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Abstract We present a new closure model for Large Eddy Simulation to

introduce dissipation in under–resolved turbulent simulation using discontin-

uous Galerkin (DG) schemes applied to the compressible Navier–Stokes equa-

tions. The development of the method is based on a thorough analysis of

the numerical dissipation mechanisms in DG schemes. In particular, we use

upwind Riemann solvers for inter–element dissipation, and a Spectral Vanish-

ing Viscosity (SVV) method for interior dissipation. First, these mechanisms

are analysed using a linear von Neumann analysis (for a linear advection–

di↵usion equation) to characterise their properties in wave–number space. Sec-

ond, their behaviour is tested using the three–dimensional Taylor–Green Vor-

tex Navier–Stokes problem to assess transitional/turbulent flows. The results

of the study are subsequently used to propose a DG–SVV approach that uses

a mode-selection Smagorinsky LES model to compute the turbulent viscosity.
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When the SVV technique is combined with a low dissipation Riemann solver,

the scheme is capable of maintaining low dissipation levels for laminar flows,

while providing the correct dissipation for all wave–number ranges in turbulent

regimes. The developed approach is designed for polynomial orders N � 2 and

is specially well suited for high order schemes. This new DG–SVV approach

is calibrated with the Taylor–Green test case; to then show its accuracy in an

under–resolved (y+ > 8) channel flow at Reynolds number Re⌧ = 183.

Keywords Discontinuous Galerkin, Energy Stable, under–resolved turbu-

lence, Large Eddy Simulation, Smagorinsky, Spectral Vanishing Viscosity

1 Introduction

High–order discontinuous Galerkin (DG) methods have been adopted by academia

and research centres as an alternative to classic numerical schemes (e.g. Fi-

nite Di↵erences, Finite Volumes or Finite Elements). During recent years, DG

methods have been adapted to solve increasingly complex physics; including

incompressible, compressible, and multiphase flow problems [1, 2, 3, 4, 5, 6,

7, 8, 9]. This popularity may be attributed to two characteristics. First, DG

methods provide high accuracy even for unstructured distorted meshes [10], a

property di�cult to retain when using classic methods (e.g. Finite Di↵erences

or Finite Volumes). This property is a result of the compactness and local

character of the scheme, enabling high order accuracy with compact stencils.

Second, DG methods have shown to be more robust that their high order

continuous Galerkin relatives [11]. This last beneficial property has been of-

ten attributed to the use of upwind Riemann solvers, which add controlled

dissipation, enhancing robustness.
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In recent years, the DG community has exploited the increased robustness

provided by Riemann solvers to simulate under–resolved turbulent flows, e.g.

[12, 13]. This enhanced robustness rests on the localised dissipation provided

by upwind Riemann solvers to dissipate small flow structures, which cannot be

resolved on coarse meshes. Methods that rely on the numerics to provide mech-

anisms for turbulent dissipation are typically known as implicit Large Eddy

Simulation (iLES) methods. The term implicit evidences that the numerical

errors (in particular the dissipation) are in charge of dissipating under–resolved

flow structures. An alternative to iLES is provided by explicit LES methods,

where flow dissipation at small scales rests on physical arguments and modi-

fied flow equations, e.g. [14, 15]. To solve under–resolved turbulent flows using

iLES/LES methods, it is necessary to understand and control numerical errors,

and specially numerical dissipation introduced by the scheme, which replaces

and/or complements explicit subgrid–scale models.

There are di↵erent alternatives to provide numerical dissipation in DG

methods. The most popular choice is to include upwind Riemann solvers, which

arise naturally from the integration by parts of the non–linear fluxes and the

existence of inter–element discontinuities in DG. These fluxes introduce local

dissipation, which scales with the size of the discontinuities in the numerical

solution. In under–resolved flows, the size of such discontinuities increases and

it has been argued (see for example [2]) that fluxes based on discontinuities

may act as an appropriate stabilising mechanism for under–resolved turbulent

simulations. In addition to upwind Riemann solvers, we consider the Spectral

Vanishing Viscosity (SVV) technique [16] to include dissipation, when the dis-

sipation resulting from the Riemann solver is insu�cient. The SVV technique

was first introduced for Fourier and continuous Galerkin discretizations [17] to

regularise the solution (i.e. avoid oscillatory phenomena) in the inviscid Burg-
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ers equation, and later in the Navier–Stokes Equations (NSE) [18]. The SVV

provides additional dissipation complements that provided by the numerical

fluxes, enhances stability, vanishes in the laminar limit and provides spectral

convergence in high–order discretizations. Let us note that other techniques to

introduce localised dissipation in continuous discretizations exist but are not

considered in this work, e.g. SUPG stabilisation.

A substantial amount of work [2, 19, 20, 21, 22, 23, 24] has focused on un-

derstanding the stabilising e↵ect of upwind Riemann solvers on under–resolved

turbulent flows. However, limited e↵orts have been devoted to understanding

the combined e↵ect of Riemann solvers (i.e. interface dissipation) and dis-

cretised viscous terms (i.e. volume dissipation). In this text, we analyse the

individual contribution of each term but also the combined e↵ect. For all dissi-

pative mechanisms, we first analyse their numerical properties in wave–number

space, using von Neumann analysis on a linear advection–di↵usion equation.

Similar work has been presented for linear advection with constant coe�-

cients [25, 26] and for non–constant coe�cients [27]. In addition, the authors

proposed, in [28], a non–modal approach as an extension to von Neumann

analysis. Second, we correlate these findings with results for DNS and iLES

simulations of the 3D Taylor–Green Vortex (TGV) Navier–Stokes problem

with transitional/turbulent flow [12, 13].

Even though von Neumann analyses are restricted to the constant advection–

di↵usion equation, we will confirm, with the help of numerical experiments,

that von Neumann results are consistent with observations of under–resolved

Navier–Stokes turbulent flows. We show that the dissipation introduced by up-

wind Riemann solvers a↵ects high wave–numbers (around 75% of the Nyquist

wave–number), while discrete second order derivatives provide dissipation at

low and medium wave–numbers (around 25% and 50% of the Nyquist wave–
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number respectively). Additionally, the dissipation introduced by the SVV

operator helps to control the amount of dissipation introduced in the low and

medium wave–number range, and provides a suitable mechanism to develop

new models, as the one proposed in the final section of this manuscript.

To perform these studies, we start from a baseline scheme without dissi-

pation (i.e. an energy conserving scheme), and include numerical dissipation

through the di↵erent stabilisation techniques. In the linear advection equation

with constant coe�cient it su�ces to consider central fluxes (see [29, 30]),

but in the non–linear Navier–Stokes equations, it is required to use split for-

mulations [31, 32, 33], which provide kinetic energy consistency and enhances

robustness.

Having quantified numerical errors for the above dissipative mechanisms,

in a final section, we combine upwind Riemann solvers and SVV. Following the

suggestion of Karamanos and Karniadakis for continuous Galerkin methods

[18, 34], we modify the classic SVV technique using a Smagorinsky model to

adjust the amount of dissipation introduced. This new proposed DG model is

capable of maintaining low dissipation levels in laminar flows, while modelling

small eddies and providing correct dissipation for all wave–number ranges in

turbulent regimes.

