Monitoring triangulation graphs

Overview

\square Domination, covering, ..., watching from faces.
\square Monitoring the elements of triangulations from its faces
\square Extend the monitoring concepts to its distance versions for triangulation graphs
\square Analyze monitoring concepts from a combinatorial point of view on maximal outerplanar graphs
\square Analyze monitoring concepts from a combinatorial point of view on triangulation graphs

GRAPH THEORY

Controlling from vertices

- DOMINATING SET
- VERTEX COVERING

		Monitored Elements	
		Vertices	Edges
Monitored by	Vertices	Vertex Domination (Domination)	Vertex Covering (Covering)
	Edges	Edge Covering	Edge Domination

GRAPH THEORY

Controlling from edges

COMPUTATIONAL GEOMETRY

Triangulation graphs

COMPUTATIONAL GEOMETRY

How many guards?

TERRAIN GUARDING

Minimize is a NP-hard problem Cole-Sharir, 89

VERTEX (POINT) GUARD FIXED HEIGHT GUARD

COMPUTATIONAL GEOMETRY

How many guards?

TERRAIN GUARDING

Vertex guarding

$\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor \begin{gathered}\text { vertices are always sufficient and sometimes necessary } \\ \text { Bose, Shermer, Toussaint, Zhu, } 92\end{gathered}$

Edge guarding
$\left\lfloor\frac{n}{3}\right\rfloor$ edges are always sufficient (Everett, Rivera-Campo, 94)
$\left\lfloor\frac{4 \mathrm{n}-4}{13}\right\rfloor$ are sometimes necessary (BSTZ, 92, 97)

Graph Theory --- Computational Geometry

On triangulation graphs, we consider another monitoring concept (monitoring from faces)

		Monitored Elements		
		Vertices	Faces	Edges
Monitored by	Edges	Edge Covering	Edge Guarding	Edge Domination
	Vertices	Vertex Domination (Domination)	Vertex Guarding (Guarding)	Vertex Covering (Covering)
	Faces	Face-vertex Covering	Face-face Guarding	Face-edge Covering

Watching from the faces (TRIANGULATIONS)

A triangle T_{i} face-vertex covers a vertex u if u is a vertex of T_{i}
A triangle T_{i} face guards T_{k} if they share some vertex
A triangle T_{i} face-edge covers an edge e if one of its endpoints is in T_{i}

MONITORING TRIANGULATIONS

Algorithmic aspects (from vertices)

Let be T a triangulation
$\gamma(T)=\min \{|D| / D$ is a dominant set of $T\}$
$g(T)=\min \{|G| / G$ is a set of guards of $T\}$
$\beta(T)=\min \{|K| / K$ is a vertex cover of $T\}$

Calculate these parameters are NP-complete problems

$$
\gamma(\mathrm{T}) \leq \mathrm{g}(\mathrm{~T}) \leq \beta(\mathrm{T})
$$

MONITORING TRIANGULATIONS

$$
\gamma(\mathrm{T})<\mathrm{g}(\mathrm{~T})<\beta(\mathrm{T})
$$

$\gamma(\mathrm{T}) \leq 3$

$\gamma(\mathrm{T}) \geq 3$

$$
\gamma(\mathrm{T})=3
$$

MONITORING TRIANGULATIONS

$$
\gamma(\mathrm{T})<\mathrm{g}(\mathrm{~T})<\beta(\mathrm{T})
$$

$g(T) \leq 4$

$g(T) \geq 4$

$$
g(T)=4
$$

MONITORING TRIANGULATIONS

$$
\gamma(\mathrm{T})<\mathrm{g}(\mathrm{~T})<\beta(\mathrm{T})
$$

$\beta(T) \leq 8$

$\beta(T) \geq 8$

$$
\beta(T)=8
$$

MONITORING TRIANGULATIONS

Combinatorial aspects
$h(T)=\min \{|K|: K$ is a $(------)$ set of $T\}$
(-------) dominant, guarding, vertex covering, edge covering, edge guarding, edge dominating, face-vertex covering, face guarding, face-edge-covering

$$
h(n)=\max \{h(T): T \text { is a triangulation, } T=(V, E),|V|=n\}
$$

Combinatorial bounds for $\mathrm{h}(\mathrm{n})$

MONITORING TRIANGULATION GRAPHS

		Watched elements		
		Vertices	Faces	Edges
	$\begin{equation*} y^{e^{\text {ec }}} \tag{1} \end{equation*}$	Dominating $\begin{equation*} \gamma(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{3}\right\rfloor \tag{2} \end{equation*}$	Guarding $g(n)=\left\lfloor\frac{n}{2}\right\rfloor$	Covering
	<	Edge-covering	Edge-guarding $\mathrm{g}^{\mathrm{e}}(\mathrm{n}) \leq\left\lfloor\frac{\mathrm{n}}{3}\right\rfloor$	Edge-dominating
	$\widetilde{0}^{\mathcal{D}^{\natural}}$	Face-vertex cover	Face-guarding	Face-edge cover

