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Abstract

We present a D3Q19 lattice scheme based in MRT with central moments (MRT-

CM), where the free parameters of the model are optimized to dissipate under-

resolved flow structures with high wavenumbers. In Chávez-Modena et al. in

Computers & Fluids 172:397-409, 2018 [1], we compared the BGK, MRT-RM

and MRT-CM for the D2Q9 lattice scheme using von Neumann analyses and

quantified their numerical properties. Based on this study, we proposed an

optimized 2D MRT-CM scheme with enhanced stability for under-resolved flows.

Here, we extend this idea to the D3Q19 MRT-CM scheme.

As before, we base our optimization for the free parameters, on the k-1%

dispersion-error rule, that states that waves with dispersive errors above 1%

should be dissipated since they pollute the solution and may cause instabilities.

To this aim we increase dissipation in the scheme for waves with dispersive

errors above 1%.

The resulting optimized scheme is verified through a von Newmann analysis

and validated for the three-dimensional Taylor-Green isotropic turbulent flow.

We show how the original D3Q19 MRT-CM (d’Humières version) leads to unre-

alistic kinetic energy accumulation at high wave numbers, whilst our optimized

MRT-CM provides the correct energy dissipated rate, avoiding energy build up
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at high wavenumbers. These results suggest that our optimization strategy en-

hances stability and allows for accurate energy spectra in under-resolved flow

simulations such as typically found in Large Eddy Simulations.

Keywords: Lattice Boltzmann, D3Q19 multiple-relaxation time, rule of k-1%

dispersion-error, homogeneous isotropic turbulence.

1. Introduction

Over the last decades, the Lattice Boltzmann method (LBM) has become

an alternative to traditional discretization techniques of the Navier-Stokes (NS)

equations to simulate fluid flows. Thanks to the efficient parallelization [2],

the LBM has a high computing performance being competitive against NS ap-

proaches for many applications [3, 4], in particular for the simulation of turbu-

lent flows [5, 6]. The LBM is capable of simulating situations where sound and

flow interact, such as aeroacoustic generation [7, 8]. Additionally, it is used to

simulate a wide range of multiphase [9, 10] and multicomponent [11] flows.

The collision operator is responsible of modeling the physics correctly, and

has a strong effect in the numerical stability of the scheme [12, 13]. Several col-

lision operators have been proposed to extend the range of applicability of the

LBM. Recently, Coreixas et al. [14] proposed a formalism that encompasses all

these approaches within a common mathematical framework. In this work, we

focus into the single BGK and multiple-relaxation MRT time collision operators.

The most popular collision operator, the single-relaxation time, is based on

the BGK [15] approximation. In this model a unique relaxation time is consid-

ered for all the probability distribution functions. As a result of its simplicity, it

has severe stability limitations [16], precluding its use at low viscosities, large

Mach numbers or under-resolved simulations.

The multiple-relaxation time with raw moments (MRT-RM) collision opera-

tor [17] was introduced in an attempt to improve the BGK stability limitations.

This operator enables different relaxation times for each probability distribution
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function. The increased complexity with respect to BGK resulted in an improved

numerical stability [18].

Despite the enhancement in the stability of the MRT-RM with respect to the

BGK collision operator, the MRT-RM can still show instabilities for small fluid

viscosities [19]. Consequently, the MRT with central moments (MRT-CM) col-

lision operator was introduced [20]. Premnath and Banerjee [21] showed that

the cascaded LBM with central moments is consistent with the Navier-Stokes

equations via a Chapman-Enskog expansion, and that in this approach, Galilean

invariance is naturally enforced based on the relaxation central moments, see

also [22]. Using central moments for the collision operator, it is possible to

enhance the numerical stability by increasing the numerical dissipation at high

wavenumbers [1].

Von Neumann stability analyses [23] enable the quantification of numerical

errors in numerical schemes with periodic boundary conditions. Sterling and

Chen [24] were the first to apply this analysis to the LB BGK approach. Then,

Lallemand and Luo [18] used it to compare the enhanced stability of the MRT-

RM over the BGK approach. Subsequently, Siebert et al. [25] included high

order terms into the equilibrium distribution of the D2Q9 model to improve the

linear stability of the scheme (as shown depicted Fig. 2 in [25]). Malaspinas

[26] proposed a new version of the BGK with improved stability and based

on recursive relations and regularization for the LB posed as Hermite series,

which has been subsequently validated by Mattila et al. [27] and Coreixas et

al. [28]. Later, in our previous work [1], we showed how the MRT-CM is more

dissipative at higher wavenumbers compared with BGK and MRT-RM, providing

better numerical stability. Also, we explored higher order terms in the fluid

velocity, following Malaspinas’ work [26] to observe that our proposed approach

provides similar results, with comparable stability, and for similar range of Mach

numbers.

In addition to quantifying the numerical stability, this technique can also be

used to provide insights into dispersive and dissipative errors. Marié et al. [29]

compared BGK and MRT-RM collision operators. Dubois et al. [30] studied

3



the numerical stability of the relative velocity (MRT-RM and MRT-CM) D2Q9

schemes with two different set of moments, proposed by Lallemand and Luo

[18] and Geier et al. [19]. They concluded that MRT-CM with Geier’s moment

basis [19] had better stability properties. Recently, Gauthier et al. analyzed the

interaction between modes [31] to understand the reason of numerical insta-

bilities.

