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 Domination, covering, …,  watching from faces.
 Monitoring the elements of triangulations from its faces

 Extend the monitoring concepts to its distance versions for
triangulation graphs

 Analyze monitoring concepts from a combinatorial point of
view on maximal outerplanar graphs

 Analyze monitoring concepts from a combinatorial point of
view on triangulation graphs

Overview
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GRAPH  THEORY

DOMINATING SET

VERTEX COVERING

Controlling from vertices
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GRAPH  THEORY

EDGE COVERING

EDGE DOMINATING SET

Controlling from edges
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COMPUTATIONAL  GEOMETRY

Triangulation graphs
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TERRAIN GUARDINGHow many guards?

Minimize is a NP-hard problem
Cole-Sharir, 89

VERTEX (POINT) GUARD
FIXED HEIGHT GUARD

COMPUTATIONAL  GEOMETRY
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How many guards?

Vertex guarding
vertices are always sufficient and sometimes necessary

Bose, Shermer, Toussaint, Zhu, 92

Edge guarding
edges are always sufficient (Everett, Rivera-Campo, 94)

are sometimes necessary (BSTZ, 92, 97)

TERRAIN GUARDING

COMPUTATIONAL  GEOMETRY
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Graph Theory --- Computational Geometry

On triangulation graphs,  we consider another monitoring concept 
(monitoring from faces)
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A triangle Ti face-vertex covers a vertex u if u is a vertex of Ti

A triangle Ti face-edge covers an edge e if one of its endpoints is in  Ti

A triangle Ti face guards Tk if they share some vertex

Watching from the faces (TRIANGULATIONS)
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MONITORING  TRIANGULATIONS

Algorithmic aspects

(T)  g(T)  (T)

Let be T a triangulation

(T) = min{|D| / D is a dominant set of T}

g(T) = min{|G| / G is a set of guards of T}

(T) = min{|K| / K is a vertex cover of T}

Calculate these parameters are NP-complete problems

(from vertices)
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MONITORING  TRIANGULATIONS

(T) < g(T) < (T)

(T)  3 (T)  3

(T) = 3
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MONITORING  TRIANGULATIONS

(T) < g(T) < (T)

g(T)  4 g(T)  4

g(T) = 4
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MONITORING  TRIANGULATIONS

(T) < g(T) < (T)

(T)  8 (T)  8

(T) = 8
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MONITORING  TRIANGULATIONS

h(T) = min{|K| : K is a  (-------) set of T} 

(-------)   dominant, guarding, vertex covering, 
edge covering, edge guarding, edge dominating, 
face-vertex covering, face guarding, face-edge-covering

h(n) = max {h(T) : T is a triangulation, T = (V,E) , |V| = n} 

Combinatorial bounds for h(n) 

Combinatorial aspects
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MONITORING  TRIANGULATION GRAPHS
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(1) Matheson, Tarjan ‘96,  (2) Bose et al. ‘97,  (3) Everett, Rivera, ‘97
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MONITORING  TRIANGULATION GRAPHS
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11th IWCG, Palencia 2015  (Flores, H., Orden, Seara, Urrutia)
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VERTEX  COVERING

Every n-vertex triangulation graph can be covered by 
vertices and this bound is tight.
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4-coloring vertices
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VERTEX  COVERING

Every n-vertex triangulation graph can be covered by 
vertices and this bound is tight. 
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4-coloring vertices

Choose three colours less used

vertices cover all edges

then







4
n3)n('







4
n3

T
4
n3)T(' 







XIV Seminario de Matemática Discreta, Valladolid, 5th June, 2015

Every n-vertex triangulation graph can be covered by 
vertices and this bound is tight.

)T('
4
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The edges of each K4
need three different vertices 
to be covered, then

Therefore, 





4
n3)n('

VERTEX  COVERING

Now, the lower bound
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EDGE  COVERING

Every n-vertex triangulation graph can be covered by 
vertices and this bound is tight. 
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First, the lower bound

In the figure   n = k + k + k + 1

The red vertices must be 
covered by different edges

’(T)  2k

Then )T('
3
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EDGE  COVERING

Every n-vertex triangulation graph can be covered by 
vertices and this bound is tight. 
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Theorem (Nishizeki, ’81)
G planar graph, 2-connected,  ≥ 3, n ≥ 14, 
Then G contains a matching M so that
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5n|M|