(1) Matheson, Tarjan '96, (2) Bose et al. '97, (3) Everett, Rivera, '97

MONITORING TRIANGULATION GRAPHS

		Watched elements		
		Vertices	Faces	Edges
E000.$\overline{0}$$\vdots$033		Dominating $\begin{equation*} \gamma(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{3}\right\rfloor \tag{1} \end{equation*}$	Guarding $\begin{equation*} g(n)=\left\lfloor\frac{n}{2}\right\rfloor \tag{2} \end{equation*}$	Covering $\beta(\mathrm{n})=\left\lfloor\frac{3 \mathrm{n}}{4}\right\rfloor$
	ψ^{80}	Edge-covering $\begin{equation*} \beta^{\prime}(\mathrm{n})=\left\lfloor\frac{2 \mathrm{n}-2}{3}\right\rfloor \tag{3} \end{equation*}$	Edge-guarding $\mathrm{g}^{\mathrm{e}}(\mathrm{n}) \leq\left\lfloor\frac{\mathrm{n}}{3}\right\rfloor$	Edge-dominating $\left\lfloor\frac{2 \mathrm{n}-2}{5}\right\rfloor \leq \gamma^{\prime}(\mathrm{n}) \leq\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor$
	$\widetilde{0}^{\mathbb{C}^{\mathscr{C}}}$	Face-vertex cover $\mathrm{f}^{\mathrm{v}}(\mathrm{n})=\left\lfloor\frac{2 \mathrm{n}-2}{3}\right\rfloor$	Face-guarding $\left\lfloor\frac{2 \mathrm{n}-2}{7}\right\rfloor \leq \mathrm{g}^{\mathrm{f}}(\mathrm{n}) \leq\left\lfloor\frac{\mathrm{n}}{3}\right\rfloor$	Face-edge cover ?

$11^{\text {th }}$ IWCG, Palencia 2015 (Flores, H., Orden, Seara, Urrutia)

VERTEX COVERING

Every n-vertex triangulation graph can be covered by $\left\lfloor\frac{3 n}{4}\right\rfloor$
vertices and this bound is tight.

4-coloring vertices

VERTEX COVERING

Every n-vertex triangulation graph can be covered by $\quad\left\lfloor\frac{3 n}{4}\right\rfloor$
vertices and this bound is tight.

4-coloring vertices

Choose three colours less used
$\left\lfloor\frac{3 n}{4}\right\rfloor \quad$ vertices cover all edges
then $\quad \beta^{\prime}(\mathrm{T}) \leq\left\lfloor\frac{3 \mathrm{n}}{4}\right\rfloor \quad \forall \mathrm{T}$

$$
\beta^{\prime}(\mathrm{n}) \leq\left\lfloor\frac{3 \mathrm{n}}{4}\right\rfloor
$$

VERTEX COVERING

Every n-vertex triangulation graph can be covered by vertices and this bound is tight.

Now, the lower bound

The edges of each K_{4} need three different vertices to be covered, then

$$
\left\lfloor\frac{3 \mathrm{n}}{4}\right\rfloor \leq \beta^{\prime}(\mathrm{T})
$$

Therefore,

$$
\beta^{\prime}(\mathrm{n})=\left\lfloor\frac{3 n}{4}\right\rfloor
$$

EDGE COVERING

Every n-vertex triangulation graph can be covered by $\left\lfloor\frac{2 n-2}{3}\right\rfloor$
vertices and this bound is tight.

First, the lower bound
In the figure $\mathrm{n}=\mathrm{k}+\mathrm{k}+\mathrm{k}+1$
The red vertices must be covered by different edges

$$
\beta^{\prime}(\mathrm{T}) \geq 2 \mathrm{k}
$$

Then

$$
\left\lfloor\frac{2 \mathrm{n}-2}{3}\right\rfloor \leq \beta^{\prime}(\mathrm{T})
$$

EDGE COVERING

Every n-vertex triangulation graph can be covered by $\left\lfloor\frac{2 n-2}{3}\right\rfloor$
vertices and this bound is tight.

Theorem (Nishizeki, '81)
G planar graph, 2-connected, $\delta \geq 3, \mathrm{n} \geq 14$,
Then G contains a matching M so that $\quad|M| \geq\left\lceil\frac{\mathrm{n}+4}{3}\right\rceil$
Let be T triangulation. If there are vertices with degree 2
$\mathrm{G}^{*}=\mathrm{T}+\mathrm{x}$
G^{*} has a matching M with

$$
|\mathrm{M}| \geq\left\lceil\frac{\mathrm{n}+5}{3}\right\rceil
$$

EDGE COVERING

Every n-vertex triangulation graph can be covered by $\left\lfloor\frac{2 n-2}{3}\right\rfloor$
vertices and this bound is tight.

$$
\mathrm{G}^{\star}=\mathrm{T}+\mathrm{x} \quad|\mathrm{M}| \geq\left\lceil\frac{\mathrm{n}+5}{3}\right\rceil
$$

The edges of M cover $\quad 2\left\lceil\frac{n+5}{3}\right\rceil$ vertices

$F=$ one edge for each free vertex in M $\mathrm{K}=\mathrm{M} \cup \mathrm{F}$ is an edge-covering of G^{*}
K^{*} is an edge-covering of $\mathrm{T},\left|\mathrm{K}^{*}\right|=|\mathrm{K}|$

EDGE COVERING

Every n-vertex triangulation graph can be covered by $\left\lfloor\frac{2 n-2}{3}\right\rfloor$
vertices and this bound is tight.
K^{*} is an edge-covering of $\mathrm{T},\left|\mathrm{K}^{*}\right|=|\mathrm{K}|$

