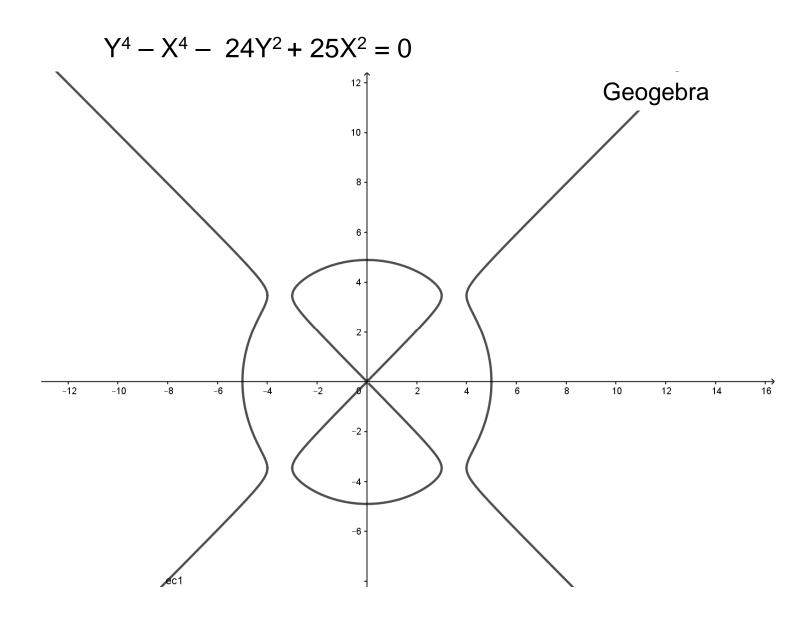
Representación de curvas algebraicas planas

F(x, y) = 0Polinomio en x, y

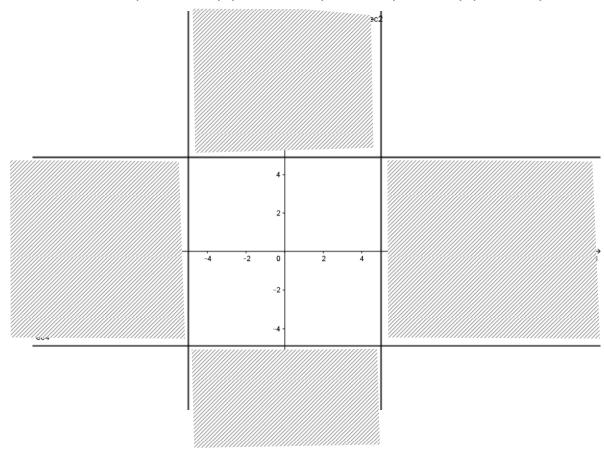


$$Y^4 - X^4 - 24Y^2 + 25X^2 = 0$$

1. Simetrías

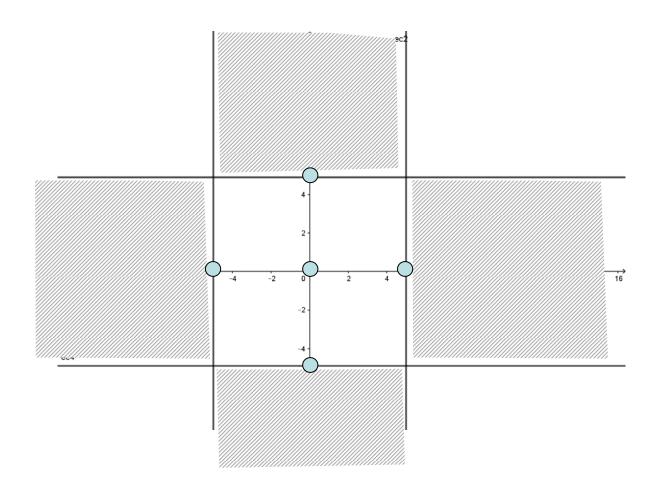
2. Regiones
$$Y^2(Y^2 - 24) = X^2(X^2 - 25)$$

$$Y^{2}(Y+2\sqrt{6})(Y-2\sqrt{6}) = X^{2}(X+5)(X-5)$$



$$Y^4 - X^4 - 24Y^2 + 25X^2 = 0$$

- 1. Simetrías
- 2. Regiones
- 3. Cortes con los ejes



$$Y^4 - X^4 - 24Y^2 + 25X^2 = 0$$

4. Tangentes. Puntos singulares

La tangente a a la curva C de ecuación F(x,y) = 0 en P = (a,b) es

$$\left(\frac{\partial F}{\partial x}\right)_{P}(x-a) + \left(\frac{\partial F}{\partial y}\right)_{P}(y-b) = 0$$