Let be T triangulation. If there are vertices with degree 2
G*= T + x 

x
G* has a matching M with
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EDGE  COVERING

Every n-vertex triangulation graph can be covered by 
vertices and this bound is tight. 
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The edges of M cover vertices
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K=MF is an edge-covering of G*

F = one edge for each free vertex in M
x

K* is an edge-covering of T,  |K*|=|K|
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EDGE  COVERING

Every n-vertex triangulation graph can be covered by 
vertices and this bound is tight. 
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K* is an edge-covering of T,  |K*|=|K|
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MONITORING  MAXIMAL OUTERPLANAR GRAPHS

h(n) = max {h(T) /  T is a MOP, T = (V,E) , |V| = n} 

Triangulation graph
without interior points

Triangulation graph of a polygon
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MONITORING  MAXIMAL OUTERPLANAR GRAPHS
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(1) Campos ‘13,  (2) Art Gallery Theorem ‘76,  (3) O´Rourke ‘83, (4) Karavelas ‘11
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MONITORING  MAXIMAL OUTERPLANAR GRAPHS
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VERTEX  COVERING     (en MOP’s)

Every n-vertex maximal outerplanar graph can be covered by 
vertices and this bound is tight.
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3-coloring vertices
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Every n-vertex maximal outerplanar graph can be covered by 
vertices and this bound is tight.

Choose two colours less used
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VERTEX  COVERING     (en MOP’s)

3-coloring vertices
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Every n-vertex maximal outerplanar graph can be covered by 
vertices and this bound is tight.

)T(
3
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The edges of each triangle 
need two different vertices 
to be covered, then

Therefore, 
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VERTEX  COVERING     (en MOP’s)
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Now, the lower bound
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Every n-vertex maximal outerplanar graph, n4 can be face-edge

covered by             triangles (faces) and this bound is tight.

FACE-EDGE COVERING     (en MOP’s)







3
n

Red edges need
different triangles to
be face-covered, then
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Lower bound
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Upper bound

Lemma 1.  Let T be a MOP with n ≥ 2s vertices.  There is an interior 
edge e in T that separates off a minimum number m of exterior edges, 
where m = s, s + 1, … , 2s – 2 .  

Every n-vertex MOP T, can be face-edge covered by  n/3 faces

G2

G1

0

1

2

t

m
m – 1 

T*

n – 1 m + 1 
e

e diagonal of T that separates off a 
minimum number m of exterior edges
which is at least s

T* = 0mt

m is minimal
t  s – 1 

m – t  s – 1 
Then m  2s – 2 

FACE-EDGE COVERING     (en MOP’s)
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Upper bound

Lemma 2. Suppose that f(m) triangles (faces) are always sufficient to 
cover the edges of any MOP T with m vertices. Let be e an exterior edge 
of T. Then  f(m−1) triangles and an additional “collapsed triangle” at the 
edge e are sufficient to cover the edges of T.

FACE-EDGE COVERING     (en MOP’s)

u v

w

x

w

Contract e = uvT
T*
m – 1 

vertices

T* is covered with f(m – 1) faces

Every n-vertex MOP T, can be face-edge covered by  n/3 faces
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Upper bound

Lemma 2. Suppose that f(m) triangles (faces) are always sufficient to 
cover the edges of any MOP T with m vertices. Let be e an exterior edge 
of T. Then  f(m−1) triangles and an additional “collapsed triangle” at the 
edge e are sufficient to cover the edges of T.

FACE-EDGE COVERING     (en MOP’s)

u v

w

x

w

Contract e = uvT
T*
m – 1 

vertices

T* is covered with f(m – 1) faces

Every n-vertex MOP T, can be face-edge covered by  n/3 faces
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Upper bound

Proof
Induction on n

Basic case: for 3 ≤ n ≤ 8, easy

Inductive step: Let n ≥ 9 and assume that the theorem holds for n’ < n

Lemma 1 (s=4)  guarantees the existence of a diagonal that divides T in G1
and G2, such that G1 has m = 4, 5 or 6 exterior edges

FACE-EDGE COVERING     (en MOP’s)

Every n-vertex MOP T, can be face-edge covered by  n/3 faces
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Upper bound

Proof
Case m = 4

G2 has n − 3 exterior  edges

G1 has 5 exterior edges

G can be face-covered by n/3 faces

can be face-covered with one
triangle

I.H.