$|\mathrm{K} *|=\left\lceil\frac{\mathrm{n}+5}{3}\right\rceil+(\mathrm{n}+1)-2\left\lceil\frac{\mathrm{n}+5}{3}\right\rceil=\mathrm{n}+1-\left\lceil\frac{\mathrm{n}+5}{3}\right\rceil=\left\lfloor\frac{2 \mathrm{n}-2}{3}\right\rfloor$
Therefore $\quad \beta^{\prime}(\mathrm{n}) \leq\left\lfloor\frac{2 \mathrm{n}-2}{3}\right\rfloor$

MONITORING MAXIMAL OUTERPLANAR GRAPHS

> Triangulation graph without interior points

Triangulation graph of a polygon
$\mathrm{h}(\mathrm{n})=\max \{\mathrm{h}(\mathrm{T}) / \mathrm{T}$ is a MOP, $\mathrm{T}=(\mathrm{V}, \mathrm{E}),|\mathrm{V}|=\mathrm{n}\}$

MONITORING MAXIMAL OUTERPLANAR GRAPHS

		Watched elements		
		Vertices	Faces	Edges
	$\begin{equation*} \nu^{\text {ev }} \tag{1} \end{equation*}$	Dominating $\begin{equation*} \gamma(\mathrm{n})=\left\lfloor\frac{\mathrm{n}+\mathrm{n}_{2}}{4}\right\rfloor \tag{2} \end{equation*}$	Guarding $g(n)=\left\lfloor\frac{n}{3}\right\rfloor$	Covering
	eic	Edge-covering	Edge-guarding $\begin{equation*} \mathrm{g}^{\mathrm{e}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor \tag{4} \end{equation*}$	Edge-dominating $\gamma^{\prime}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}+1}{3}\right\rfloor$
	$\underbrace{\text { c }}$	Face-vertex cover	Face-guarding	Face-edge cover

(1) Campos '13, (2) Art Gallery Theorem '76, (3) O’Rourke '83, (4) Karavelas '11

MONITORING MAXIMAL OUTERPLANAR GRAPHS

		Watched elements		
		Vertices	Faces	Edges
	$\begin{equation*} y^{e^{e}} \tag{1} \end{equation*}$	Dominating $\begin{equation*} \gamma(\mathrm{n})=\left\lfloor\frac{\mathrm{n}+\mathrm{n}_{2}}{4}\right\rfloor \tag{2} \end{equation*}$	Guarding $g(n)=\left\lfloor\frac{n}{3}\right\rfloor$	Covering $\beta(\mathrm{n})=\left\lfloor\frac{2 \mathrm{n}}{3}\right\rfloor$
	40^{0}	Edge-covering $\begin{equation*} \beta^{\prime}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}+1}{2}\right\rfloor \tag{3} \end{equation*}$	Edge-guarding $\begin{equation*} \mathrm{g}^{\mathrm{e}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor \tag{4} \end{equation*}$	Edge-dominating $\gamma^{\prime}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}+1}{3}\right\rfloor$
	$<^{8}$	Face-vertex cover $\mathrm{f}^{\mathrm{v}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor$	Face-guarding $\mathrm{g}^{\mathrm{f}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$	Face-edge cover $\mathrm{f}^{\mathrm{e}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{3}\right\rfloor$

H., Martins ' 14 ,

VERTEX COVERING (en MOP's)

Every n-vertex maximal outerplanar graph can be covered by $\left\lfloor\frac{2 n}{3}\right\rfloor$
vertices and this bound is tight.

3 -coloring vertices

VERTEX COVERING (en MOP's)

Every n-vertex maximal outerplanar graph can be covered by $\left\lfloor\frac{2 n}{3}\right\rfloor$
vertices and this bound is tight.

3 -coloring vertices

Choose two colours less used
$\left\lfloor\frac{2 n}{3}\right\rfloor$ vertices cover all edges then $\beta(\mathrm{T}) \leq\left\lfloor\frac{2 \mathrm{n}}{3}\right\rfloor \quad \forall \mathrm{T}$

$$
\beta(n) \leq\left\lfloor\frac{2 n}{3}\right\rfloor
$$

VERTEX COVERING (en MOP's)

Every n-vertex maximal outerplanar graph can be covered by $\left\lfloor\frac{2 n}{3}\right\rfloor$
vertices and this bound is tight.

Now, the lower bound

Therefore,

The edges of each triangle need two different vertices to be covered, then

$$
\left\lfloor\frac{2 \mathrm{n}}{3}\right\rfloor \leq \beta(\mathrm{T})
$$

$$
\beta(n)=\left\lfloor\frac{2 n}{3}\right\rfloor
$$

FACE-EDGE COVERING (en MOP's)

Every n -vertex maximal outerplanar graph, $\mathrm{n} \geq 4$ can be face-edge covered by $\left\lfloor\frac{n}{3}\right\rfloor$ triangles (faces) and this bound is tight.