As mentioned, both the MRT-RM and the MRT-CM relax each hydrodynamic

moment with a different relaxation time but all combinations lead to the same

macroscopic state through the Chapman-Enskog expansion [32]. The relax-

ation times that are not fixed by the physics of interest become free parameters

that can be optimized to enhance particular numerical aspects. Lallemand and

Luo [18] optimized these parameters (for the D2Q9 lattice scheme) maximiz-

ing the Galilean invariance of the scheme, while reducing numerical errors (i.e.

dispersion and dissipation). Similarly, Xu and Sagaut [7, 33] proposed an op-

timization to minimize dispersion/dissipation errors for the MRT-RM in D2Q9

scheme. A different approach is to adjust the high order relaxation parameters

to enhance the stability for under resolved simulations. This approach was used

by Ning et al. [34] to improve the stability of a 2D central moment LB method

for a lid driven cavity flow problem. However, the authors of that work stated

that their results were problem-dependent, and that additional work was re-

quired in 3D to optimize the relaxation parameters of the cascaded MRT LBM

by means of a Fourier linear analysis. Adam et al. [22] proposed a cascaded

LBM for the D3Q19 in the context of non-Newtonian flows. In their approach

the free parameter were set to 1 (i.e., equilibrium), although it was already

noticed that these could be adjusted independently to improve numerical sta-

bility by means of a Fourier linear stability analysis. These ideas were recently

exploited by the authors [1], where the D2Q9 MRT-CM scheme was optimized

to increase dissipation only for high under-resolved wavenumbers (above the

k-1% dispersion-error), leaving low wavenumbers (i.e. well resolved scales)

unchanged. This was tested successfully in the double periodic shear layer test.

In this work we extend our previous work to improve the MRT-CM for three-
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dimensional flows. The optimization strategy used previously for the D2Q9

lattice scheme [1] is now extended to the D3Q19 scheme. Again, instead of

minimizing dissipation errors for all wavenumbers, we propose to maintain nu-

merical dissipation for well resolved wavenumbers whilst increasing dissipation

for under-resolved wavenumbers. The optimization is inspired in the rule of

k-1% dispersion-error presented by Moura et al. [35] in the context of high

order numerical methods. They suggested that waves are only accurately re-

solved if the dispersion error (difference between theoretical and numerical) is

below 1%. The wavenumber at which the error becomes 1% was named “k-1%

dispersion-error” and lead to the “1% rule”. Following this rule, all waves above

the k-1% should be dissipated since these are poorly resolved and may pollute

the solution. We follow the idea of damping under-resolved waves and apply it

to the LBM for the first time in a 3D lattice scheme.

To assess the D3Q19 optimized MRT-CM, we simulate the Taylor-Green vor-

tex (TGV) case [36] that includes starting transitional flow followed by decaying

homogeneous turbulence. This case enables the quantification of vortex stretch-

ing/pairing processes leading to energy cascading from large to small eddies,

allowing the study of the dynamics of transition from laminar to turbulent flow

and subsequent turbulent energy decay. This test-case has been widely used to

study dissipation errors of numerical schemes, of high order type, e.g. [37, 38]

and for LB schemes, e.g. [39, 40, 41].

The remaining of this text is organized as follows. First, in Section 2, we

describe the numerical methodology which is divided in two parts: first, the

Lattice Boltzmann method with the different collision operators and second the

optimization strategy. Then, in Section 3, the results of the optimized approach

are tested for the turbulent Taylor Green Vortex case. Finally, in Section 4 con-

clusions are presented.
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2. Methodology

In this section the numerical methodology used in this work is presented.

First, the Lattice Boltzmann method (LBM) is introduced. Special attention

is paid to the definition of the collision operator. Secondly, an optimization

method based on linear stability analysis is shown. The optimization aims at

maximizing the robustness of the scheme for under-resolver simulations without

penalizing its accuracy. The final objective is to improve the performance of

the scheme for turbulent flows, therefore a three dimensional LBM scheme, in

particular the D3Q19, is considered.

2.1. Lattice Boltzmann method

2.1.1. Generalities

The LBM is a numerical technique that provides numerical solutions of the

continuous Boltzmann equation. The discrete Boltzmann equation reads:

fi(x+ ei�t, t+�t)� fi(x, t) = �t⌦i(x, t), i = 0, ..., Q� 1. (1)

The discrete set of velocities is a vector of Q components represented by

the symbol ei. As a consequence, the discrete probability distribution functions

(PDFs), fi(x, ei, t), are stored at each lattice node for each time step, �t. At

each time step, the information stored in the discrete PDFs is streamed through

the lattice and collided. The discrete collision operator, ⌦i, is responsible of

computing the post-collision state conserving mass and linear momentum.

The collision operator is of critical importance in the LBM, as it is responsible

of the modelization of the physics. The first approach for the collision operator

was proposed by McNamara [42], but it was still rather complicated. The high

cost of its evaluation precluded its use until Higuera and Jimenez [13] simpli-

fied this operator by performing linearization (under the assumption that the

discrete PDF, fi, is close to its equilibrium state). Expanding the discrete colli-

sion operator, ⌦i, around the equilibrium state of the discrete PDF, feq
i , leads to
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a linearized operator:

⌦j = Kji(f
eq
i � fi), (2)

where Kji is known as collision matrix, and was further simplified to obtain the

different collision operators. The collision matrix describes how the PDFs relax

towards the equilibrium state. It is directly related with the viscosity and Mach

number.

The discrete local equilibrium function f eq
i is usually computed as a second

order Taylor expansion of the Maxwell-Boltzmann distribution,

f eq
i = ⇢wi

 
1 +

ei · u
c2s

+
(ei · u)2

2c4s
� u · u

2c2s

!
, (3)

where wi are weighting constants built to preserve isotropy and cs is the speed

of sound. The particular values of the weighting constants wi, depend on the

discrete set of velocities [43].

2.1.2. Collision operators

Single-relaxation time

The single-relaxation time based on the Bhatnagar-Gross-Krook (BGK) [15]

approximation is the most popular approach for the collision operator. In this

case, using KBGK
ji = (1/⌧)�ij (assuming �ij Kronecker delta notation) the colli-

sion operator simplifies to:

⌦BGK
i =

1

⌧
(f eq

i � fi). (4)

Only one relaxation time for all PDFs, ⌧ , is considered. The Chapman-

Enskog expansion applied to the classical LBM equation (Eq. 1), with Eq. 4

as the discrete collision operator, establishes the relation between the relax-

ation time, the kinematic shear, ⌫, and bulk viscosities, ⌘, of the macroscopic

fluid [44]:

⌫ = c2s(⌧ � �t

2
), ⌘ =

2

D
⌫, (5)
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where D is the dimension space. The BGK collision operator, is still widely

used but has several shortcomings. For example, the kinematic viscosity is con-

ditioned by the relaxation parameter, ⌧ , (see Eq. 5) which causes numerical

instabilities for values near ⌧ = 0.5 (with �t = 1), therefore complicating the

simulation of high Reynolds number flows [16]. It should also be noticed that

the bulk viscosity, ⌘, cannot be freely chosen because it is constrained by the

kinematic viscosity, ⌫.