can be face-covered with 
(n−3)/3 = n/3 −1 

triangles

G2

G1

0

1

2

3

4

FACE-EDGE COVERING     (en MOP’s)

Every n-vertex MOP T, can be face-edge covered by  n/3 faces



XIV Seminario de Matemática Discreta, Valladolid, 5th June, 2015

Upper bound

Proof
Case m = 5

FACE-EDGE COVERING     (en MOP’s)

Every n-vertex MOP T, can be face-edge covered by  n/3 faces

G2

G1

0

1

2 3

4

5

The presence of any of the internal 
edges (0,4) or (1,5) would violate the 
minimality of m

Thus,  the triangle T’ in G1 that is 
bounded by e is (0,2,5) or (0,3,5)

T’
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Upper bound

Proof
Case m = 5

FACE-EDGE COVERING     (en MOP’s)

Every n-vertex MOP T, can be face-edge covered by  n/3 faces

G2

G1

0

1

2 3

4

5

T’

Consider T* = G2 + 0125
T* is maximal outerplanar graph and
has n – 2 vertices

By lemma 2  T*  can be face-edge 
covered with  f(n – 3) = n/3 – 1 faces,
and an additional “collapsed triangle”
at the edge 25.

The “collapsed triangle” at 25, also 
face-covers the quadrilateral 2345,
regardless how it is triangulated
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Upper bound

Proof
Case m = 5

FACE-EDGE COVERING     (en MOP’s)

Every n-vertex MOP T, can be face-edge covered by  n/3 faces

G2

G1

0

1

2 3

4

5

T’

The “collapsed triangle” at 25, also 
face-covers the quadrilateral 2345,
regardless how it is triangulated

Therefore,  T is face-edge covered by             faces
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Upper bound

Case m = 6

The presence of any of the internal 
edges (0,5), (0,4), (6,1) and (6,2)  
would violate the minimality of m

Thus,  the triangle T’ in G1 that is 
bounded by e is (0,3,6)

FACE-EDGE COVERING     (en MOP’s)

Every n-vertex MOP T, can be face-edge covered by  n/3 faces

G2

G1

0

1

2

3

4

6

5
T’
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Upper bound

Case m = 8
Consider T* = G2 + 01236
T* is maximal outerplanar graph and
has n – 2 vertices

By lemma 2  T*  can be face-edge covered 
with  f(n – 3) = n/3 – 1 triangles, and
an additional “collapsed triangle” at the
edge 36 which covers 3456 

FACE-EDGE COVERING     (en MOP’s)

Every n-vertex MOP T, can be face-edge covered by  n/3 faces

Case m = 6

G2

G1

0

1

2

3

4

6

5
T’

Therefore,            faces cover T 
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On triangulation graphs,  we extended some monitoring 
concepts to its distance versions.

REMOTE  MONITORIZATION

2013, Canales, H., Martins, Matos: “Distance domination, guarding
and vertex cover for maximal outerplanar graphs”
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REMOTE  MONITORING  BY  VERTICES

A vertex v  kd-dominates a vertex  u if distT (v, u) ≤ k

T=(V,E)   triangulation graph

Distance k-domination

k = 1    domination k = 2      2d-domination
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REMOTE  MONITORING  BY  VERTICES

A vertex v  kd-guards a triangle  Ti if distT (v, Ti) ≤ k − 1

T=(V,E)   triangulation graph

Guarding k-distance

k = 1    guarding k = 2      2d-guarding
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REMOTE  MONITORING  BY  VERTICES

A vertex v  kd-covers an edge  e if distT (v, e) ≤ k − 1

T=(V,E)   triangulation graph

Vertex-covering k-distance

k = 1    vertex-covering k = 2
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REMOTE  MONITORING

T=(V,E)   triangulation graph

Algorithmic aspects

hkd (T) = min{ |M| / M is a  (-------) set of T} 

(-------)   distance k-dominating, k-guarding, k-vertex covering

kd(T) , gkd(T), kd(T)

NP-complete problems
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REMOTE  MONITORING  (distance 2)

T=(V,E)   triangulation graph
2d(T)  g2d(T)  2d(T)

D = {  }
2d-dominating set
not 2d-guarding

G = {  }
2d-guarding set
not 2d-vertex cover



XIV Seminario de Matemática Discreta, Valladolid, 5th June, 2015

REMOTE  MONITORING  (distance 2)