Lower bound

Red edges need different triangles to be face-covered, then

$$
\left\lfloor\frac{\mathrm{n}}{3}\right\rfloor \leq \mathrm{f}^{\mathrm{e}}(\mathrm{~T})
$$

FACE-EDGE COVERING (en MOP's)

Upper bound

Every n-vertex MOP T, can be face-edge covered by $\lfloor\mathrm{n} / 3\rfloor$ faces

Lemma 1. Let T be a MOP with $\mathrm{n} \geq 2 \mathrm{~s}$ vertices. There is an interior edge e in T that separates off a minimum number m of exterior edges, where $m=s, s+1, \ldots, 2 s-2$.

e diagonal of T that separates off a minimum number m of exterior edges which is at least s
$\mathrm{T}^{*}=\stackrel{\widehat{\mathrm{Om}} \mathrm{t}}{ }$
m is minimal $\Rightarrow\left\{\begin{array}{l}t \leq s-1 \\ m-t \leq s-1\end{array}\right.$
Then $\mathrm{m} \leq 2 \mathrm{~s}-2$

FACE-EDGE COVERING (en MOP's)

Upper bound

Every n-vertex MOP T, can be face-edge covered by $\lfloor\mathrm{n} / 3\rfloor$ faces

Lemma 2. Suppose that $f(m)$ triangles (faces) are always sufficient to cover the edges of any MOP T with m vertices. Let be e an exterior edge of T. Then $f(m-1)$ triangles and an additional "collapsed triangle" at the edge e are sufficient to cover the edges of T.

T* is covered with $f(m-1)$ faces

FACE-EDGE COVERING (en MOP's)

Upper bound

Every n-vertex MOP T, can be face-edge covered by $\lfloor\mathrm{n} / 3\rfloor$ faces

Lemma 2. Suppose that $f(m)$ triangles (faces) are always sufficient to cover the edges of any MOP T with m vertices. Let be e an exterior edge of T. Then $f(m-1)$ triangles and an additional "collapsed triangle" at the edge e are sufficient to cover the edges of T.

T^{*} is covered with $f(m-1)$ faces

FACE-EDGE COVERING (en MOP's)

Upper bound

Every n-vertex MOP T, can be face-edge covered by $\lfloor\mathrm{n} / 3\rfloor$ faces

Proof

Induction on n
Basic case: for $3 \leq n \leq 8$, easy
Inductive step: Let $\mathrm{n} \geq 9$ and assume that the theorem holds for n < n
Lemma 1 ($s=4$) guarantees the existence of a diagonal that divides T in G_{1} and G_{2}, such that G_{1} has $m=4,5$ or 6 exterior edges

FACE-EDGE COVERING (en MOP's)

Upper bound

Every n-vertex MOP T, can be face-edge covered by $\lfloor\mathrm{n} / 3\rfloor$ faces

G can be face-covered by $\square \mathrm{n} / 3 \square$ faces

FACE-EDGE COVERING (en MOP's)

Upper bound

Every n-vertex MOP T, can be face-edge covered by $\lfloor\mathrm{n} / 3\rfloor$ faces

Proof
Case m = 5

The presence of any of the internal edges $(0,4)$ or $(1,5)$ would violate the minimality of m

Thus, the triangle T^{\prime} in G_{1} that is bounded by e is $(0,2,5)$ or $(0,3,5)$

FACE-EDGE COVERING (en MOP's)

Upper bound

Every n-vertex MOP T, can be face-edge covered by $\lfloor\mathrm{n} / 3\rfloor$ faces

Proof
Case m = 5

Consider T* $=\mathrm{G}_{2}+0125$
T* is maximal outerplanar graph and has $\mathrm{n}-2$ vertices

By lemma 2 T* can be face-edge $^{\text {* }}$ covered with $f(n-3)=\lfloor n / 3\rfloor-1$ faces, and an additional "collapsed triangle" at the edge 25.

The "collapsed triangle" at 25, also face-covers the quadrilateral 2345 , regardless how it is triangulated

FACE-EDGE COVERING (en MOP's)

Upper bound

Every n-vertex MOP T, can be face-edge covered by $\lfloor\mathrm{n} / 3\rfloor$ faces

Proof
Case m = 5

The "collapsed triangle" at 25 , also face-covers the quadrilateral 2345, regardless how it is triangulated

Therefore, T is face-edge covered by $\left\lfloor\frac{\mathrm{n}}{3}\right\rfloor$ faces

FACE-EDGE COVERING (en MOP's)

Upper bound

Every n-vertex MOP T, can be face-edge covered by $\lfloor\mathrm{n} / 3\rfloor$ faces

Case m = 6

The presence of any of the internal edges $(0,5),(0,4),(6,1)$ and $(6,2)$ would violate the minimality of m

Thus, the triangle T^{\prime} in G_{1} that is bounded by e is $(0,3,6)$

FACE-EDGE COVERING (en MOP's)

Upper bound

Every n-vertex MOP T, can be face-edge covered by $\lfloor\mathrm{n} / 3\rfloor$ faces

Case m = 6

Consider T* $=\mathrm{G}_{2}+01236$ T* is maximal outerplanar graph and has $\mathrm{n}-2$ vertices

By lemma 2 T* can be face-edge covered with $f(n-3)=\lfloor n / 3\rfloor-1$ triangles, and an additional "collapsed triangle" at the edge 36 which covers 3456

Therefore, $\left\lfloor\frac{\mathrm{n}}{3}\right\rfloor$ faces cover T

REMOTE MONITORIZATION

On triangulation graphs, we extended some monitoring concepts to its distance versions.