The rest of this paper is organised as follows: we describe the dissipative

mechanisms and their inclusion in the one–dimensional advection–di↵usion

and three–dimensional Navier–Stokes equations in Section 2. In Section 3,

we study two dissipation techniques: Section 3.2 analyses interface dissipa-

tion (upwind Riemann solvers) while Section 3.3 investigates internal dissi-

pation (discrete second order derivatives and SVV). Finally, we propose and

test a Smagorinsky–SVV DG discretization to simulate under–resolved turbu-

lent/transitional flows in Section 4.
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2 Methodology

We first present, in Section 2.1, the one–dimensional advection–di↵usion equa-

tion for the discrete DG approximation and the von Neumann stability anal-

ysis. In Section 2.2 we present the DG discretization of the three–dimensional

compressible Navier–Stokes equations. Then, in Section 2.3, we briefly intro-

duce energy conserving schemes. Finally, in Section 2.4, we detail how the

dissipation mechanisms are included both in the Navier–Stokes equations and

in the advection–di↵usion equation.

2.1 One–dimensional advection–di↵usion equation and von Neumann

Analysis

The one–dimensional linear advection–di↵usion equation is

ut + aux = (µux)x, 0 6 x 6 1, (1)

where a is a constant advection speed and µ is the viscosity.

To perform von Neumann analysis we introduce an exponential wave solu-

tion, with spatial wave–number k and temporal frequency !,

u(x, t) = eikx�i!t = u0(x)e
�i!t, (2)

with u0(x) = eikx the part of (2) that only depends on the spatial coordinate.

The relationship between the temporal frequency and the spatial wavenumber,

!(k), is such that yields an eigenfunction of the original partial di↵erential

equation (1). To obtain the relationship !(k) we introduce (2) in (1),

�i!eikx�i!t + iakeikx�i!t = �µk2eikx�i!t, !(k) = ak � iµk2. (3)
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The original equation (1) advects the initial condition (2) keeping a con-

stant speed a, and decreases its amplitude at a rate given by µk2. Von Neu-

mann analysis consists in the use of the same initial condition (2) in the discrete

version of (1) to obtain the numerical relation !(k). On the contrary to the

continuous equation, the discrete operator will incur errors on the propagation

speed and errors on the amplitude of the wave, which will not be kept con-

stant. The change of the wave amplitude of the discrete solution is related with

the stability of the numerical scheme. A scheme whose solutions’ amplitude

grows infinitely (Im (w) > 0) is said to be unstable, while a dissipative scheme

obtains Im (w) 6 �µk2. Because of the linear relation between spatial and

temporal frequencies, without loss of generality we will only study a constant

coe�cient a = 1.

We consider the DG discretization of the linear advection equation (1)

in an uniform grid that divides the physical domain [0, 1] in elements with

spacing h. Here we briefly highlight the steps that construct a DG formulation,

and the interested reader can find more details in [35]. In each element e, we

approximate the solution with an order N polynomial,

u (x, t)e ⇡ IN
�
u
��
e

�
= Ue (⇠, t) =

NX

j=0

Uj(t)lj (⇠) , (4)

written using the Lagrange polynomials lj (⇠) in a set of interpolation nodes

{⇠i} that range in a local reference element ⇠ 2 [�1, 1]. Next, we construct a

weak form of the advection equation (1) on the element e. To do so, we first

write the second order equation as a system of two first order equations with

the definition of the auxiliary variable g = ux. Next, we refer the derivative

operators to the reference space u⇠ = h
2ux. Then we multiply (1) and h

2 g = u⇠

by an arbitrary N order polynomial � and integrate them in the reference
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element [�1, 1] to obtain,

h

2

Z 1

�1
ut� d⇠ + au�

��1
�1

�
Z 1

�1
au�⇠ d⇠ = µg�

��+1

�1
�
Z 1

�1
µg�⇠ d⇠,

h

2

Z 1

�1
g� d⇠ = u�

��1
�1

�
Z 1

�1
u�⇠ d⇠,

(5)

where the two terms that contain spatial derivatives have been integrated by

parts. Now, we replace the continuous functions by their polynomial approx-

imations, and we replace the exact integrals by a Gaussian quadrature rule

based on the same interpolation nodes {⇠i}, with weights {wi},

h

2

Z 1

�1,N
Ut� d⇠ + (aU)?�

��1
�1

�
Z 1

�1,N
aU�⇠ d⇠ = µG?�

��+1

�1
�
Z 1

�1,N
µG�⇠ d⇠,

h

2

Z 1

�1,N
G� d⇠ = U?�

��1
�1,N

�
Z 1

�1
U�⇠ d⇠.

(6)

As a result of the discrete ansatz, the solutions are discontinuous at the inter–

element boundaries. Thus, we replace the interface solution by an unique value

U?, G?, taking into account the solution from both sides. The numerical flux

couples the solution in adjacent elements. We define Ue = (Ue
0 , U

e
1 , ..., U

e
N ) as

the vector that contains the N +1 nodal values of the polynomial approxima-

tion of the solution in the element e. As a result, the DG scheme (6) can be

summarized as,

Ue
t = [La]U

e�1 + [Ca]U
e + [Ra]U

e+1 + [Lg]G
e�1 + [Cg]G

e + [Rg]G
e+1,

Ge = [Lu]U
e�1 + [Cu]U

e + [Ru]U
e+1,

(7)

where, in the linear advection–di↵usion equation all the matrices are constant

in time. We can replace Ge from the second equation to the first to obtain a
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single equation,

Ue
t = [LL]Ue�2 + [L]Ue�1 + [C]Ue + [R]Ue+1 + [RR]Ue+2. (8)

Common choices for the numerical fluxes are central and upwind fluxes for

advective terms, and the Bassi–Rebay 1 or the Interior Penalty (IP) method

for di↵usive terms, summarized in Table 1. Insights on the properties that can

be derived from the di↵erent options can be found in [36].

Table 1 Numerical fluxes used in this work for advective and di↵usive terms

Advective (aU)? Di↵usive U? Di↵usive G?

Central � = 0 Upwind � = 1 BR1 IP BR1 IP
{{U}}+ 1

2 |a|� (UL � UR) {{U}} {{U}} {{G}} {{rU}}� � (UL � UR)

We describe von Neumann analysis applied to the DG scheme (8), which

is also valid for any scheme written in matricial form. Further details on the

derivation of von Neumann analysis for an advection–di↵usion equation can

be found in [37, 27]. The choice of the initial condition, and the linearity of

the equation, allows us to relate the solution in neighboring elements to one

reference element,

Ue�n = e�iknhUe. (9)

We introduce (9) in the discrete equation (8) to obtain a linear ordinary dif-

ferential equation system for each individual element,

h

2

dUe

dt
=

�
e�2ikh[LL]+e�ikh[L]+[C]+eikh[R]+e2ikh[RR]

�
Ue = [M(kh)]Ue.

(10)
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The general solution of (10) is linearly spanned by the N + 1 modes of the

eigenvalue problem (note that, for simplicity, the index e has been dropped),

�i!m
h

2
Vm = [M(kh)]Vm, U(t) =

NX

m=0

AmVme�i!mt, (11)

where Vm are the unitary eigenvectors, and the amplitudes Am are constants

computed to recover the initial condition in t = 0,

U (0) = U0 = eikx =
NX

m=0

AmVm. (12)

The solution structure (12) allows us to classify three di↵erent numerical

error sources, which were already detailed in [26, 27]. Specifically, only the so-

called primary mode (p) propagates with the physical wave-speed and damping

(e.g. !p = 0 when k = 0). Hence, we rewrite the solution isolating the primary

mode contribution from the remaining modes (called secondary modes,m 6= p),

U = ApVpe
�i!pt +

NX

m=0
m 6=p

AmVme�i!mt. (13)

Next, the initial condition (12) is also separated in the contribution of

primary and secondary modes, and introduced in (13). As a result, we can

consider the numerical solution as the primary mode propagating the initial

condition, U0e�i!pt, and the non–physical errors (which propagate with both

primary and secondary mode speeds) as secondary modes, �U(t),
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U = U0e
�i!pt +

NX

m=0
m 6=p

AmVm

�
e�i!mt � e�i!pt

�

= U0e
�i!pt +�U(t).