T=(V,E)   triangulation graph
2d(T) < g2d(T) < 2d(T)

D = {   }  is 2d-dominating set
is not 2d-guarding

2d(T) = 2
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REMOTE  MONITORING  (distance 2)

T=(V,E)   triangulation graph
2d(T) < g2d(T) < 2d(T)

G = {   }  is 2d-guarding set g2d(T) = 3

Each yellow triangle needs a different guard
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REMOTE  MONITORING  (distance 2)

T=(V,E)   triangulation graph
2d(T) < g2d(T) < 2d(T)

Each red edge needs a different vertex
to be 2d-covered 2d(T) > 4
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REMOTE  MONITORING

T=(V,E)   triangulation graph

hkd(n) = max { hkd(T) / T is a triangulation, T = (V,E) , |V| = n} 

Combinatorial bounds for kd(n) , gkd(n), kd(n)
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REMOTE  MONITORING  MOP’s (distance 2)

(1) Canales, H., Martins, Matos, ‘13
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Every n-vertex maximal outerplanar graph, n4, can be 2d-covered

with vertices and this bound is tight.

VERTEX  COVERING     (MOP’s, distance 2)
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First, the lower bound

Red edges need
different vertices to
be 2d-covered, then
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VERTEX  COVERING     (MOP’s, distance 2)

The edges of any T can be 2d-covered with vertices
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Lemma (Tokunaga ’13)

The vertices of any n-MOP
can be 4-colored such every
4-cycle has all 4 colors
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VERTEX  COVERING     (MOP’s, distance 2)

The edges of any T can be 2d-covered with vertices
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Lemma (Tokunaga ’13)

The vertices of any n-MOP
can be 4-colored such every
4-cycle has all 4 colors

Vertices of same color are a
2d-vertex cover
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VERTEX  COVERING     (MOP’s, distance 2)

The edges of any T can be 2d-covered with vertices
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Lemma (Tokunaga ’13)

The vertices of any n-MOP
can be 4-colored such every
4-cycle has all 4 colors

Vertices of same color are a
2d-vertex cover

The vertices with the least used color are at most 
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REMOTE  MONITORING  BY  EDGES

T=(V,E)   triangulation graph

An edge e  kd-covers a vertex   v if distT (v, e) ≤ k − 1

Edge-covering k-distance

k = 2k = 1    edge-covering
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k = 2

REMOTE  MONITORING  BY  EDGES

T=(V,E)   triangulation graph

Edge-guarding k-distance

An edge e kd-guards a triangle Ti if distT (Ti, e) ≤ k − 1

k = 1   edge-guarding
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REMOTE  MONITORING  BY  EDGES

T=(V,E)   triangulation graph

Edge-dominating k-distance

k = 1   edge-domination k = 2

An edge e kd-dominates an edge ei if distT (ei, e) ≤ k − 1
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REMOTE  MONITORING  MOP’s (distance 2)

H., Martins ‘14
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Every n-vertex maximal outerplanar graph, n4, can be 2d-edge

covered with edges and this bound is tight.

EDGE  COVERING     (MOP’s, distance 2)
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Red vertices need
different edges to be 
2d-edge-covered, then

First, the lower bound
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Upper bound

Lemma 3. Suppose that f(m) edges are always sufficient to guard any 
MOP T with m vertices. Let be e = uv an exterior edge of T. Then  f(m−1) 
edges and an additional “collapsed edge” at the vertex u or v are 
sufficient to 2d-edge-cover T.

Every n-vertex MOP T, with n ≥ 4, can be 2d-edge-covered by  n/4 edges

EDGE  COVERING     (MOP’s, distance 2)

u v

w

x

w

Contract e = uvT
T*
m – 1 

vertices

T* is covered with f(m – 1) edges
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Upper bound

Lemma 3. Suppose that f(m) edges are always sufficient to guard any 
MOP T with m vertices. Let be e = uv an exterior edge of T. Then  f(m−1) 
edges and an additional “collapsed edge” at the vertex u or v are 
sufficient to 2d-edge-cover T.