Multiple-relaxation time

In the MRT, the relaxation matrix is computed as a product of three matrices,

KMRT
ji = M�1

jk SklMli. The matrix M accounts for the definition of the moments

while the matrix S is defined as a diagonal matrix:

Skl = sk�kl, (6)

where s is a vector with relaxation times for the different moments. The MRT-

CM collision operator is obtained defining the collision matrix as KMRT�CM
ji =

Mjk(u)�1SklMli(u):

⌦MRT�CM
j = Mjk(u)

�1SklMli(u)(f
eq
i � fi). (7)

This notation, first presented by Dubois et al. [45], proposes a more general

formulation than Geier’s [19], which allows working with the equilibrium PDF,

f eq
i defined in the BGK model. Under this framework, taking u = 0, one recov-

ers the MRT with raw moments (MRT-RM) presented by d’Humières [17], whilst

setting u as the fluid velocity provides Geier’s method. Let us note that Dubois

et al. formulation is equivalent to Geier’s (for u set to the fluid velocity) but

the latter uses equilibrium distributions directly derived from the Maxwellian

distributions, unlike the former who considered arbitrary velocity fields. Addi-

tionally, note that the BGK collision operator can be recovered by setting all the

diagonal elements Sii to 1/⌧ .
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The formulation introduced up to this point is general for any lattice dis-

tribution and spatial dimensions. In this work we aim at improving the perfor-

mance of LBM for under-resolved turbulent flows, therefore a three dimensional

LBM is considered. In particular we focus on the popular D3Q19, whose mo-

ment matrix, M , can be found in Appendix A.

2.2. Optimization method for the MRT-CM

In this section the optimization method to improve the performance of LBM

for turbulent flows is introduced. This method, proposed by the authors in a

previous work [1], modifies the relaxation times of the collision operator in

order to maximize the dissipation of under-resolved wavelengths. The opti-

mization method makes use of linear stability analysis to separate well-resolved

and under-resolved wavelengths.

2.2.1. Linear stability analysis

Theoretical modes

The theoretical modes are obtained through an analytic linearization of the

NS equations [46]. The resulting hydrodynamic modes are known as shear

mode, !s
t , and acoustic modes, !±

t . The first is related to the kinematic shear

viscosity. The second is related to both kinematic shear and bulk viscosities. The

analytical expressions for the theoretical hydrodynamic modes read:

!s
t = u · k� i⌫|k|2,

!±
t = (u± cs) · k� i[ (D�1)

D ⌫ +
⌘

2
],

(8)

where k is the wavenumber. For an illustrative purpose Figure 1 depicts disper-

sion (real part of !, Re(!)) and dissipation (imaginary part of !, Im(!)) be-

havior for a range of wavenumbers [0,⇡], following Eq. 8 for three-dimensions

(D=3), u = {ux, 0, 0} and k = {kx, 0, 0}.

Numerical modes
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Figure 1: Dispersion, Re(!), (a) and dissipation, Im(!), (b) of the three-dimension theoretical

shear mode, !s
t : , and acoustic modes, !±

t : , at Ma = 0 with ⌫ = 10�3 m2

s and

⌘ = 3.66 · 10�2 m2

s .

The numerical modes can be obtained by means of von Neumann (VN) anal-

ysis [24]. Von Neumann analysis splits the PDF into an equilibrium state, f̄i,

plus a perturbation, �fi(x, t):

fi(x, t) = f̄i + �fi(x, t). (9)

The first term in the right hand side, f̄i, is the global PDF, which does not vary

with time and space i.e., it depends only on the average density and velocity.

The second term in the right hand side, �fi(x, t), accounts for the fluctuations

from equilibrium. The fluctuation is assumed as a sinusoidal wave Fiei(kx�!t)

with an amplitude Fi.

Substituting Eq. 9 into Eq. 2, expanding the feq
i by means of Taylor series

centred at the global distribution and after rearranging the expression, an eigen-

value problem is obtained, Fi� = FjGij , where � = e�i!�t are the eigenvalues

of the amplification matrix, Gij , defined as:

Gij = A�1
ik

⇥
�kj +�tKknNnj

⇤
with

8
><

>:

Aik = �ikeik�tei ,

Nnj =
@feq

n
@fj

� �nj ,
(10)

where the different collision matrices, Kij , are defined in Section 2.1.2. For

more details on the VN analysis for the LBM, see [24, 1].
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2.2.2. Optimization process: Rule of k-1% dispersion-error

The optimization described here has been inspired by the rule of k-1% dispersion-

error proposed by Moura et al. [35] in the context of hp-spectral methods

[47, 48, 38]. Moura et al. suggested that wavenumbers with dispersion errors

(difference between theoretical and numerical dispersion modes) higher than

1% should be dissipated, since high dispersion errors tend to pollute the solu-

tion. In other words, a high dissipative error at high wavenumbers is a positive

feature of a numerical method. In a previous work [1], we proposed to opti-

mize the values of the free relaxation times (those affecting moments of order

higher than two), to maximize the dissipation of the shear mode in wavenum-

bers higher than the k-1% dispersion-error wavenumber for the D2Q9 MRT-CM.

The dissipation level is measured as the area defined by the theoretical shear

mode and numerical shear mode curves for wavenumbers higher than k-1%

dispersion-error wavenumber (green area in Figure 2). The error for the k-1%

dispersion-error is calculated with the shear mode (theoretical and numerical)

by means of the following expression:

%Error(k) =
|!s � !t

s|
!t
s

· 100. (11)

As the rule describes, k-1% dispersion-error wavenumber occurs when this

error is 1%. The dissipation of acoustic modes has not been taken into account

because they barely change with the free parameters.