		Monitored Elements		
		Vertices	Faces	

2013, Canales, H., Martins, Matos: "Distance domination, guarding and vertex cover for maximal outerplanar graphs"

REMOTE MONITORING BY VERTICES

$\mathrm{T}=(\mathrm{V}, \mathrm{E})$ triangulation graph

Distance k-domination

A vertex $v \mathrm{kd}$-dominates a vertex u if $\operatorname{dist}_{T}(\mathrm{v}, \mathrm{u}) \leq \mathrm{k}$

$k=1$ domination

$\mathrm{k}=2 \quad$ 2d-domination

REMOTE MONITORING BY VERTICES

$\mathrm{T}=(\mathrm{V}, \mathrm{E})$ triangulation graph

Guarding k-distance

A vertex v kd-guards a triangle T_{i} if $\operatorname{dist}_{\mathrm{T}}\left(\mathrm{v}, \mathrm{T}_{\mathrm{i}}\right) \leq \mathrm{k}-1$

$$
\mathrm{k}=1 \quad \text { guarding }
$$

$\mathrm{k}=2 \quad$ 2d-guarding

REMOTE MONITORING BY VERTICES

$\mathrm{T}=(\mathrm{V}, \mathrm{E})$ triangulation graph

Vertex-covering k-distance

A vertex $\vee \mathrm{kd}$-covers an edge e if $\operatorname{dist}_{\mathrm{T}}(\mathrm{v}, \mathrm{e}) \leq \mathrm{k}-1$

$\mathrm{k}=1$ vertex-covering

$\mathrm{k}=2$

REMOTE MONITORING

$\mathrm{T}=(\mathrm{V}, \mathrm{E})$ triangulation graph

$h_{\text {kd }}(T)=\min \{|M| / M$ is a (------) set of $T\}$
(-------) distance k-dominating, k-guarding, k-vertex covering
$\gamma_{k d}(T), g_{k d}(T), \beta_{k d}(T)$

Algorithmic aspects

NP-complete problems

REMOTE MONITORING (distance 2)

$\mathrm{T}=(\mathrm{V}, \mathrm{E})$ triangulation graph

$$
\gamma_{2 d}(T) \leq g_{2 d}(T) \leq \beta_{2 d}(T)
$$

$\mathrm{D}=\{\bullet\}$
2d-dominating set not 2d-guarding

$\mathrm{G}=\{0\}$
2d-guarding set not 2d-vertex cover

REMOTE MONITORING (distance 2)

$\mathrm{T}=(\mathrm{V}, \mathrm{E})$ triangulation graph

$$
\gamma_{2 d}(T)<g_{2 d}(T)<\beta_{2 d}(T)
$$

$D=\{\boldsymbol{\square}\}$ is 2d-dominating set is not 2d-guarding

$$
\gamma_{2 d}(T)=2
$$

REMOTE MONITORING (distance 2)

$\mathrm{T}=(\mathrm{V}, \mathrm{E})$ triangulation graph

$$
\gamma_{2 d}(T)<g_{2 d}(T)<\beta_{2 d}(T)
$$

$\mathrm{G}=\{\mathbf{\square}\}$ is 2d-guarding set
$\mathrm{g}_{2 \mathrm{~d}}(\mathrm{~T})=3$
Each yellow triangle needs a different guard

REMOTE MONITORING (distance 2)

$\mathrm{T}=(\mathrm{V}, \mathrm{E})$ triangulation graph

$$
\gamma_{2 d}(T)<g_{2 d}(T)<\beta_{2 d}(T)
$$

Each red edge needs a different vertex to be 2d-covered
$\beta_{2 d}(\mathrm{~T})>4$

REMOTE MONITORING

$\mathrm{T}=(\mathrm{V}, \mathrm{E})$ triangulation graph

$h_{\mathrm{kd}}(\mathrm{n})=\max \left\{\mathrm{h}_{\mathrm{kd}}(\mathrm{T}) / \mathrm{T}\right.$ is a triangulation, $\left.\mathrm{T}=(\mathrm{V}, \mathrm{E}),|\mathrm{V}|=\mathrm{n}\right\}$

Combinatorial bounds for $\gamma_{k d}(n), g_{k d}(n), \beta_{k d}(n)$

REMOTE MONITORING MOP's (distance 2)

		Watched elements		
		Vertices	Faces	Edges
	$\overbrace{}^{\text {couc }}$	Dominating $\begin{equation*} \gamma_{2 \mathrm{~d}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{5}\right\rfloor \tag{1} \end{equation*}$	Guarding $\begin{equation*} \mathrm{g}_{2 \mathrm{~d}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{5}\right\rfloor \tag{1} \end{equation*}$	Covering $\begin{equation*} \beta_{2 \mathrm{~d}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor \tag{1} \end{equation*}$
	e	Edge-covering	Edge-guarding	Edge-dominating
	- $0^{c^{4}}$	Face-vertex cover	Face-guarding	Face-edge cover

(1) Canales, H., Martins, Matos, '13

VERTEX COVERING (MOP's, distance 2)

Every n-vertex maximal outerplanar graph, $n \geq 4$, can be 2d-covered with $\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$ vertices and this bound is tight.