Every n-vertex MOP T, with n ≥ 4, can be 2d-edge-covered by  n/4 edges

EDGE  COVERING     (MOP’s, distance 2)

u v

w

x

w

Contract e = uvT
T*
m – 1 

vertices

T* is covered with f(m – 1) edges
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Upper bound

Lemma 3. Suppose that f(m) edges are always sufficient to guard any 
MOP T with m vertices. Let be e = uv an exterior edge of T. Then  f(m−1) 
edges and an additional “collapsed edge” at the vertex u or v are 
sufficient to 2d-edge-cover T.

Every n-vertex MOP T, with n ≥ 4, can be 2d-edge-covered by  n/4 edges

EDGE  COVERING     (MOP’s, distance 2)

u v
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x

w

Contract e = uvT
T*
m – 1 

vertices

T* is covered with f(m – 1) edges
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Proof
Induction on n

Basic case: for 4 ≤ n ≤ 9, easy

Inductive step: Let n ≥ 10 and assume that the theorem holds for n’ < n

Lemma 1  guarantees the existence of a diagonal that divides T in G1 and G2,
such that G1 has m = 5, 6, 7 or 8 exterior edges

Upper bound
Every n-vertex MOP T, with n ≥ 4, can be 2d-edge-covered by  n/4 edges

EDGE  COVERING     (MOP’s, distance 2)
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Proof
Case m = 6

G2

G1

0

1

2

3

4

6

G can be 2d-edge covered by n/4
edges

G1 has 7 exterior edges

can be 2d-edge covered with 
one edge

G2 has n − 5 exterior  edges

I.H.

can be 2d-edge covered with 
(n−5)/4  n/4 −1   

edges

Upper bound
Every n-vertex MOP T, with n ≥ 4, can be 2d-edge-covered by  n/4 edges

EDGE  COVERING     (MOP’s, distance 2)

5
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Case m = 7

G2

G1

0

1

2

3 4

5

6

7

The presence of any of the internal 
edges (0,6), (0,5), (7,1) and (7,2) would 
violate the minimality of m

Thus,  the triangle T’ in G1 that is 
bounded by e is (0,3,7) or (0,4,7)
We suppose that is (0,3,7)

T’

e

EDGE  COVERING     (MOP’s, distance 2)

Upper bound
Every n-vertex MOP T, with n ≥ 4, can be 2d-edge-covered by  n/4 edges
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Case m = 7

G2

G1

0

1

2

3 4

5

6

7

T’

EDGE  COVERING     (MOP’s, distance 2)

Upper bound
Every n-vertex MOP T, with n ≥ 4, can be 2d-edge-covered by  n/4 edges

Consider T* = G2 + 01237
T* is maximal outerplanar graph and
has n – 3 exterior edges

By lemma 3  T*  can be 2d-edge covered 
with  f(n – 4) = n/4 – 1 edges, and
an additional “collapsed edge” at the
vertex 3 or 7.
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Case m = 7

G2

G1

0

1

2

3 4

5

6

7

T’

e

EDGE  COVERING     (MOP’s, distance 2)

Upper bound
Every n-vertex MOP T, with n ≥ 4, can be 2d-edge-covered by  n/4 edges

The “collapsed edge” at 3 or 7, also 
2d-edge-covers the pentagon 34567,
regardless how it is triangulated

Therefore,  T is 2d-edge covered by            edges





4
n
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Case m = 7

G2

G1

0

1

2

3 4

5

6

7

T’

e

EDGE  COVERING     (MOP’s, distance 2)

Upper bound
Every n-vertex MOP T, with n ≥ 4, can be 2d-edge-covered by  n/4 edges

The “collapsed edge” at 3 or 7, also 
2d-edge-covers the pentagon 34567,
regardless how it is triangulated

Therefore,  T is 2d-edge covered by            edges





4
n
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Case m = 7

G2

G1

0

1

2

3 4

5

6

7

T’

e

EDGE  COVERING     (MOP’s, distance 2)

Upper bound
Every n-vertex MOP T, with n ≥ 4, can be 2d-edge-covered by  n/4 edges

The “collapsed edge” at 3 or 7, also 
2d-edge-covers the pentagon 34567,
regardless how it is triangulated

Therefore,  T is 2d-edge covered by            edges
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Every n-vertex maximal outerplanar graph, n4, can be 2d-face-vertex

covered with faces and this bound is tight.