2.2.3. Optimized MRT-CM

This section details the optimization process for D3Q19 MRT-CM lattice

scheme. The optimization aims at maximizing the dissipation of the shear mode

in wavenumbers higher than the k-1% dispersion-error wavenumber by modi-

fying the values of the free relaxation times (s10�18).

The free parameters s10,11,12, s13,14,15 and s16,17,18 are grouped due to sym-

metries of the moment constraints. Only the first two groups are considered in

the optimization since, as shown later in this section, the last group does not

11



k-1%
dispersion-error

߱௦

߱௧
௦

Figure 2: Dissipation area calculated from the difference between the theoretical, !t
s,and numerical,

!s,shear mode.

affect the shear dissipation mode. As a result, s16,17,18 has been fixed to 1.4, the

value proposed by d’Humières [49]. The flow direction and the perturbations

are considered parallel to the lattice direction in the optimization process, i.e.,

u = {ux, 0, 0} and k = {kx, 0, 0}. As numerical and theoretical modes depend

on the fluid conditions (Mach number, Ma and viscosity ⌫), the free relaxation

times of the model have been optimized for different values of Mach number

(Ma=0.1, 0.2 and 0.3) and viscosity (⌫=⌘=10�3, 10�4 and 10�5).

The optimization starts by evaluating the 1% wavenumbers for d’Humières

scheme, shown in Table 2, to define the wavenumber from which we hope to

increase dissipation (and defines our objective function). Once determined, the

optimal values of s10�12 and s13�15 are found by a brute force approach where

the parametric space of the free parameters is discretized with �si = 0.01 (i.e.

a tolerance of 1%). Note that only values of the relaxation times in the range

[0, 2[ are considered. For each parameter combination (Ma, ⌫, si) the shear dis-

sipation values above the k-1% dispersion-error wavenumber is obtained. Table

1 shows the optimal values of these parameters (the combination that maxi-

mizes the shear dissipation above the k-1%). These values are very different

from the free parameters proposed by d’Humières [49] where s10�12 = 1.98

and s13�15 = 1.98.

It was previously stated that the group of parameters s16�18 does not affect
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Ma = 0.1 Ma = 0.2 Ma = 0.3

⌫ = ⌘ s10�12 s13�15 s10�12 s13�15 s10�12 s13�15

10�3 0.62 0.81 0.92 1.12 1.11 1.32

10�4 0.61 0.80 0.90 1.10 1.10 1.30

10�5 0.61 0.80 0.90 1.10 1.10 1.30

Table 1: Optimized values for s10 = s11 = s12 and s13 = s14 = s15 at different viscosities and

Mach numbers.

the shear dissipation mode, and therefore was kept constant (s16�18 = 1.4) in

the optimization process. In the D3Q19, the first, s10�12, and second, s13�15

groups of parameters relax the third order moments, while the last group,

s16�18, relaxes the 4th order moments. The relaxation of the 4th order mo-

ments affects the energy equation of the compressible Navier-Stokes equations,

therefore we do not expect the relaxation times s16�18 to have a big impact in

the dissipation of the shear mode. This behaviour was already reported in our

previous work [1], for the D2Q9 scheme.

To confirm this, we compute the shear mode dissipation surface for the dif-

ferent relaxation times. Figure 3 shows the evolution of the shear mode dis-

sipation when s16�18 and s10�12 are modified, while the rest of the relaxation

parameters remain fixed. As can be seen, the last group of parameters, s16�18,

does not affect the shear mode dissipation. Note that the maximum dissipation

corresponds to the optimized value (s10�12 = 0.9) for Ma=0.2 and ⌫ = 10�4.

Figure 3: Shear mode dissipation surface for the different relaxation times.

Finally, Table 2 summarizes the k-1% error for d’Humières and our optimized
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parameters for Mach numbers 0.1  Ma  0.3 and viscosities 10�5  ⌫  10�3.

Our optimized values provide a slight increase in the wavenumber associated

to the 1% dispersion-error, which suggests an increase in dissipation after the

k-1%, and a reduction of overall dispersion error. Additionally, since our opti-

mization ensures that the dissipation is maximized for wavenumbers above the

k-1%, we can also ensure that above this threshold numerical dissipation will

damp dispersive errors.

D’Humières MRT-CM Optimized MRT-CM

Mode ⌫ = ⌘ Ma = 0.1 Ma = 0.2 Ma = 0.3 Ma = 0.1 Ma = 0.2 Ma = 0.3

!s

10�3 1.141 1.225 1.382 1.162 1.350 1.414

10�4 1.141 1.224 1.382 1.162 1.330 1.393

10�5 1.141 1.224 1.382 1.162 1.330 1.393

Table 2: D3Q19 k for the 1% dispersion error between numerical and theoretical shear mode in

dispersion of the physical modes.

To illustrate the effect of the optimization, the numerical shear and acous-

tics modes of the optimized MRT-CM are compared with d’Humières’ MRT-

CM, in Figure 4. These modes are computed for Ma= 0.2, ⌫ = 10�3 kg
ms and

⌘ = 6.7 · 10�4 kg
ms . The values of the Mach number, Ma , viscosities, ⌫ and ⌘,

and wavenumbers, k, have been taken from [1] to permit a comparison of the

results. It can be seen that the optimized MRT-CM presents a higher dissipation

rate at high wavenumbers than d’Humières MRT-CM. This should result in an

enhanced robustness for under-resolved simulations. Besides, it should be no-

ticed that this increase in the dissipation rate does not affect the dispersion error

at low wavenumbers. As a result, similar behaviour of the optimized MRT-CM

and d’Humières MRT-CM is expected for low wavenumbers. Both approaches

will be tested for an isotropic turbulent flow in the following section.