(14)

The numerical propagation speed experienced by the initial condition, U0,

(i.e. the primary mode frequency, !p) will di↵er from that dictated by the ana-

lytical PDE (! = ak). The di↵erence between its real part and the theoretical

travelling speed, ak, will yield a dispersion error (i.e. error in the propagation

speed), while its imaginary part, which is generally non–zero, entails numerical

dissipation. Following [26], we define the non–dimensional wave–number, k̂, as

k̂ =
kh

N + 1
, (15)

such that we will distinguish between low wave–numbers (k̂ . ⇡/4), medium

wave–numbers (k̂ ⇠ ⇡/2) and high wave–numbers (k̂ & 3⇡/4), with respect to

Nyquist wave–number (k̂ = ⇡). Further details on the discretization and anal-

ysis of the one–dimensional advection equation and extended von Neumann

analysis for advection equations with non–constant coe�cients may be found

in other works by the authors in [27, 30, 38].

2.2 Three–dimensional compressible Navier–Stokes equations

We write the three–dimensional compressible Navier–Stokes equations in com-

pact form,

ut +r · F e(u) = r · F v(u,ru), (16)



12 Juan Manzanero et al.

where u is the vector of conservative variables u = [⇢, ⇢v1, ⇢v2, ⇢v3, ⇢e]T . De-

tails on the specific formulations retained for inviscid F e and viscous F v fluxes

can be found in Appendix A of this text.

To derive discontinuous Galerkin schemes, we consider (16) for one mesh

element e, we multiply it by an arbitrary order N polynomial �, and integrate

on e, Z

e
ut�+

Z

e
r · F e� =

Z

e
r · F v�. (17)

We integrate by parts the fluxes integrals to obtain a local weak form of the

equations (one per mesh element), and approximate the integrals by Gauss

quadratures,

Z

e,N
ut�+

Z

@e,N
F e ·n��

Z

e,N
F e ·r� =

Z

@e,N
F v ·n��

Z

e,N
F v ·r�, (18)

where n is the normal vector at element boundaries @e. We replace discontin-

uous fluxes at inter–element faces by a numerical inviscid flux, F?
i , to obtain

a weak form for the equations for each element,

Z

e,N
ut�+

Z

@e,N
F?

e ·n��
Z

e,N
F e ·r� =

Z

@e,N
F?

v ·n��
Z

e,N
F v ·r�, (19)

Since we are using split–form schemes, we follow [31] to get a weak–strong

form using the summation–by–parts property on the inviscid fluxes in (19),

Z

e,N
ut�+

Z

@e,N
(F?

e � Fe) ·n�+

Z

e,N
r ·F e� =

Z

@e,N
F?

v ·n��
Z

e,N
F v ·r�,

(20)

where the divergence of inviscid fluxes r · Fe ⇡ D (Fe)
PI is computed using

Pirozzoli’s two–point kinetic energy preserving flux (see [31] and Appendix

A for details). Finally, we augment viscous fluxes with the spectral vanishing
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Table 2 Summary of dissipative mechanisms: k̂ denotes the non–dimensional wave–number,
k̂ = kh/(N + 1).

Mechanism Discretization Section Dissipation range
Interface dissipation upwind, Roe, low 2.4.1 High wave–numbers

dissipation Roe [39] 3.2 (k̂ > ⇡/2)

Volume dissipation LES models, 2.4.2 Low (k̂ < ⇡/2) to medium
SVV 3.3 (k̂ ⇠ ⇡/2) wave–numbers and

tuneable for SVV

viscosity Fv+ = Fv + FSVV,

Z

e,N
ut�+

Z

@e,N
(F?

e � Fe) · n�+
Z

e,N
D (Fe)

PI � =

Z

@e,N
F?

v+·n��
Z

e,N
F v+·r�,

(21)

Details on the precise forms of such terms are included in following sections.

Additionally, Table 2 summarises the various dissipative mechanisms and de-

tails their e↵ect in the wave–numbers space.

Further details regarding the nodal discontinuous Galerkin formulation

used in this paper may be found in [35, 31, 32] for three–dimensional un-

structured grids with curved elements.

2.3 Briefly on energy preserving schemes

Throughout the paper we use only kinetic energy preserving schemes, where

the kinetic energy can not increase as a result of the physical and numeri-

cal dissipation [40]. Because the schemes are designed to remain stable and

to be energy preserving, they do not require extra numerical dissipation for

robustness. Hence, including numerical dissipation to these schemes enables

the analysis of dissipation techniques, whose e↵ect will not be masked by

other numerical errors inherent to non–linear terms discretization. Overall,

these schemes are useful to understand numerical dissipation requirements,

and thus, to design robust dissipation techniques capable to achieve accurate
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solutions. The dissipation techniques studied herein are the use of upwind Rie-

mann solvers and the addition of a turbulent viscosity (e.g. LES models and

spectral vanishing viscosity).

Because in the linear advection equation the volume quadratures are ex-

actly computed, energy conserving schemes are achieved with an appropriate

choice of the numerical flux. Namely, the numerical flux (see Table 1) is de-

signed such that the first part (central fluxes) balances volume terms to obtain

an energy conserving scheme (for constant advection speeds). Hence, we will

refer to the particular case with � = 0 as central fluxes (see Table 1).

The extension to the non–constant advection speed and non–linear prob-

lems (e.g. the Navier–Stokes equations) needs special treatment of volume

integrals (to use split–forms) and requires the use of Gauss–Lobatto points

to cancel out boundary terms using the Summation–By–Parts Simultaneous–

Approximation–Term properties (SBP–SAT). The interested reader is referred

to [41, 29, 27, 31] for particular split–forms for non–constant advection, Burg-

ers and Euler equations.

2.4 Description of the dissipation mechanisms

In this section, we introduce two dissipation mechanisms found in DGmethods:

the interface dissipation through the numerical flux in Section 2.4.1 and the

internal dissipation through the use of a turbulent viscosity methods in Sec-

tion 2.4.2. We correlate the e↵ect of these mechanisms in the one–dimensional

advection–di↵usion equation, to their counterparts in the three–dimensional

Navier–Stokes equations, such that in following sections, the information ex-

tracted from von Neumann analyses can be used to understand the behaviour

when solving laminar/turbulent flows.
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2.4.1 Interface dissipation through the numerical flux

Discontinuous Galerkin methods add dissipation through the numerical flux,

F?
e, (see (21)), that acts in the interfaces. For the one–dimensional linear ad-

vection equation with constant coe�cient (1), we use the general � flux defined

in Table 1. As demonstrated in [29], the numerical dissipation introduced by

an upwind Riemann solver is proportional to the square of the solution inter–

element jumps JuK = uR � uL,

✓
1

2
U2

◆

t

= ��
1

2
|a|JuK2 6 0. (22)

Additionally, note that �diss vanishes when considering the analytical (smooth)

solution (zero jumps), thus not altering the underlying physics in well resolved

cases. We will investigate the e↵ect of this non–linear dissipation through von

Neumann analyses. These non–linearities arise as a result of the penalisation

on the size of the interface jumps when increasing �.