FACE-VERTEX  COVERING     (MOP’s, distance 2)







4
n

…

Red vertices need
different faces to be 
2d-face-vertex-covered, 
then

First, the lower bound

)T(f
4
n v

d2



…
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Every n-vertex maximal outerplanar graph, n4, can be 2d-face-vertex

covered with faces and this bound is tight.

FACE-VERTEX  COVERING     (MOP’s, distance 2)







4
n

If T is a maximal outerplanar graph then

)T(')T(f d2
v
d2 

Therefore, 
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REMOTE  MONITORING  MOP’s (distance k)

H., Martins ‘15
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Dominating Guarding Covering
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Every n-vertex maximal outerplanar graph, n  2k + 1, can be 

kd-edge dominated by                edges and this bound is tight.

EDGE  DOMINATING     (MOP’s, distance k)







1k2
n

Red edges need
different edges to be 
kd-dominated, then

First, the lower bound

)T('
1k2

n
kd







…

2k + 1 
vértices
(aquí k=2)
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Every n-vertex MOP T, n2k+1, can be 2d-dominated by  n/(2k+1) edges,

that is

Upper bound

Lemma 1.    ’kd(n)  ’kd(n + 1)

EDGE  DOMINATING     (MOP’s, distance k)










1k2
n)n('kd

Lemma 2.    ’kd(n) = 1   if  3  n  4k + 1

Lemma 3.    ’kd(n) = 2   if   n = 4k + 2   or  n = 4k + 3

Lemma 4. (Contraction) Suppose that f(m) edges kd-dominate all the 
edges of any MOP T with m vertices. Let be e = uv an exterior edge of T. 
Then  f(m−1) edges and an additional “collapsed edge” at the vertex u or 
v are sufficient to kd-edge-dominate T.
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Case  n  2k 

EDGE  DOMINATING     (MOP’s, distance k)

Lemma 2.    ’kd(n) = 1   if  3  n  4k + 1

Any collapsed edge at any vertex of dominates all the edges

k = 5
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Case  n = 2k + 1

EDGE  DOMINATING     (MOP’s, distance k)

Lemma 2.    ’kd(n) = 1   if  3  n  4k + 1

Any edge dominates
all the edges

…

…

k vertices

Any collapsed edge at
vertex of degree > 2 
dominates all the edges

OR

…

…

k vertices
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Case  n = 2k + 2

EDGE  DOMINATING     (MOP’s, distance k)

Lemma 2.    ’kd(n) = 1   if  3  n  4k + 1

Subcase A)  Any interior edge (both extremes degree  3)
dominates all the edges

Subcase B)  One of the two incident edges in a vertex of degree 2 
dominates all the edges

…

…

k vertices

…

…

k vertices
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u v

w

x

w

Contract e = uvT
T*
m – 1 

vertices

D* kd-dominates T*  
|D*| = f(m – 1)

EDGE  DOMINATING     (MOP’s, distance k)

Lemma 4. (Contraction) Suppose that f(m) edges kd-dominate all the 
edges of any MOP T with m vertices. Let be e = uv an exterior edge of T. 
Then  f(m−1) edges and an additional “collapsed edge” at the vertex u or 
v are sufficient to kd-edge-dominate T.

D*  {e’} and D*  {e’}
kd-dominate T 
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u v

w

x

w

Contract e = uvT
T*
m – 1 

vertices

EDGE  DOMINATING     (MOP’s, distance k)

Lemma 4. (Contraction) Suppose that f(m) edges kd-dominate all the 
edges of any MOP T with m vertices. Let be e = uv an exterior edge of T. 
Then  f(m−1) edges and an additional “collapsed edge” at the vertex u or 
v are sufficient to kd-edge-dominate T.

D*  {e’} and D*  {e’’}
3d-dominate T 

k = 3

D* 3d-dominates T*  
|D*| = f(m – 1)
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u v

w

x

w

Contract e = uvT
T*
m – 1 

vertices

EDGE  DOMINATING     (MOP’s, distance k)

Lemma 4. (Contraction) Suppose that f(m) edges kd-dominate all the 
edges of any MOP T with m vertices. Let be e = uv an exterior edge of T. 
Then  f(m−1) edges and an additional “collapsed edge” at the vertex u or 
v are sufficient to kd-edge-dominate T.