The above results allow to find a relative wavenumber threshold for the

turbulent simulations to come. We relate the mesh cut-off wavelength (based

on Nyquist criterion): kcut�off = ⇡/2 = 1.570, to the k-1% our optimized

scheme for low Mach: k1%opt = 1.162, which leads to a generalized reference

14



value k1%opt = 0.74kcut�off . This value will be included in the analyses of

Taylor-Green vortex problem, to show that our scheme provides different (from

d’Humières’ MRT-CM), more accurate spectra, only above the k1%opt, leaving

spectra for low wavenumbers unchanged.
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Figure 4: Dispersion (a) and dissipation (b) for D3Q19 with d’Humières’ MRT-CM: N, optimized

MRT-CM: ⇤ and theoretical modes (shear mode: and acoustic modes: ) at Ma = 0.2 with

⌫ = 10�3 kg
ms (Note that the dissipation theoretical modes are overlapped).

To provide a wider context, in Appendix B we include a comparison between

the numerical modes of the BGK, MRT-RM and MRT-CM D3Q19 lattice schemes.

In addition, some insight on the effect of the relaxation parameters on numerical

modes is given in Appendix C where d’Humières [49] and Lallemand’s [18]

relaxation times are compared for D3Q19 lattice scheme.

A final remark, in this work we use a von Neumann stability analysis to

optimize the values of the high order relaxation parameters; therefore the effect

of boundary conditions is not taken into account. It is well known that wall

boundaries are important sources of numerical instabilities in LB schemes (e.g.,

Luo et al. [50]), so these values might change if different boundary conditions

are considered. Additional work is required to study the effect of boundary

conditions in the optimized values of the high order free relaxation parameters.
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3. Numerical validation

In this section the new optimized scheme is compared with previous ap-

proaches found in the literature. The aim of this section is to show that the

proposed scheme provides increased stability without penalizing the accuracy.

In order to study the effect of the present optimized MRT-CM on a three-

dimensional turbulent configuration, the decaying Taylor-Green vortex (TGV)

[36] has been simulated. It is a fundamental test case used as prototype for

vortex stretching and production of small-scale eddies and therefore allows the

study of the dynamics of transition to turbulence. This test-case has been widely

used to study the dissipation errors of numerical schemes [37]. In the LB con-

text, the three-dimensional TGV problem has been used to validate different LB

approaches in terms of turbulence dissipation [39, 40].

In this work, the TGV is simulated with BGK, d’Humières’ MRT-CM and

optimized MRT-CM with different lattice resolutions. Grid resolution of N =

32, 64, 128 and 256 have been computed, but the analysis has focused in the

under-resolved resolutions (N = 32 and 64), to prove if the new optimized

approach provides a correct dissipation evolution.

3.1. Simulation setup

The TGV problem can be run using a variety of flow and initial conditions.

The conditions and post processing used here were specified by the organizers

of the AIAA First International Workshop on High-Order Methods in Computa-

tional Fluid Dynamics [37].

The domain simulated consists of a cube with length defined as �⇡L <

x, y, z < ⇡L. The boundary conditions are periodic and the initial conditions of

the simulation are selected as:

ux =U0 sin[x/L] cos[y/L] cos[z/L],

uy =� U0 cos[x/L] sin[y/L] cos[z/L],

uz =0,

p =p0 +
⇢0U2

0

16
( cos[2x/L] + cos[2y/L])(cos[2z/L] + 2),

(12)
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where the reference density and length, ⇢0 and L, are set to one. The equation

of state used is p = c2s⇢, therefore the reference pressure is p0 = 1/3.

The reference velocity, U0, is selected through the Mach number, Ma =

U0/cs = 0.1. The kinematic shear viscosity is set through the relation with

the Reynolds number, Re = U0L/⌫ = 1600. The physical time computed in each

simulation is t = 20tc, where the characteristic time, tc, is defined as tc = L/U0.

Besides, different lattice numbers (N = 32, 64, 128 and 256) have been used in

order to test the different collision operators.

3.2. Results

To analyze the capabilities of each collision operator the dynamics of a three-

dimensional decaying vortex has been computed and compared with a DNS

simulation performed with a spectral method [37]. In the following, the dis-

sipation rate and the spectrum of the kinetic energy is scrutinized for various

under-resolved grids.

3.2.1. Reference results

The TGV evolution is characterized by three main steps visible in the time

trace of kinetic energy dissipation rate, " (see Eq. 13). First, the initial laminar

state is transitioning to turbulence until the stretched vortex tubes break down

into small scales around t/tc = 5. Then the dissipation rate rises to a sharp

peak near t/tc = 9 corresponding to the fully turbulent state which is then

decaying similarly to an isotropic and homogeneous turbulence. Figure 5 shows

the different steps described through the time evolution of the kinetic energy

dissipation rate, ", for Re = 1600 and Ma = 0.1. Flow structures are represented

by isosurface of the Q-criterion colored by kinetic energy. The simulation on a

N = 256 grid is in very good agreement with the spectral results also plotted in

Figure 5.
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Figure 5: Isosurface of the Q-criterion colored by kinetic energy at time t/tc = 4 (a), 8 (b), 10 (c),

16 (d) for Re = 1600 on a N = 256 grid ( ) compared with DNS results with N = 512 ( )

[37].

3.2.2. Kinetic energy dissipation rate

As illustrated before, in order to study the evolution of the fluid, the tempo-

ral evolution of the kinetic energy dissipation rate " is calculated:

" = �dEk

dt
. (13)

As shown by Eq. 13, the kinetic energy dissipation rate is the temporal

derivative of the kinetic energy, Ek, which is estimated using the following for-

mula:

Ek =
1

⇢0V

Z

V
⇢
u · u
2

dV, (14)

where the density is ⇢ = ⇢0 and V is the volume of the domain.

The results obtained with this definition are compared to the kinetic energy

dissipation rate of the reference [37]. Figure 6 shows the time evolution of the

kinetic energy dissipation rate, ", for BGK and MRT-CM (with d’Humières’ and

optimized parameters) at different grid resolutions, taking as reference data the

spectral DNS solution N = 512.
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Analyzing the BGK behavior, the N = 32 and 64 simulations give rise to nu-

merical instability at different times, while the N = 128 grid is stable. The

N = 32 becomes unstable almost at the beginning of the simulation. The

N = 64 grid simulation collapses earlier around t/tc = 5, when the stretched

vortex tubes break down into small scales. However, the N = 128 grid gives sat-

isfactory results for the transition region and the peak but the decaying phase is

not properly captured.