In the three–dimensional Navier–Stokes equations (16), inviscid fluxes or

Riemann solvers are usually constructed as the average of both adjacent states,

plus an interface dissipation that depends on the two states (UL,UR) [42],

F ?
e · n = {{F · n}}� diss(UL,UR). (23)

In this paper, we will consider Roe dissipation,

dissRoe(UL,UR) =
5X

e=1

↵e|�e|Ke, (24)

where the intensities ↵e, eigenvalues �e and eigenvectors Ke are computed

from the Roe averaged states [42]. We will study the e↵ect of the parameter

� in (22) in the Navier–Stokes equations by modifying (23) to,
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F ? · n = {{F · n}}� �diss(UL,UR), (25)

to control the dissipation added through cell interfaces with the free param-

eter �. This new expression (25) compares to the linear advection form (see

Table 1). Moreover, this strategy has been already adopted to design low dissi-

pation versions for Roe Riemann solvers which provide an appropriate estimate

for � [39]. Nonetheless in the L2R Riemann solver derived in [39] there is a

subtle di↵erence, since this atenuation is only applied to the velocities, and not

to the pressure, since the pressure atenuatation leads to pressure oscillations

(see [20]).

2.4.2 Internal dissipation with spectral vanishing viscosity

We complement the dissipation provided by the interface numerical flux with

additional dissipation in the interior of the elements. A framework is presented

here to study the Spectral Vanishing Viscosity (SVV) method.

This technique was initially introduced to stabilise Fourier spectral meth-

ods in [17], and later adapted to high–order continuous Galerkin methods in

[18]. This technique considers a constant viscosity, µSV V , which is applied

unevenly on the di↵erent modes that form the solution. The operator that

chooses the intensity of each mode in the dissipation is called the viscous ker-

nel Qµ. Precisely, we add FSVV to the the one–dimensional linear advection

equation to introduce the SVV regularisation,

FSVV = µSV V Qµ ?
@u

@x
, (26)

where the operator ? denotes the modal convolution operator, applied to the

solution derivative and the SVV viscous kernel (see implementation details in
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[18]). The resulting approach can be identified as a high–pass filtered dissipa-

tion. The spectral distribution of the viscosity is defined ad-hoc in the viscous

kernel, Qµ, of the SVV method. In this work we adopt the kernel introduced

recently by Moura et al. [37], who considered a power law,

Qµ(k) = (k/N)PSV V , k = 0, 1, . . . , N. (27)

In (27), the constant PSV V is the kernel power coe�cient, and k is the polyno-

mial mode index. This kernel is convenient since a standard viscous discretiza-

tion is recovered when PSV V = 0 (see (26) and (27)) and the dissipation

is restricted to the highest order mode if PSV V >> 1. Therefore, with the

framework we can study both the SVV and a standard second order deriva-

tive, which serves as a point of reference. A graphical representation of the

kernel (27) can be found in Figure 1.

Fig. 1 Representation of the power law kernel (27) for several PSV V values. The higher the
kernel power coe�cient PSV V , the higher is the filtering performed in the viscous tensor

The SVV has been widely adopted and studied for continuous Galerkin and

Fourier spectral methods [43, 16, 37, 2]. In [37], Moura et al. performed the

dispersion–dissipation analysis of the continuous Galerkin SVV, finding sim-

ilarities between the numerical dissipation introduced to that obtained using
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upwind Riemann solvers in discontinuous Galerkin methods. However, for dis-

continuous Galerkin methods there are not SVV studies available. One reason

would be that the SVV was introduced to achieve similar dissipation behaviour

in continuous Galerkin (where the schemes present lack of numerical dissipa-

tion) to that obtained with upwind Riemann solvers in DG. Therefore, it may

be naively argued that it is pointless to introduce an SVV method in DG, since

the upwind fluxes achieve similar results, resulting in a more e�cient and sim-

pler implementation. However, in this paper we show that the SVV method

is useful not as a substitute of upwind Riemann solvers, but as a complement

of the latter to adjust energy accumulations in medium wave–numbers, which

can not be controlled by the numerical flux.

In the compressible Navier–Stokes equations (see Appendix A), the SVV

method is implemented by defining the following dissipation operator in (21),

F SVV =

2
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0 0 0
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j=1 vj ⌧̂2j + kT̂y
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j=1 vj ⌧̂3j + kT̂z

3

77777777775

, (28)

where hatted variables represent those with the SVV operator applied, e.g.,

for viscous stresses,

⌧̂ij = µSV V Qµ ?
⇥
@jvi + @ivj �

1

3
�ij@ivi

⇤
. (29)

We also give in this section a brief introduction to LES models. LES models

introduce a solution dependent viscosity, µt, usually through a second order

derivative. The standard Smagorinsky subgrid–scale model for the Navier–
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Stokes equations [44], is used in all studies shown in this paper. Namely, FLES

in (21) is,

FLES = F v(µ = µt,v,rv), (30)

where Fv(µ,v,rv) is the Navier–Stokes viscous flux defined in (37). The

Smagorinsky viscosity is defined as,

µt = C2
S�

2|S|. (31)

The classical value for isotropic turbulence, CS = 0.2, is selected while the

filter width � is computed as in [20],

�3 =
Cell volume

(N + 1)3
, (32)

which accounts for both the mesh elements size and the polynomial order. The

e↵ect of the Smagorinsky model will be analysed in detail in Section 4.

We first study the dissipation introduced by the SVV operator with a

constant viscosity µSV V , and then, we construct a Smagorinsky–SVV LES

scheme that uses the Smagorinsky model as the SVV viscosity µSV V = µS .

3 Numerical Results

We now study the two dissipation mechanisms (interface and internal) intro-

duced in the previous section by two means: performing a linear von Neumann

analysis, and solving the Taylor–Green vortex problem. Von Neumann anal-

ysis gives a global vision of the behaviour of the linear advection–di↵usion

equation scheme in the wave–number domain independently of the initial con-

dition. In contrast, the TGV problem, see Appendix B, allows us to study the
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dissipation introduced numerically by inspecting the kinetic energy spectra of

the flow. This section is organised with the same structure as Section 2.4; we

first study energy conserving schemes to establish the baseline state, to then

analyse the two dissipation techniques introduced in Sections 2.4.1 and 2.4.2.

3.1 Preliminaries on kinetic energy preserving schemes

We start by considering a kinetic energy preserving scheme. We study the con-

stant speed advection equation with Gauss points and central fluxes (di↵usion

is not considered here). The choice of Gauss points for this von Neumann

analysis is adopted since it represents a more traditional and widely used ap-

proach, but we found that all the conclusions hold with Gauss–Lobatto points

(see [25] for details).

3.1.1 Von Neumann analysis

Numerical dispersion and dissipation errors are depicted in Figures 2(a) and

2(b) respectively. We have highlighted the mode that satisfies Re (!) = 0 for

k̂ = 0 with a black line. The dashed line in Figure 2(a) depicts the analytical

PDE speed (i.e. the straight line Re(!) = k). There are three groups of modes:

first, grey modes in Figure 2(a) are an exact traslation of the black mode, there-

fore, they do not predict accurately the advection speed, and consequently they

introduce numerical errors in the solution. Second, brown modes are medium-

frequency modes that incur numerical errors in the propagation speed, except

a narrow region close to kh/(N + 1) ' ±⇡/2, where these modes follow the

analytical propagation speed. Third, blue lines represent non–physical high fre-

quency modes. These results are in agreement with those previously reported

in [10].
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(a) Dispersion error (b) Di↵usion error

Fig. 2 Dispersion-dissipation errors in the advection equation. Figures depict the eigenval-
ues obtained with an energy conserving DG (i.e. with central fluxes, � = 0) and polynomial
order N = 7

Figure 2(b) shows the dissipation errors, where neither numerical energy

decay nor growth are experienced (i.e. the scheme is energy conserving, Im(!) =

0). This result is consistent with numerical energy estimates: the scheme is en-

ergy conserving since the discrete energy balance inside the computational

domain vanishes (when considering constant advection speeds, [29, 30]).

