEEE Transactions on Com-984

puters 64 (2015) 2623–2636.985

[66] T. Vejchodský, P. Šoĺın, Static condensation, partial orthogonaliza-986

tion of basis functions, and ILU preconditioning in the hp-FEM, Jour-987

nal of Computational and Applied Mathematics 218 (2008) 192–200.988

doi:10.1016/j.cam.2007.04.044.989

[67] D. A. Kopriva, E. Jimenez, An assessment of the e�ciency of nodal990

discontinuous Galerkin spectral element methods, in: Recent Devel-991

opments in the Numerics of Nonlinear Hyperbolic Conservation Laws,992

Springer, 2013, pp. 223–235.993

[68] I. Huismann, L. Haupt, J. Stiller, J. Fröhlich, Sum factorization of994

the static condensed Helmholtz equation in a three-dimensional spectral995

element discretization, PAMM 14 (2014). doi:10.1002/pamm.201410465.996

[69] D. A. Kopriva, Implementing spectral methods for partial di↵erential997

equations: Algorithms for scientists and engineers, Springer Science &998

Business Media, 2009.999

70