Regarding the MRT-CM, both sets of relaxation times are stable with the

N = 32 and 64 grids. The laminar stage (from t/tc = 0 to t/tc = 5) is well pre-

dicted but the difference comes when turbulence structures starts to develop.

For the coarser grid, N = 32, the transition evolution is faster than the spectral

solution, in consequence the peak is reached earlier. Note that with the opti-

mized values, turbulence levels are well predicted. Additionally, d’Humières’

parameters have a lower dissipation rate, showing zero dissipation at the end

of the simulation t/tc = 20. Using N = 64, the dissipation rate is more accu-

rate in the transition since the peak is produced at t/tc = 8 instead t/tc = 9.

Then, similar behavior is produced, as in N = 32, where the optimized ap-

proach has some extra dissipation and ends with the correct dissipation level.

Again, d’Humières’ approach ends with zero dissipation rate. Finally, with the

resolutions N = 128 and N = 256, both sets of parameters reproduce with a

good accuracy the dynamics of transition to turbulence. Note that for N = 256

the results of the three approaches are overlapped.

3.2.3. Kinetic Energy spectra

The transfer of energy from large scales to small scales is referred to as in-

viscid energy cascade (as proposed by Kolmogorov in 1941 [51] ). The largest

eddies contain most of the kinetic energy, whereas the smallest eddies are re-

sponsible for the viscous dissipation of kinetic energy.

Therefore, since turbulence encompasses a wide range of eddy sizes, it is

convenient to Fourier transform the velocity field to analyse the Fourier com-

ponents for different wavenumbers. The components of the velocity in Fourier
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(a) (b)

(c) (d)

Figure 6: Kinetic energy dissipation rate for spectral DNS: on a grid N = 512 and BGK: •,

d’Humières’ MRT-CM: N, and optimized MRT-CM: ⌅, on a grid N = 32 (a), N = 64 (b), N = 128

(c) and N = 256 (d) at Re = 1600 and Ma = 0.1.

space will be computed as:

û(||k||) =
Z

R3

u(x) e�2⇡ix·kdx. (15)

Subsequently, the energy spectrum function, E(||k||), which represents the

contribution to the turbulent kinetic energy over the surfaces of spheres S(||k||)

with radius ||k|| =
q

k2x + k2y + k2z , can be computed as:

E(||k||) = 1

2

I
û(k) · û(k)dS(||k||). (16)

Continuing with the analysis, in order to understand how the optimiza-
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tion affects the turbulence dissipation at the different wavenumbers, Figures

7 and 8 show the kinetic energy spectra of the optimized parameters com-

pared with d’Humières’ parameters at different grids (N= 32, 64, 128 and 256)

and time steps (t/tc = 6, 8, 14 and 20). The Kolmogorov law in spectral form,

E(k) ⇠ k�
5
3 , and the cut-off wavenumber, kcut�off , are used for the compar-

ison. The cut-off wavenumber, kcut�off , is the maximum wavenumber for re-

solved length scales. In particular for the TGV, where �x = L
N = 2⇧

N , the cut-off

wavenumber, assuming a minimum wavelenght of 2�x by Nyquist criterion, is

kcut�off = 2⇡
2�x = ⇡

2⇡/N = N
2 .

First, notice how the differences between both sets of parameters decrease

when the grid resolution increases. Again, with the resolutions N = 128 and

N = 256, both sets of parameters reproduce with a good accuracy the dynam-

ics of transition to turbulence. Note that for N = 256 the results of the two

approaches are overlapped.

Then, with N = 32 and 64 at t/tc = 6 and 8, before and after the dis-

sipation peak (see Figure 6) the optimized values are slightly less dissipative

enabling higher wavenumbers (smaller eddies). However, differences appear at

high wavenumbers for t/tc = 14 and 20. We observe that the curves bifurcate

after the k1%opt in all cases. Let us remind the reader that these values approx-

imate the wavenumber at which our scheme differs from d’Humières and adds

dissipations for badly resolved waves. Our optimized scheme damps the ex-

tra energy build up that appear at high wavenumbers when using d’Humières’

scheme, and allows us to obtain energy slopes that are close to the theoretical

value of k�5/3 as shown in Table 3. These numerical slopes, mn are computed

at t/tc = 20 in the wavenumber range: kEI < k < kcut�off , where kEI is the

demarcation wavenumber between the energy and inertial range [52]. Both

schemes are compared with the theoretical slope value, mt = �5/3 ⇡ 1.667.

It may be concluded that our scheme is indeed useful for under-resolved

simulations as it prevents energy build up and enables to retrieve the correct

cascade of energy and underlying turbulent physics.
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D’Humières MRT-CM Optimized MRT-CM

N mn "% mn "%

32 -0.548 -67 -1.945 17

64 -0.436 -74 -1.867 12

128 -1.766 6 -1.740 4

256 -1.702 2 -1.695 2

Table 3: Numerical slope, mn, and relative error, " = mn�mt
mt

· 100, of the kinetic energy spectra

computed for wavenumber range: kEI < k < kcut�off at t/tc = 20.

Finally, our criterion for designing a scheme suitable for LES is not based on

physical arguments but rather on numerical aspects. Our approach is based on

obtaining the best results with the limited resources available rather than trying

to simulate turbulence up to a certain percentage from the Kolmogorov length

scale. In fact in the TGV simulations the Kolmogorov length scale, approximated

as lKol = Lx/Re3/4 = 0.012, corresponds to a wavenumber kKol = 2⇡/lKol =

253 which is far from our wavenumber cut-off in all cases. Despite this, the

simulations still resolve a relatively large inertial range.
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Figure 7: Kinetic energy spectra for d’Humières’ MRT-CM: , and optimized MRT-CM: on a

N = 32 (left) and N = 64 (right) grid at t/tc = 6, 8, 14, 20 (from top to bottom); Re = 1600 and