3.1.2 Navier–Stokes TGV problem

We run the inviscid Taylor–Green vortex (with Mach number M0 = 0.1, see

Appendix B) with the kinetic energy preserving scheme (detailed in Appendix

A). We consider a coarse Cartesian 83 mesh and fourth order (N = 4) poly-

nomials.

Figure 3 depicts the kinetic energy spectra after 14 time units. We find

an undesired accumulation of energy in high wave–numbers as a result of the

undissipated kinetic energy transferred from large to small eddies (i.e. the

scheme is energy preserving). The solution is severely under–resolved, where

high wave–number modes energy (with large dispersion errors) are not dissi-

pated. Note that this is be inferred from von Neumann analyses (see Figure 2).
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Fig. 3 Kinetic energy spectra of the inviscid Taylor–Green vortex problem (with Mach
number M0 = 0.1) in t = 14, alongside the theoretical Kolmogorov’s solution k

�5/3 [45].
This result has been obtained with the energy conserving DG scheme introduced in [31]. We
find that the lack of dissipation leads to energy accumulation in high wave–numbers, where
the solution is severely under–resolved

A solution that presents large number of high wave–number spectral compo-

nents, sees an accumulation of energy since, at these wave–numbers, dispersion

errors are important in a region where there is no dissipation that drains the

energy. Moreover, as a result of the insu�cient energy drain, this accumula-

tion is also transferred to lower wave–numbers by the non–linear terms of the

Navier–Stokes equations. Following sections study several techniques to intro-

duce numerical dissipation in appropriate scales, and correct this behaviour.

Note that the scheme is stable without numerical dissipation, that is only

added in this work to enhance the accuracy of the method.

3.2 Interface dissipation through the numerical flux

In this section, we study the e↵ect on the scheme stability and accuracy of

upwind Riemann solvers, by varying � on (aU)? in Table 1 for the linear

advection equation and in (24) for the compressible Navier–Stokes equations.

We consider the inviscid version of both the linear advection (µ = 0), and the

compressible Navier–Stokes (Euler equations) Fv+ = 0.
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(a) Dispersion error (b) Dissipation error

Fig. 4 Dispersion and dissipation errors with � = 1.0

3.2.1 Von Neumann analysis

We now study the dispersion and dissipation errors obtained for the upwind

Riemann solver. In the previous section, we studied the central Riemann solver,

that obtains a dissipation–free scheme. With an upwind Riemann solver, we

start introducing numerical dissipation to the scheme.

The dispersion and dissipation errors for the upwind Riemann solver are

represented in Fig. 4. This result can also be found in other works [10, 37,

25, 23], and shows the typical DG numerical dissipation: the dissipation con-

centrates in high wave–numbers, and it vanishes in the small wave–numbers,

with a very flat region near k̂ = 0. Moreover, with the upwind Riemann solver

all modes describe the same behavior (with a phase shift), which might be

regarded as optimal from the point of view of time–stepping limitations in

explicit or implicit–iterative solvers.

We now discuss the e↵ect of � 6= 1. We reckon � = 1 as upwind fluxes,

but other � values are possible. From (22) it can be wrongly inferred that

the dissipation is proportional to �, and that we can increase and tune the

numerical dissipation to the desired levels by modifying � appropriately. This is
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Fig. 5 Di↵usion of the di↵erent mode sets, and the e↵ect of the Riemann solver parameter
�. This representation allows us to follow the di↵erent bifurcation points that change the
behaviour of the scheme dissipation. The colours represent the di↵erent mode groups iden-
tified in Figure 2(a). The precise values for the cases studied in the TGV (next section) are
0.7038 (� = 0.1), 17.27 (� = 1), 0.4065 (� = 10)

not the case, however, since the dissipation obtained varies non–linearly with

�, because the inter–element jumps decrease as � increases. The maximum

dissipation experienced by the di↵erent modes as � increases is represented in

Fig. 5. We see that for lower � values, the dissipation increases approximately

linearly. We have represented the dissipation introduced by all the modes,

and the mode that recovers ! = 0 for k̂ = 0 is colored in black. Next, in

the range � ⇡ 1, all the modes are replications of the physical (primary)

mode, and we obtain a configuration similar to Fig. 4(b) where the peak of

dissipation increases with �. Finally, for � > 1.2 the dissipation of all the

modes (including the mode that recovers ! = 0 for k̂ = 0) decreases with �.

Thus, it is convenient to use a � value below � . 1, so that the numerical flux

truly introduces numerical dissipation to the scheme.

3.2.2 Navier–Stokes TGV problem

In the linear von Neumann analysis we have found that upwind Riemann

solvers concentrate their dissipation in high wave–numbers. This behaviour
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(a) Numerical viscosity (b) Kinetic energy spectra in t = 14

Fig. 6 Inviscid Taylor–Green vortex problem (M0 = 0.1). The configuration is a periodic
box with 323 elements and polynomial order N = 3. For the interfaces, we have used
Roe Riemann solver with the lambda stabilisation �diss(u,�) as defined in (25). We have
considered the values � = 0.1, 1, and 10, whose results show clear parallelism with von
Neumann analysis performed in Figure 5

was already noted in [10, 37, 25, 23]. We have also found that the amount of

dissipation introduced is non–linearly controlled with �, and that values above

approximately � = 1 yield lower dissipation rates. In this section, we study

how this dissipation is introduced in the non–linear Euler equations. To do so,

we solve the inviscid TGV problem (with Mach number M0 = 0.1) introducing

the � stabilisation based on the Roe dissipation described in (24).

We construct a Cartesian with 323 elements and approximate the solution

by order N = 3 polynomials. We represent the numerical dissipation for t < 20

in Figure 6(a). We have considered three � values: 0.1 (low dissipation Roe),

1 (standard Roe), and 10 (hyper-upwind) [26]. Recall that the dissipation is

only introduced numerically through the Riemann solver, since we consider the

inviscid Euler equations (i.e. there is no physical viscosity). From the analysis

of Fig. 6(a), we find that the maximum dissipation is achieved with � = 1,

which is in agreement with the von Neumann results in the previous section.

Therefore, for � . 1 increasing � increases the scheme numerical dissipation,
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but increasing � for � & 1 yields the reverse e↵ect, as demonstrated in von

Neumann analysis (see Figure 5).

Figure 6(b) shows the kinetic energy spectra in t = 14. We find that all

three � values behave similarly in the low and medium wave–numbers range.

At high wave–numbers, we find that the maximum dissipation is achieved by

the standard Roe Riemann solver (� = 1), whereas for the other two values

there is some energy accumulation in the final part of the spectra. This energy

accumulation is common when using central fluxes and it is also a side e↵ect of

the over–upwinding caused by the Lax–Friedrichs flux with low Mach numbers

[33].

The simulation with � = 1 can be regarded as an over–dissipated solution,

i.e., the dissipation levels are higher than required and the energy spectra does

not follow the theoretical �5/3 slope. This is enhanced with the use of lower

numerical dissipation in the � = 0.1 simulation. Note that � = 0.1 is similar in

spirit to the low dissipation Roe Riemann solver derived in [39] for M0 = 0.1.

Finally, Roe Riemann solver with � = 10 su↵ers an accumulation of energy at

high wave–numbers, as a result of its lack of dissipation compared to lower �

values (see Figure 6(a)).