First, the lower bound

Red edges need different vertices to be 2d-covered, then

$$
\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor \leq \beta_{2 \mathrm{~d}}^{\prime}(\mathrm{T})
$$

VERTEX COVERING (MOP's, distance 2)

The edges of any T can be 2d-covered with $\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$ vertices

Lemma (Tokunaga '13)
The vertices of any n-MOP can be 4-colored such every 4 -cycle has all 4 colors

VERTEX COVERING (MOP's, distance 2)

The edges of any T can be 2d-covered with $\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$ vertices

Lemma (Tokunaga '13)
The vertices of any n-MOP can be 4-colored such every 4-cycle has all 4 colors

Vertices of same color are a 2d-vertex cover

VERTEX COVERING (MOP's, distance 2)

The edges of any T can be 2d-covered with $\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$ vertices

Lemma (Tokunaga '13)
The vertices of any n-MOP can be 4-colored such every 4 -cycle has all 4 colors

Vertices of same color are a 2d-vertex cover

The vertices with the least used color are at most $\left\lfloor\frac{n}{4}\right\rfloor$

REMOTE MONITORING BY EDGES

$\mathrm{T}=(\mathrm{V}, \mathrm{E})$ triangulation graph

Edge-covering k-distance

An edge e kd-covers a vertex v if $\operatorname{dist}_{\mathrm{T}}(\mathrm{v}, \mathrm{e}) \leq \mathrm{k}-1$

$\mathrm{k}=1$ edge-covering

$k=2$

REMOTE MONITORING BY EDGES

$\mathrm{T}=(\mathrm{V}, \mathrm{E})$ triangulation graph

Edge-guarding k-distance

An edge e kd-guards a triangle T_{i} if $\operatorname{dist}_{\mathrm{T}}\left(\mathrm{T}_{\mathrm{i}}, \mathrm{e}\right) \leq \mathrm{k}-1$

$\mathrm{k}=1$ edge-guarding

$k=2$

REMOTE MONITORING BY EDGES

$\mathrm{T}=(\mathrm{V}, \mathrm{E})$ triangulation graph

Edge-dominating k-distance

An edge e kd-dominates an edge e_{i} if $\operatorname{dist}_{\mathrm{T}}\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}\right) \leq \mathrm{k}-1$

$\mathrm{k}=1$ edge-domination

$\mathrm{k}=2$

REMOTE MONITORING MOP's (distance 2)

		Watched elements		
		Vertices	Faces	Edges
$\begin{aligned} & \text { E } \\ & \text { 은 } \\ & \text { O} \\ & \text { 들 } \\ & \stackrel{N}{0} \\ & 3 \end{aligned}$	$\sqrt{e}_{e^{\text {ec }}}$	Dominating $\gamma_{2 \mathrm{~d}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{5}\right\rfloor$	Guarding $\mathrm{g}_{2 \mathrm{~d}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{5}\right\rfloor$	Covering $\beta_{2 \mathrm{~d}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$
	ω^{∞}	Edge-covering $\beta_{2 \mathrm{~d}}^{\prime}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$	Edge-guarding $\mathrm{g}_{2 \mathrm{~d}}^{\mathrm{e}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{6}\right\rfloor$	Edge-dominating $\gamma_{2 \mathrm{~d}}^{\prime}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{5}\right\rfloor$
		Face-vertex cover $\mathrm{f}_{2 \mathrm{~d}}^{\mathrm{v}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$	Face-guarding $\mathrm{g}_{2 \mathrm{~d}}^{\mathrm{f}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{6}\right\rfloor$	Face-edge cover $\mathrm{f}_{2 \mathrm{~d}}^{\mathrm{e}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{5}\right\rfloor$

[^0]
EDGE COVERING (MOP's, distance 2)

Every n-vertex maximal outerplanar graph, $n \geq 4$, can be $2 d$-edge covered with $\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$ edges and this bound is tight.

First, the lower bound

Red vertices need
 different edges to be 2d-edge-covered, then

$$
\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor \leq \beta_{2 \mathrm{~d}}^{\prime}(\mathrm{T})
$$

EDGE COVERING (MOP's, distance 2)

Upper bound
Every n-vertex MOP T, with $n \geq 4$, can be 2d-edge-covered by $\lfloor\mathrm{n} / 4\rfloor$ edges
Lemma 3. Suppose that $f(m)$ edges are always sufficient to guard any MOP T with m vertices. Let be $e=u v$ an exterior edge of T. Then $f(m-1)$ edges and an additional "collapsed edge" at the vertex u or v are sufficient to 2d-edge-cover T.

T^{*} is covered with $f(m-1)$ edges

EDGE COVERING (MOP's, distance 2)

Upper bound
Every n-vertex MOP T, with $n \geq 4$, can be 2d-edge-covered by $\lfloor\mathrm{n} / 4\rfloor$ edges
Lemma 3. Suppose that $f(m)$ edges are always sufficient to guard any MOP T with m vertices. Let be $e=u v$ an exterior edge of T. Then $f(m-1)$ edges and an additional "collapsed edge" at the vertex u or v are sufficient to 2d-edge-cover T.