Si las derivadas parciales se anulan en $P=(a,b) \rightarrow P$ es punto singular

P múltiple de orden r si las derivadas hasta el orden r – 1 son nulas

Ecuación conjunta de las r tangentes a C en P

Si P =
$$(0,0)$$
 F(x,y) = $f_n(x,y) + f_{n-1}(x,y) + ... + f_r(x,y)$

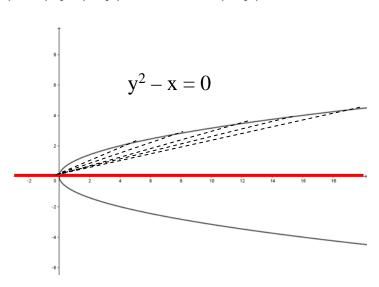
La ecuación de las r tangentes en (0,0) es $f_r(x,y) = 0$

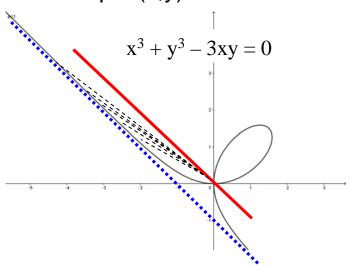
$$Y^4 - X^4 - 24Y^2 + 25X^2 = 0$$

5. Ramas infinitas. Asíntotas. Ramas parabólicas

Dirección asintótica de C

Es una dirección D_r tal que r es el límite de las rectas determinadas por (0,0) y (x,y) cuando (x,y) se mueve por la curva de forma que $(x,y) \rightarrow \infty$





Si **s** es una recta de D_r tal que $\lim dist(P,C) = 0$ diremos que s es **asíntota** de C

Si no existe s tal que lim dist(P,C) = 0 entonces decimos que C tiene una rama parabólica en la dirección D_r

$$Y^4 - X^4 - 24Y^2 + 25X^2 = 0$$

5. Ramas infinitas. Asíntotas. Ramas parabólicas

Asíntotas paralelas a los ejes

Si ordenamos en potencias de y $F(x,y) = x^p g_0(y) + x^{p-1} g_1(y) + \dots + g_p(y) = 0$

$$y = b$$
 es asíntota de C \Leftrightarrow $g_0(b) = 0$

Análogamente si $F(x,y) = y^q h_0(x) + y^{q-1} h_1(x) + ... + h_q(x) = 0$

x = a es asíntota de C \Leftrightarrow $h_0(a) = 0$

$$Y^4 - X^4 - 24Y^2 + 25X^2 = 0$$

5. Ramas infinitas. Asíntotas. Ramas parabólicas

Direcciones asintóticas de C

La ecuación conjunta de de todas las direcciones asintóticas de C es $f_n(x,y)=0$

$$y = ax$$
 es dirección asintótica \Leftrightarrow $f_n(1,a) = 0$

Para calcular b tal que la recta y = ax + b "se aproxima" a C

$$bf'_{n}(1,a) + f_{n-1}(1,a) = 0$$

Si esta ecuación NO tiene solución hay rama parabólica en la dirección y = ax

Si esta ecuación es idénticamente nula se calcula b en

$$\frac{1}{2}b^{2}f''_{n}(1,a) + bf'_{n-1}(1,a) + f_{n-2}(1,a) = 0$$

$$Y^4 - X^4 - 24Y^2 + 25X^2 = 0$$

6. Información adicional

Puntos de tangencia vertical u horizontal Puntos de inflexión Puntos de corte con las asíntotas (si existen)

$$Y^4 - X^4 - 24Y^2 + 25X^2 = 0$$

7. Paso al plano proyectivo

Homogeneizamos la ecuación de la curva C: F(x, y) = 0

$$x = x_1/x_0$$
 $y = x_2/x_0$ (tomando $x_0 = 0$ como recta del infinito)

La ecuación homogénea de C es $F(x_0, x_1, x_2) = 0$

Las asíntotas de C son las tangentes a C en los puntos del infinito C \cap (x₀ = 0)

Si la tangente a C en uno de esos puntos (0, b, -a) es la recta $x_0 = 0$, entonces C tiene una rama parabólica en la dirección de la recta que pasa por (1,0,0) y (0, b, -a), es decir en la dirección ax + by = 0

La recta tangente a $F(x_0, x_1, x_2) = 0$ en el punto $P = (p_0, p_1, p_2)$ es:

$$\left(\frac{\partial F}{\partial x_0}\right)_P x_0 + \left(\frac{\partial F}{\partial x_1}\right)_P x_1 + \left(\frac{\partial F}{\partial x_2}\right)_P x_2 = 0$$

$Y^4 - X^4 - 24Y^2 + 25X^2 = 0$