3.3 Internal dissipation with the Spectral Vanishing Viscosity

In this section, we study the e↵ect of the spectral vanishing viscosity method

applied to discontinuous Galerkin schemes, using the framework introduced in

Section 2.4.2. Only in this section, we use a constant SVV viscosity µSV V to

emphasize the e↵ect of the filtering operator introduced to the viscous fluxes.
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3.3.1 Von Neumann analysis

This section studies the internal dissipation introduced by the SVV. We per-

form von Neumann analyses to the linear advection equation, (1) with the

SVV flux described in (26), which uses the power kernel written in (27). Note

that the SVV method obtains a standard second order derivative (a viscous

flux) for PSV V = 0, which is also introduced as a point of reference.

We depict von Neumann dissipation curves obtained with µSV V = 0.005

(ReSV V = aL/µSV V = 200) and we vary PSV V in Figure 7(a), and its detailed

view in Figure 7(b). This constant value of µSV V is only used in this section

to provide an example of the behavior of the SVV. As expected, the SVV

with PSV V = 0 represents a second order derivative and behaves in the low

wave–numbers range as �k2, introducing low wave–number range dissipation.

This is basically the impact of a standard Smagorinsky LES model in the

discretization. The problem is that methods based on a second order derivative,

which were developed in the Finite Volume community, tend to introduce

non–vanishing dissipation even with smooth flows (e.g. laminar regimes), as

reported in [46]. The SVV is specially useful to overcome this drawback, since

it filters–out low frequency modes and prevents to dissipate smooth solutions.

In the default view of Figure 7(a), only a subtle di↵erence is recognised

since the e↵ect of the SVV is concentrated in low and medium wave–numbers.

Thus, to understand the e↵ectiveness of the SVV, we check the dissipation

curve zoomed at low and medium wave–numbers (Figure 7(b)). We show that

the SVV, with the power kernel (27), is capable of controlling the shape of the

dissipation curve between a pure viscous discretization (PSV V = 0, labelled as

NS) and the inviscid (PSV V >> 1, labelled as Euler), thus enabling a precise

control of the numerical dissipation introduced. The impact of the SVV in
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(a) Full view (b) Detailed view

Fig. 7 Von Neumann dissipation curves using SVV with upwind (� = 1). Particularly, the
e↵ect of the SVV kernel power, PSV V , is studied, where we have also included the particular
cases with PSV V = 0 (standard second order derivative), and the inviscid limit (Euler)

the dissipation may seem negligible since the overall di↵erence between all

curves is small. Nevertheless, we will show by means of numerical experiments

that these small di↵erences are capable to control the energy drain in under–

resolved turbulent flow simulations.

3.3.2 Navier–Stokes problem

The linear von Neumann analysis shows that the SVV method allows us to

modify and reshape the dissipation curve between that obtained with upwind

Riemann solvers and that found for second order derivatives (PSV V = 0). The

SVV introduces dissipation mostly in low and medium wave–numbers. To test

the SVV capabilities in the Euler equations, we consider the inviscid TGV

problem (Appendix B). In this study we use a coarser Cartesian 43 mesh

with N = 8 to test the SVV in a severely under–resolved configuration. In

this section, we have adopted the low dissipation Roe L2R [39] as Riemann

solver (approximately equivalent to � ⇡ 0.1 when M0 = 0.1, although the

scaling is performed with the local Mach number, cells with lower velocities

will introduce less dissipation) as it was shown before (see Fig. 6(b)) that the
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standard Roe (� = 1) results in over-dissipated solutions for this problem.

The SVV viscosity is set to µSV V = 0.005 (equivalent to a Reynolds number

ReSV V = 200), and we study the e↵ect of the kernel power coe�cient by

evaluating three values: PSV V = 0.1, 1, and 10. We have chosen this value for

the SVV viscosity since preliminary simulations showed an excess of dissipation

for the selected mesh. The SVV approach removes the extra dissipation with

filtering (controlled through PSV V ), instead of lowering the viscosity µSV V .

We depict the kinetic energy spectra at t = 8 in Figure 8, for the three

SVV kernel power PSV V values considered. We find that the energy decay at

high wave–numbers is similar for all simulations, thus supporting von Neu-

mann results (Figure 7(a)). At low and medium wave–numbers, we confirm

the e↵ectiveness of the SVV to shape the dissipation curve and adjust the

energy spectra. We show that PSV V = 0.1 yields a favourable result according

to Figure 8, where the energy decays approximately following Kolmogorov’s

theoretical k�5/3 rate [45], and is dissipated for high wave–numbers without

producing energy accumulation. We find that both PSV V = 1 and PSV V = 10

present a lack of dissipation at medium wave–numbers, providing a LES config-

uration with unsatisfactory results, but that PSV V = 0.1 provide satisfactory

results.

Hence, the resulting scheme that combines upwind Riemann solvers and

SVV is versatile, but requires an appropriate estimation of two parameters:

the SVV viscosity µSV V and the kernel power PSV V . Besides, a proper LES

model (variable value of the turbulent viscosity) has not been included yet.

We address these issues in the following section.
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Fig. 8 Inviscid Taylor–Green vortex problem (with Mach number M0 = 0.1) with 43 ele-
ments and polynomial orderN = 8. We have used the SVV operator as defined in (28), where
we set the SVV viscosity to µSV V = 0.005 (equivalent to a ReSV V = 200), and we vary
the kernel power PSV V . Note that the major di↵erence between the standard Navier–Stokes
discretization (PSV V = 0) and the PSV V = 0.1 scheme is dominant on low wave–numbers

4 Design of a Smagorisnky-SVV scheme

In Section 3.2 we have assessed the capabilities of upwind Riemann solvers to

provide numerical dissipation at high wave–numbers, the capability of second

order derivatives to introduce numerical dissipation at low and medium wave–

numbers, and the potential of the SVV to shape the dissipation curve between

pure elliptical discretizations (PSV V = 0) and the inviscid equation. The latter

has been found to e↵ectively introduce dissipation at medium wave–numbers

and (if required) also at low wave–numbers. In this section, we combine the

strategies presented in the previous section to construct a scheme capable to

provide accurate solutions in turbulent under–resolved flows. Hence, we study

the e↵ectiveness of a scheme combining a low dissipation Riemann solver to

damp high wave–numbers and a SVV to dissipate medium wave–numbers to

solve the inviscid TGV problem.

One of the drawbacks of the SVV is its requirement to estimate two pa-

rameters with a remarkable impact on the final solution, (see Figure 8). In

an attempt to automatise the parameter selection, we set the SVV viscosity
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in (29) to that specified by a standard Smagorinsky LES turbulence model as

suggested in [18] and implemented in [34] in the context of continuous Galerkin

methods,

µSV V = µt = C2
S�

2|S|, (33)

being Sij = 1
2 (@jvi + @ivj) the strain tensor, and such that only the PSV V

parameter remains free. One could argue that we have deleted one parameter

(µSV V ) to include a new one (CS). However, we have found that the same value

of CS = 0.2 works in very di↵erent configurations, and the same applies to

PSV V . The developed Smaroginsky-SVV LES approach works for polynomial

orders N � 2 and is specially well suited for higher orders, where the di↵erent

scales can be clearly separated.

We consider the inviscid Taylor–Green vortex problem in a Cartesian mesh

with 83 elements and two polynomial orders, N = 4 and N = 8, and we

maintain the low dissipation Roe as Riemann solver. Both cases use the SVV

method, with µSV V = µt. Figure 9 depicts the kinetic energy spectra varying

the SVV kernel power PSV V , and it also features the standard Smagorinsky

LES model (without SVV) for comparison. We show that the resulting spec-

tra, as in Figure 8 shows high dependence to the SVV power kernel, PSV V .

Precisely, for values PSV V > 0.1 the dissipation provided by the method is

not enough to control the accumulation of energy at high wave–numbers (re-

call that the higher the kernel power coe�cient, the higher is the filtering

performed to the viscosity introduced).