Ma = 0.1 (k�5/3: , k1%opt: and kcut�off : ).
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Figure 8: Kinetic energy spectra for d’Humières’ MRT-CM: , and optimized MRT-CM: on

a N = 128 (left) and N = 256 (right) grid at t/tc = 6, 8, 14, 20 (from top to bottom); Re = 1600

and Ma = 0.1 (k�5/3: , k1%opt: and kcut�off : ).
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4. Conclusions

In this paper, the free parameter (relaxation times) of the D3Q19 MRT-CM

are optimized to enhance robustness for under-resolved simulations. The opti-

mization strategy aims at maximizing the dissipation of the numerical scheme

for under-resolved flow features. The limit between well- and under-resolved

waves is based on von Neumann linear stability analyses and the so called k-1%

dispersion-error rule. The D3Q19 optimized MRT-CM scheme is compared with

standard BGK and MRT-CM schemes by means of the Taylor-Green vortex turbu-

lent test. The three schemes perform similarly for well-resolved setups, however

the optimized MRT-CM provides significantly better results than BGK and MRT-

CM for under-resolved flow conditions. In particular, the optimized MRT-CM is

more accurate at capturing the three-dimensional kinetic energy evolution and

energy cascade for under-resolved simulations; providing the bases for more

general Large Eddy Simulation models.
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Appendix A. Moments matrix for D3Q19

Based on Dubois et al. [45], the following set of moments are proposed:

XmY lZk =(X0Y 0, X, Y, Z,XY,XZ, Y Z,X2 � Y 2, X2 � Z2, X2 + Y 2 + Z2,

XY 2 +XZ2, X2Y + Y Z2, X2Z + Y 2Z,XY 2 �XZ2, X2Y � Y Z2, X2Z � Y 2Z,

X2Y 2 +X2Z2 + Y 2Z2, X2Y 2 +X2Z2 � Y 2Z2, X2Y 2 �X2Z2)T ;m, l, k = 0, 1, 2

(A.1)

Applying the Gram-Schmidt orthogonalization procedure to Eq. A.1, the

matrix M(u) is obtained:

M(u) =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

X0Y 0Z0

X

Y

Z

XY

XZ

Y Z

X2 � Y 2

(X2 + Y 2 + Z2)� 3Z2

(X2 + Y 2 + Z2)� 2

3(XY 2 +XZ2)� 4X

3(Y X2 + Y Z2)� 4Y

3(ZX2 + ZY 2)� 4Z

(XY 2 �XZ2)

(Y X2 � Y Z2)

(ZX2 � ZY 2)

3(X2Y 2 +X2Z2 � 2Y 2Z2)� (2(2X2 � Y 2 � Z2))

3(X2Y 2 �X2Z2)� 2(Y 2 � Z2)

3(X2Y 2 +X2Z2 + Y 2Z2)� 4(X2 + Y 2 + Z2) + 4

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

⇢ |i
jx |i
jy |i
jz |i
pxy |i
pxz |i
pyz |i
pww |i
3pxx |i
e |i
qx |i
qy |i
qz |i
mx |i
my |i
mz |i
3⇡xx |i
⇡ww |i
✏ |i

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(A.2)

As can be seen, the selection of moments has a physical foundation. ⇢ is

the density, e is the kinetic energy, ✏ is related to the kinetic energy square,

j = ⇢u components correspond to components of momentum, q components

correspond to the internal energy components, p components correspond to the
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symmetric traceless viscous stress tensor, ⇡ is related with the kinetic energy

and the viscous stress tensor and m components are the asymmetric third-order

moments.

Hence the transformation matrix in raw moments is M(u = 0) with X = ex,

Y = ey and Z = ez.

M(0) =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 �1 0 0 �1 �1 �1 �1 0 0 1 0 0 1 1 1 1 0 0

0 0 �1 0 �1 1 0 0 �1 �1 0 1 0 1 �1 0 0 1 1

0 0 0 �1 0 0 �1 1 �1 1 0 0 1 0 0 1 �1 1 �1

0 0 0 0 1 �1 0 0 0 0 0 0 0 1 �1 0 0 0 0

0 0 0 0 0 0 1 �1 0 0 0 0 0 0 0 1 �1 0 0

0 0 0 0 0 0 0 0 1 �1 0 0 0 0 0 0 0 1 �1

0 1 �1 0 0 0 1 1 �1 �1 1 �1 0 0 0 1 1 �1 �1

0 1 1 �2 2 2 �1 �1 �1 �1 1 1 �2 2 2 �1 �1 �1 �1

�2 �1 �1 �1 0 0 0 0 0 0 �1 �1 �1 0 0 0 0 0 0

0 4 0 0 1 1 1 1 0 0 �4 0 0 �1 �1 �1 �1 0 0

0 0 4 0 1 �1 0 0 1 1 0 �4 0 �1 1 0 0 �1 �1

0 0 0 4 0 0 1 �1 1 �1 0 0 �4 0 0 �1 1 �1 1

0 0 0 0 �1 �1 1 1 0 0 0 0 0 1 1 �1 �1 0 0

0 0 0 0 �1 1 0 0 1 1 0 0 0 1 �1 0 0 �1 �1

0 0 0 0 0 0 �1 1 1 �1 0 0 0 0 0 1 �1 �1 1

0 �4 2 2 1 1 1 1 �2 �2 �4 2 2 1 1 1 1 �2 �2

0 0 �2 2 1 1 �1 �1 0 0 0 �2 2 1 1 �1 �1 0 0

4 0 0 0 �1 �1 �1 �1 �1 �1 0 0 0 �1 �1 �1 �1 �1 �1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

(A.3)

Finally, as it was explained before, Skl is a diagonal matrix. The entries

of this diagonal matrix account for the relaxation times, si, of the different

moments. In particular, in the D3Q19 scheme this reads:

Skk = (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18).

(A.4)

In the case of the MRT collision model, the hydrodynamic quantities (density

and momentum) can be imposed with any value of s0, s1, s2 and s3, provided

⇢ = ⇢eq and u = ueq. These are set to zero.