T* is covered with $f(m-1)$ edges

EDGE COVERING (MOP's, distance 2)

Upper bound
Every n-vertex MOP T, with $n \geq 4$, can be 2d-edge-covered by $\lfloor\mathrm{n} / 4\rfloor$ edges
Lemma 3. Suppose that $f(m)$ edges are always sufficient to guard any MOP T with m vertices. Let be $e=u v$ an exterior edge of T. Then $f(m-1)$ edges and an additional "collapsed edge" at the vertex u or v are sufficient to 2d-edge-cover T.

EDGE COVERING (MOP's, distance 2)

Upper bound
Every n-vertex MOP T, with $n \geq 4$, can be 2d-edge-covered by $\lfloor n / 4\rfloor$ edges

Proof

Induction on n
Basic case: for $4 \leq n \leq 9$, easy
Inductive step: Let $\mathrm{n} \geq 10$ and assume that the theorem holds for n < n
Lemma 1 guarantees the existence of a diagonal that divides T in G_{1} and G_{2}, such that G_{1} has $\mathrm{m}=5,6,7$ or 8 exterior edges

EDGE COVERING (MOP's, distance 2)

Upper bound

Every n-vertex MOP T, with $n \geq 4$, can be $2 d$-edge-covered by $\lfloor n / 4\rfloor$ edges

G can be 2d-edge covered by $\square \mathrm{n} / 4 \square$ edges

EDGE COVERING (MOP's, distance 2)

Upper bound

Every n-vertex MOP T, with $n \geq 4$, can be 2d-edge-covered by $\lfloor\mathrm{n} / 4\rfloor$ edges
Case m = 7

The presence of any of the internal edges $(0,6),(0,5),(7,1)$ and $(7,2)$ would violate the minimality of m

Thus, the triangle T^{\prime} in G_{1} that is bounded by e is $(0,3,7)$ or $(0,4,7)$ We suppose that is $(0,3,7)$

EDGE COVERING (MOP's, distance 2)

Upper bound

Every n-vertex MOP T, with $n \geq 4$, can be $2 d$-edge-covered by $\lfloor n / 4\rfloor$ edges
Case m = 7

Consider T* $=\mathrm{G}_{2}+01237$
T* is maximal outerplanar graph and has $\mathrm{n}-3$ exterior edges

By lemma 3 T* can be 2d-edge covered with $f(n-4)=\lfloor n / 4\rfloor-1$ edges, and an additional "collapsed edge" at the vertex 3 or 7 .

EDGE COVERING (MOP's, distance 2)

Upper bound

Every n-vertex MOP T, with $n \geq 4$, can be 2d-edge-covered by $\lfloor\mathrm{n} / 4\rfloor$ edges

Case m = 7

The "collapsed edge" at 3 or 7, also 2d-edge-covers the pentagon 34567, regardless how it is triangulated

edges

EDGE COVERING (MOP's, distance 2)

Upper bound

Every n-vertex MOP T, with $n \geq 4$, can be 2d-edge-covered by $\lfloor n / 4\rfloor$ edges

Case m = 7

The "collapsed edge" at 3 or 7 , also 2d-edge-covers the pentagon 34567, regardless how it is triangulated

Therefore, T is 2d-edge covered by $\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$ edges

EDGE COVERING (MOP's, distance 2)

Upper bound

Every n-vertex MOP T, with $n \geq 4$, can be 2d-edge-covered by $\lfloor n / 4\rfloor$ edges

Case m = 7

The "collapsed edge" at 3 or 7, also 2d-edge-covers the pentagon 34567, regardless how it is triangulated

Therefore, T is 2d-edge covered by $\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$ edges

FACE-VERTEX COVERING (MOP's, distance 2)

Every n -vertex maximal outerplanar graph, $\mathrm{n} \geq 4$, can be 2d-face-vertex covered with $\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$ faces and this bound is tight.

First, the lower bound

Red vertices need different faces to be 2d-face-vertex-covered, then

$$
\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor \leq \mathrm{f}_{2 \mathrm{~d}}^{\mathrm{v}}(\mathrm{~T})
$$

FACE-VERTEX COVERING (MOP's, distance 2)

Every n -vertex maximal outerplanar graph, $\mathrm{n} \geq 4$, can be 2d-face-vertex covered with $\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$ faces and this bound is tight.

If T is a maximal outerplanar graph then

$$
\mathrm{f}_{2 \mathrm{~d}}^{\mathrm{v}}(\mathrm{~T}) \leq \beta^{\prime}{ }_{2 \mathrm{~d}}(\mathrm{~T})
$$

Therefore,

$$
\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor \leq \mathrm{f}_{2 \mathrm{~d}}^{\mathrm{v}}(\mathrm{n}) \leq \beta^{\prime}{ }_{2 \mathrm{~d}}(\mathrm{n}) \leq\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor
$$

REMOTE MONITORING MOP's (distance k)