The standard Smagorinsky model presents an excessive dissipation when

the flow is laminar, hence, decreasing the overall energy at further times [46].

This has been naturally avoided with the SVV technique, as it filters–out
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(a) Energy spectra with polynomial order
N = 4

(b) Energy spectra with polynomial order
N = 8

Fig. 9 Kinetic energy spectra in t = 8 obtained with the proposed Smagorinsky–SVV
strategy for two polynomial orders. Both cases were computed using a 83 Cartesian mesh,
solving the inviscid Taylor–Green vortex problem with Mach number M0 = 0.1. Di↵erent
values of the SVV kernel power PSV V were studied

(a) Numerical viscosity with polynomial or-
der N = 4

(b) Numerical viscosity with polynomial or-
der N = 8

Fig. 10 Numerical viscosity introduced by the Smagorinsky–SVV strategy. Both cases were
computed using a 83 Cartesian mesh. Di↵erent values of the SVV kernel power PSV V were
studied. Two e↵ects are regarded: the capability of the SVV to remove the dissipation in
the laminar region of the TGV problem (t < 3), and the lack of dissipation presented by
the SVV with high kernel power coe�cients

the laminar (smooth) energy components. For completeness, we represent

the numerical viscosity introduced by both the Smagorinsky (LES) and the

Smagorinsky–SVV LES in Figure 10. First, the laminar region (the region

without subgrid–scales in the flow, t < 3) presents non–negligible numerical

dissipation when using the standard Smagorinsky model, while this undesir-

able dissipation vanishes when considering the Smagorinsky–SVV approach.
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(a) t = 8 (b) t = 14

Fig. 11 Inviscid Taylor–Green vortex problem (M0 = 0.1) kinetic energy spectra in t = 8
and t = 14 obtained with the Smagorinsky–SVV strategy using two di↵erent polynomial
orders (N = 4 and N = 8). Both cases were computed using a 83 Cartesian mesh, and the
SVV kernel power is PSV V = 0.1

Second, we confirm the lack of dissipation presented by the SVV method with

excessive kernel power PSV V .

We conclude that the value PSV V = 0.1 is appropriate for this test case.

Lastly, we show the energy spectra for this configuration in Figure 11, showing

that the turbulence model is not altered by the polynomial order. For com-

pleteness, we have also included the energy spectra for the decay phase t = 14

in Figure 11(b) to confirm that the method still follows the Kolmogorov’s

slope, and no energy accumulation is found in further times. In summary, the

combination of the low dissipation Roe Riemann solver, the spectral vanishing

viscosity, and the Smagorinsky model (which has been recently adopted in [20]

as LES model in the context of DG solvers) as an input for µSV V , with the

value PSV V = 0.1 provides a robust method to simulate turbulent decay.

4.1 Assessment of the Smagorinsky–SVV scheme for a turbulent channel flow

at Re⌧ = 183

We will test the developed Smagorinsky–SVV method in a wall–bounded

turbulent channel. We maintain the parameters that provided accurate so-
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lutions for the TGV problem: the SVV power kernel (27) with power coe�-

cient PSV V = 0.1, and the Smagorinksy model (33) with the standard value

CS = 0.2. The Smagorinsky model is complemented with Lilly’s near wall

treatment [47] to avoid non–zero (un–physical) turbulent viscosities near walls.

For inviscid fluxes, we retain the L2R Riemann solver [39] and Pirozzoli’s split

form [31]. For time integration, we keep the third order Runge–Kutta scheme

with CFL = 0.4.

The only di↵erence with the previous discretization rests in the discretiza-

tion of the viscous terms. Due to the large velocity gradients experienced in this

problem, the turbulent viscosity introduced by Smagorinsky’s model is highly

discontinuous at element interfaces. This leads to an oscillating LES solution

if inter–element dissipation is not enough, which is the case if the Bassi–Rebay

1 scheme is used. Hence, we substitute the latter by the Symmetric Interior

Penalty (SIP) method that penalizes inter–element discontinuities, and pro-

vides a smoother velocity field (and associated gradients), enabling a smooth

LES flow.

The computational domain is a three–dimensional box, being the fluid con-

fined between two planar walls (in the y–direction), and periodic boundaries in

the remaining two directions. The stream–wise dimension is Lx = 2⇡, the wall

normal direction dimension is Ly = 2� (with the semi–wall distance � = 1),

and lateral dimension Lz = ⇡. We construct a mesh with equally spaced di-

visions Nx = 8, Ny = 12, and Nz = 10, where the solution is approximated

with third order polynomials (which results in a coarse configuration leading

to an under–resolved turbulent flow, as detailed later).

The Reynolds number is fixed to Re� = U�/⌫ = 3300, based on the bulk

velocity, or equivalently, Re⌧ = u⌧�/⌫ = 183 based on the friction velocity

u⌧ , whose value is u⌧ = 55.5 · 10�3 m/s. The flow is driven by a constant
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force estimated to achieve a time averaged velocity profile with mean velocity

U = 1, Fx = ⇢u2
⌧/� = 3.08 ·10�3 N. The y+ value for the first cell is y+ = 8.34,

which confirms that the simulation is clearly under–resolved. The initial con-

dition is a Poiseuille profile, enriched with Gaussian noise to anticipate the

transition onset. We run the simulation for 300 seconds, until the initial tran-

sients vanish. Then, we continue the simulation for 650 seconds, and compute

averaged statistics in time and homogeneous spatial directions (only in the

xz–directions) ,

h�i(x) = 1

N

NX

n=1

�(x, tn), h�i(y) =
Z

[0,2⇡]⇥[0,⇡]
h�i(x, y, z)dxdz, (34)

where we get the averaged profiles h�i(y) as a function of the wall distance y.

We average both velocities ui and momentum uiuj to get Reynolds stresses

hu0
iu

0
ji = huiuji � huiihuji.

In Figure 12, we show the stream–wise mean velocity u+ = hui/u⌧ as a

function of the wall distance y+ = yu⌧/⌫ (Figure 12(a)), and the o↵–diagonal

component of the Reynolds stresses �hu0v0i/u2
⌧ as a function of the wall dis-

tance y/� (Figure 12(b)). For the mean velocity, we consider the asymptot-

ical law of the wall with u+ = y+ in the viscous sublayer (y+ < 5) and

u+ = 1
0.4 ln y

+ + 5.5 in the logarithmic region (y+ > 30), both represented

with dashed lines in Figure 12(a). For the Reynolds stresses, we compare with

DNS solutions presented in [48], also represented with dashed line in Figure

12(b).

We consider three schemes, the Smagorinksy–SVV (abbreviated as SVV+LES),

the standard Smagorinksy without SVV (LES), and the implicit LES (iLES)

where all the dissipation rests on the Riemann solver and the physical vis-

cosity. while the iLES is under–dissipated and the LES is over–dissipated,
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the Smagorinsky–SVV LES scheme provides a solution comparable to the ex-

pected values (for both mean velocity and Reynolds stresses). These favouralbe

results agree with the conclusions found for the TGV problem. Although in

the near wall region the results di↵er from the DNS solution, we did not ex-

pect accurate results in this region given the very coarse mesh used near walls

(y+ ' 8.34) .

Overall, we find that the method presented in this work provides a re-

markable improvement when compared to the standard Smagorinsky method

in under–resolved configurations for wall bounded turbulent flows.

(a) Mean velocity profile u
+ = hui/u⌧ (b) Reynolds stresses �hu0

v
0i/u2

⌧

Fig. 12 Channel flow statistics as a function of wall distance y
+ = yu⌧/⌫. We consider

three scheme: the Smagorinksy–SVV LES configuration (abbreviated as SVV+LES), the
Smagorinsky LES model without SVV (LES), and the implicit LES (iLES). Dashed lines
represent the law of the wall, in Figure 12(a), and DNS solutions from [48], in Figure 12(b).