Commonly in the literature, the rest of the relaxation times are set as in

d’Humières’ [49]. D’Humières’ diagonal parameters in the collision matrix of
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the MRT collision operators reads:

Sii = (0, 0, 0, 0, s4, s5, s6, s7, s8, s9, 1.2, 1.2, 1.2, 1.98, 1.98, 1.98, 1.4, 1.4, 1.4).

(A.5)

As for the BGK collision operator, the Chapman-Enskog expansion estab-

lishes the relation between the relaxation times and the kinematic shear and

bulk viscosities of the macroscopic fluid [18]. In the MRT approach the kine-

matic viscosity, ⌫, and the bulk viscosity, ⌘, are related to the relaxations param-

eters (s4, s5, s6, s7, s8, s9) associated to the second order moments. As a result,

this approach removes some of the constraints of the BGK collision operator. In

particular, the viscosities read:

⌫ = c2s(
1

si
� �t

2
) with i = 4, . . . , 8 , ⌘ =

2

D
c2s(

1

s9
� �t

2
). (A.6)

It is important to notice that, having identified the relations between the

kinematic and bulk viscosities with the relaxation times, the higher order mo-

ments relaxation times, s10�18, remain free parameters. Finally, it should be

mentioned that the relaxation values, si, related with the viscosities must lie

between 0 and 2 since the kinematic and bulk viscosity cannot be negative (see

Eq. A.6 with �t = 1).

Appendix B. BGK, MRT-RM and MRT-CM collision operators

In this appendix, the numerical modes of three different collision operators

(BGK, MRT-RM and MRT-CM) are compared. Following our previous work [1]

regarding an optimization of the D2Q9 MRT-CM, the bulk viscosity is fixed in

BGK and MRT approaches to the same value to permit the comparison between

both approaches. So, the relation ⌘BGK = 2
3⌫ is also applied to the MRT col-

lision operator. In particular, the kinematic viscosity is fixed to 10�3 kg
ms and

consequently the bulk viscosity is fixed to 6.7 · 10�4 kg
ms . That means a value of

⌧ = 0.503 for the BGK collision operator and values s4�9 = 1.988 for the MRT
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collision operators. The rest of relaxation times are fixed to the values proposed

by d’Humières et al. [49] (see Eq. A.5).

Figure B.9 shows the dispersion and dissipation of the three approaches com-

pared with the theoretical modes for Ma= 0.2. Notice that the dispersion errors

in Figure 9(a) at low wavenumbers is negligible for the kinetic modes. But for

large wavenumbers we observe the development of non-negligible dispersion

errors, which should be dissipated correctly.
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Figure B.9: Dispersion (a) and dissipation (b) for D3Q19 with BGK: •, d’Humières’ MRT-RM: ⌅,

d’Humières’ MRT-CM: N and theoretical modes (shear mode: , and acoustic modes: ) at

Ma = 0.2 with ⌫ = 10�3 kg
ms (Note that the dissipation theoretical modes are overlapped).

Figure 9(b) shows dissipation where the theoretical modes (shear and acous-

tic) overlap, which is due the contribution of the kinematic and bulk viscosities

in Eq. 8. Also as expected, the modes have a similar behaviour as in D2Q9 [1]

regarding the dissipation of the shear mode. The MRT-CM approaches presents

a higher dissipation rate at high wavenumbers.

Besides, the MRT-RM seems more unstable compared with the D2Q9 lattice

scheme at the same fluid conditions (see Figure 3(b) in [1]). These differ-

ences between D2Q9 and D3Q19 lattice schemes could come from the different

values used from the literature for the free parameters, Lallemand’s [18] and

d’Humières’ [49] values for D2Q9 and D3Q19 respectively. This assumption is

clarified in the Appendix C.
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Appendix C. Comparison between Lallemand’s and d’Humières’ parame-

ters:

As mentioned before, initially Lallemand and Luo [18] proposed values for

the free parameters of the MRT collision operator for the D2Q9 lattice scheme.

Later, d’Humières’ [49] suggested different values for the D3Q19 MRT relax-

ation times. Both sets of parameters were obtained through an optimization

process based on linear stability analysis.

In this section, both Lallemand’s and d’Humières’ parameters are compared

for the D3Q19. So, taking into account the geometrical relation between the

D2Q9 and D3Q19 lattice schemes, the Lallemand’s parameters for the D3Q19

discretization are:

Sii = (0, 0, 0, 0, s4, s5, s6, s7, s8, s9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.54, 1.54, 1.54).

(C.1)

Figure C.10 shows the dispersion and dissipation for D3Q19 with Lalle-

mand’s parameters with ⌫ = 10�3 kg
ms and ⌘ = 6.7 · 10�4 kg

ms (s4�9 = 1.9988)

at Ma = 0.2. Notice how the shear mode dissipation is identical compared with

the D2Q9 lattice scheme (see Figure 3(b) in [1] ), which uses the Lallemand’s

parameters (Eq. C.1). These plots confirm the assumption done previously.

Figure C.11 compares both Lallemand’s and d’Humières’ parameters for the

MRT-CM collision operator. Note how the dissipation of the shear mode is higher

with d’Humières’, because the second order moments are related with the shear

mode dissipation. In this work, d’Humières’ values are used due to the higher

dissipation at high wavenumbers. This will prove advantageous to dissipate

under-resolved waves.
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Figure C.10: Dispersion (a) and dissipation (b) for with D3Q19 BGK: •, Lallemand’s MRT-RM: ⌅,

Lallemand’s MRT-CM: N and theoretical modes (shear mode: , and acoustic modes: )

with ⌫ = 10�3 kg
ms and ⌘ = 6.7 · 10�4 kg

ms (s4�9 = 1.9988) at Ma = 0.2 (Note that the dissipation

theoretical modes are overlapped).
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Figure C.11: Dispersion (a) and dissipation (b) for D3Q19 with Lallemand’s MRT-CM: (⌅),

d’Humières’ MRT-CM: (N), and theoretical modes (shear mode, , and acoustic mode, )

with ⌫ = 10�3 kg
ms and ⌘ = 6.7 · 10�4 kg

ms (s4�9 = 1.994) at Ma = 0.2 (Note that the dissipation

theoretical modes are overlapped).
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