D*  {e’}
3d-dominate T  

k = 3

D* 3d-dominates T*  
|D*| = f(m – 1)



XIV Seminario de Matemática Discreta, Valladolid, 5th June, 2015

Proof
Induction on n

Basic case: for 3 ≤ n ≤ 4k + 3, lemmas 2, 3

Inductive step: Let n ≥ 4k + 4 and assume that the theorem holds for n’ < n

Lemma 1  guarantees the existence of a diagonal that divides T in G1 and G2,
such that G1 has m exterior edges,  2k + 2  m  4k + 2

EDGE  DOMINATING     (MOP’s, distance k)

Every n-vertex MOP T, n2k+1, can be 2d-dominated by  n/(2k+1) edges,

Upper bound
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Proof
Case m  4k

G2 has n − m + 1 n – 2k – 1 vertices

G1 has m + 1  4k + 1  vertices

T can be 2d-dominated by n/(2k+1) edges

can be 2d-dominated by one edge

I.H.

is 2d-dominated by                                           edges

EDGE  DOMINATING     (MOP’s, distance k)

Every n-vertex MOP T, n2k+1, can be 2d-dominated by  n/(2k+1) edges,

Upper bound

G2

G1

m0

1
1k2

n
1k2

1k2n
















Lemma 2
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Case m = 4k + 1

w  apex of triangle T* in G1 that is bounded by e
C exterior cycle of G1 distC(u,v)= 4k + 1
By minimality of  m  2k + 2
distC(u,w)= 2k + 1, distC(w,v)= 2k

EDGE  DOMINATING     (MOP’s, distance k)

Every n-vertex MOP T, n2k+1, can be 2d-dominated by  n/(2k+1) edges,

Upper bound

G2

G1

vu

w

G1 has  m + 1 = 4k +2  vertices

T’ triangulation determined by uw and C
T’’ = (G2  G1\ T’)
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Case m = 4k + 1

w  apex of triangle T* in G1 that is bounded by e
C exterior cycle of G1 distC(u,v)= 4k + 1
By minimality of  m  2k + 2
distC(u,w)= 2k + 1, distC(w,v)= 2k

EDGE  DOMINATING     (MOP’s, distance k)

Every n-vertex MOP T, n2k+1, can be 2d-dominated by  n/(2k+1) edges,

Upper bound

G2

G1

vu

w

G1 has  m + 1 = 4k +2  vertices

T’ triangulation determined by uw and C
T’’ = (G2  G1\ T’)

T’ 2k + 2 vertices
T’’ n – (2k + 1) + 1 = n – 2k vertices

T’
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Case m = 4k + 1

EDGE  DOMINATING     (MOP’s, distance k)

Every n-vertex MOP T, n2k+1, can be 2d-dominated by  n/(2k+1) edges,

Upper bound

G2

G1

vu

w

T’ 2k + 2 vertices
T’’ n – (2k + 1) + 1 = n – 2k vertices

T’

By lemma 4  T’’ can be 2d-edge dominated with

edges and an

additional “collapsed edge” (*) at the vertex u or w.

1
1k2

n)1k2n(f 








These edges dominate all
edges of T’
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Case m = 4k + 1

EDGE  DOMINATING     (MOP’s, distance k)

Every n-vertex MOP T, n2k+1, can be 2d-dominated by  n/(2k+1) edges,

Upper bound

T’ 2k + 2 vertices

If we can choose collapsed edge
with extremes degree  3

u

w

T’

u

w

T’

e

e dominates T’

If we can not …

z

uz or uw dominate T’
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Every n-vertex maximal outerplanar graph, n  2k + 1, can be 2d-edge 
dominated by  n/(2k+1) edges. And this bound is tight in the worst case,
that is

EDGE  DOMINATING     (MOP’s, distance k)










1k2
n)n('kd
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REMOTE  MONITORING  TRIANGULATION (distance 2)

Dominating + Guarding Covering

Edge-guarding Edge-dominatingEdge-covering

Face-vertex cover Face-guarding Face-edge cover
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Taller GC, (Abellanas, Canales, H. Martins, Orden, Ramos) marzo 2014 
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• Plane graphs (TRIANGULATIONS). 
Control by vertices, edges or faces

• REMOTE domination, covering, guarding, …

• Combinatorial bounds for
MAXIMAL OUTERPLANAR GRAPHS
TRIANGULATIONS  (partial results)

• FUTURE WORK:   Triangulations
more parameters of domination
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Thanks for your attention!!