5 Conclusions

We have presented a thorough study on the e↵ect of di↵erent dissipation

mechanisms for discontinuous Galerkin schemes that can be used to stabilise

under–resolved simulations. We have first characterised their properties in

wave–number space, by means of a linear von Neumann analysis (for a lin-

ear advection–di↵usion equation), and then validated the model for transi-
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tional/turbulent flows in the three–dimensional Taylor–Green Vortex Navier–

Stokes problem.

We have studied the dissipation introduced by two di↵erent strategies:

inter–element viscosity (upwind Riemann solvers) and internal viscosity (LES

models and spectral vanishing viscosity). We have performed a linear analysis

using von Neumann method to discover that the dissipation introduced by

upwind Riemann solvers is not linear with parameter �, which penalises the

inter–element solution jumps. Instead, the dissipation introduced increases

until a critical value is reached, to then decrease as the discretization tends to

that of a conforming (i.e. continuous Galerkin) method. We have found that

an upwind Riemann solver is required to maintain the dissipation introduced

at high wave–numbers.

Next, we have studied the dissipation introduced by the Smagorinsky LES

model and the spectral vanishing viscosity. On the one hand, we have found

that the Smagorinsky LES model introduces an unnecessarily high level of dis-

sipation. On the other hand, we have found that, the SVV with an appropriate

filtering kernel, is capable of achieving high control on the dissipation intro-

duced at low and medium wave–number regions, maintaining low dissipation

when the flow is laminar.

Combining these ideas, we have proposed a Smagorinsky–SVV LES method,

combined with a low dissipation Riemann solver. This Smagorinsky–SVV LES

method is capable of maintaining low dissipation levels in laminar flows, while

providing enough dissipation for increased Reynolds numbers. Our method

has been calibrated with the Taylor–Green test case, and then challenged for

an under–resolved channel flow at Reynolds number Re⌧ = 183, providing

accurate statistics.
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The presented Smagorinsky–SVV model has been designed based on classic

von Neumann analysis. However, new methods based on spatial eigenvalue

analyses [49, 50] may provide further insight into the developed turbulence

model, and could complement the presented work.
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A Compressible Navier–Stokes formulation

The 3D Navier–Stokes equations can be compactly written as,

ut +r · F e = r · F v , (35)

where u is the vector of conservative variables u = [⇢, ⇢v1, ⇢v2, ⇢v3, ⇢e]T , F e are the inviscid,

or Euler equations fluxes,

F e =

2

66666666664

⇢v1 ⇢v2 ⇢u3

⇢v
2
1 + p ⇢v1v2 ⇢v1v3

⇢v1v2 ⇢v
2
2 + p ⇢v2v3

⇢v1v3 ⇢v2v3 ⇢v
2
3 + p

⇢v1H ⇢v2H ⇢v3H

3

77777777775

, (36)
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where ⇢, e, H and p are the density, total energy, total enthalpy, and pressure respectively,

and v = [v1, v2, v3]T is the velocity. Additionally, Fv defines the viscous fluxes,

Fv(µ,v,rv) =

2

66666666664

0 0 0

⌧xx ⌧xy ⌧xz

⌧yx ⌧yy ⌧yz

⌧zx ⌧zy ⌧zz

P3
j=1 vj⌧1j + Tx

P3
j=1 vj⌧2j + Ty

P3
j=1 vj⌧3j + Tz

3

77777777775

, (37)

where  is the thermal conductivity, Tx, Ty and Tz denote the gradients of temperature and

the stress tensor ⌧ is defined as ⌧ = µ(rv + (rv)T ) � 2/3µIr · v, with µ the dynamic

viscosity, and I is the three-dimensional identity matrix.

We discretise Euler equations using the novel nodal DG split–formulation derived in [31]

(precisely, we use Pirozzoli split formulation), while for viscous fluxes we use the Bassi-Rebay

1 (BR1) scheme [51]. Implementation details regarding the split–form scheme can be found

in Appendix A. In all cases, the Mach number is kept to 0.1 such that compressible e↵ects

are negligible. We highlight how split–forms are implemented in one dimension recovering

the inviscid version of the weak form (21),

Z

el
ut · �j + (F ?

e � F e)�j

����
1

�1

�
Z

el
(Fe)x �j = 0 (38)

Usually, in the standard DG method, the fluxes divergence (Fe)x is obtained by direct

di↵erentiation of the Lagrange polynomials,

(Fe)x (⇠i) =
NX

j=0

Fe(uj)l
0
j(⇠i) =

NX

j=0

Fe(uj)Dij . (39)

However, in the split–form approach, this divergence is approximated by a two–point kinetic

energy conserving (Pirozzoli) numerical volume flux F]
e(ui,um),
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F]
e(ui,um) =

0

BBBBBBBBBB@

{{⇢}} {{v1}}

{{⇢}} {{v1}}2 + {{p}}

{{⇢}} {{v1}} {{v2}}

{{⇢}} {{v1}} {{v3}}

{{⇢}} {{v1}} {{H}}

1

CCCCCCCCCCA

(40)

which allows to write,

(Fe)x (⇠i) ⇡
NX

m=0

2DimF]
e(ui,um). (41)

The extension to three dimensions with curvilinear elements can be found in [31, 32].

B Taylor–Green vortex problem

Numerical experiments are performed to evaluate the validity of von Neumann analysis

assessments in the more general case of the NSE. To test the under–resolved capabilities of

the strategies studied with von Neumann analysis, we will solve the Taylor–Green Vortex

(TGV) problem [52]. The TGV problem has been widely used to report the subgrid–scale

modelling capabilities of iLES approaches and discretizations [31, 53]. In this paper, we

assess von Neumann analysis truthfulness to estimate the dissipation introduced by the

operators introduced in Sections 2.4.1 and 2.4.2. The configuration of the TGV problem is

a three dimensional periodic box [�⇡,⇡]3 with the initial condition,

⇢ = ⇢0,

v1 = V0 sinx cos y cos z,

v2 = �V0 cosx sin y cos z,

v3 = 0,

p =
⇢0V

2
0

�M
2
0

+
⇢0V

2
0

16
(cos 2x+ cos 2y)(cos 2z + 2).

(42)

The Mach number is M0 = 0.1 in all the simulations performed herein. The reported quan-

tities to measure the simulations accuracy are the kinetic energy rate,
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✏ = �
dK

dt
= �

1

|⌦|
d

dt

Z

⌦

1

2
⇢V

2
dx, (43)

the enstrophy,

⇣ =
1

2|⌦|

Z

⌦
(r⇥ v)2dx, (44)

the numerically introduced dissipation estimated with both ✏ and ⇣ [12],

µ '
✏

2⇣
= �

dK/dt

2⇣
, (45)

and the kinetic energy spectra, measured at a fixed time snapshot (t = 8 to observe tran-

sitional flow, and t = 14 to show the isotropic decay). In this paper we consider both the

inviscid version of the Taylor–Green vortex problem, and the viscous Taylor–Green vortex

problem with Reynolds number Re = 1600. Finally, all Navier–Stokes simulations are time-

marched using a three stage Runge–Kutta scheme with a Courant–Friedrichs–Lewy (CFL)

number of 0.4.
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53. R.C. Moura, G. Mengaldo, J. Peiró and S.J. Sherwin, An LES Setting for DG-Based

Implicit LES with Insights on Dissipation and Robustness, Springer International Pub-

lishing, Cham, 2017, pp. 161–173.