		Watched elements		
		Vertices	Faces	Edges
	$\nu^{e^{e}}$	Dominating $\gamma_{\mathrm{kd}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}+1}\right\rfloor$	Guarding $\mathrm{g}_{2 \mathrm{~d}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}+1}\right\rfloor$	Covering $\beta_{2 \mathrm{~d}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}}\right\rfloor$
	-300	Edge-covering $\beta_{2 \mathrm{~d}}^{\prime}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}}\right\rfloor$	Edge-guarding $\mathrm{g}_{2 \mathrm{~d}}^{\mathrm{e}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}+2}\right\rfloor$	Edge-dominating $\gamma_{2 \mathrm{~d}}^{\prime}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}+1}\right\rfloor$
		Face-vertex cover $\mathrm{f}_{2 \mathrm{~d}}^{\mathrm{v}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}}\right\rfloor$	Face-guarding $\mathrm{g}_{2 \mathrm{~d}}^{\mathrm{f}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}+2}\right\rfloor$	Face-edge cover $\mathrm{f}_{2 \mathrm{~d}}^{\mathrm{e}}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}+1}\right\rfloor$

[^1]
EDGE DOMINATING (MOP's, distance k)

Every n -vertex maximal outerplanar graph, $\mathrm{n} \geq 2 \mathrm{k}+1$, can be kd-edge dominated by $\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}+1}\right\rfloor$ edges and this bound is tight.

First, the lower bound

Red edges need
 different edges to be kd-dominated, then

$$
\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}+1}\right\rfloor \leq \gamma_{\mathrm{kd}}^{\prime}(\mathrm{T})
$$

EDGE DOMINATING (MOP's, distance k)

Upper bound

Every n-vertex MOP T, $n \geq 2 k+1$, can be $2 d$-dominated by $\lfloor n /(2 k+1)\rfloor$ edges, that is

$$
\gamma_{\mathrm{kd}}^{\prime}(\mathrm{n}) \leq\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}+1}\right\rfloor
$$

Lemma 1. $\quad \gamma^{\prime}{ }_{k d}(\mathrm{n}) \leq \gamma^{\prime}{ }_{\mathrm{kd}}(\mathrm{n}+1)$
Lemma 2. $\quad \gamma_{\mathrm{kd}}^{\prime}(\mathrm{n})=1$ if $3 \leq \mathrm{n} \leq 4 \mathrm{k}+1$
Lemma 3. $\quad \gamma^{\prime}{ }_{k d}(n)=2$ if $n=4 k+2$ or $n=4 k+3$
Lemma 4. (Contraction) Suppose that $f(m)$ edges kd-dominate all the edges of any MOP T with m vertices. Let be $e=u v$ an exterior edge of T. Then $f(m-1)$ edges and an additional "collapsed edge" at the vertex u or v are sufficient to kd-edge-dominate T.

EDGE DOMINATING (MOP's, distance k)

Lemma 2. $\quad \gamma_{k d}^{\prime}(n)=1 \quad$ if $3 \leq n \leq 4 k+1$

Case $\mathrm{n} \leq 2 \mathrm{k}$

Any collapsed edge at any vertex of dominates all the edges

EDGE DOMINATING (MOP's, distance k)

Lemma 2. $\quad \gamma_{k d}^{\prime}(n)=1 \quad$ if $3 \leq n \leq 4 k+1$
Case $\mathrm{n}=2 \mathrm{k}+1$

Any edge dominates all the edges

Any collapsed edge at vertex of degree > 2 dominates all the edges

k vertices

EDGE DOMINATING (MOP's, distance k)

Lemma 2. $\quad \gamma_{k d}^{\prime}(n)=1 \quad$ if $3 \leq n \leq 4 k+1$
Case $\mathrm{n}=2 \mathrm{k}+2$
Subcase A) Any interior edge (both extremes degree ≥ 3) dominates all the edges

Subcase B) One of the two incident edges in a vertex of degree 2 dominates all the edges

k vertices

EDGE DOMINATING (MOP's, distance k)

Lemma 4. (Contraction) Suppose that $f(m)$ edges kd-dominate all the edges of any MOP T with m vertices. Let be $e=u v$ an exterior edge of T. Then $f(m-1)$ edges and an additional "collapsed edge" at the vertex u or v are sufficient to kd-edge-dominate T .

Contract e = uv

$D^{*} \cup\left\{e^{\prime}\right\}$ and $D^{*} \cup\left\{e^{\prime}\right\}$

D* kd-dominates T^{*}
$\left|D^{*}\right|=f(m-1)$ kd-dominate T

EDGE DOMINATING (MOP's, distance k)

Lemma 4. (Contraction) Suppose that $f(m)$ edges kd-dominate all the edges of any MOP T with m vertices. Let be $e=u v$ an exterior edge of T. Then $f(m-1)$ edges and an additional "collapsed edge" at the vertex u or v are sufficient to kd-edge-dominate T .

$D^{*} \cup\left\{e^{\prime}\right\}$ and $D^{*} \cup\left\{e^{\prime \prime}\right\}$ 3d-dominate T

EDGE DOMINATING (MOP's, distance k)

Lemma 4. (Contraction) Suppose that $f(m)$ edges kd-dominate all the edges of any MOP T with m vertices. Let be $e=u v$ an exterior edge of T. Then $f(m-1)$ edges and an additional "collapsed edge" at the vertex u or v are sufficient to kd-edge-dominate T .

$D^{*} \cup\left\{e^{\prime}\right\}$
3d-dominate T
D^{*} 3d-dominates T^{*}
$\left|D^{*}\right|=f(m-1)$

EDGE DOMINATING (MOP's, distance k)

Upper bound

Every n-vertex MOP T, $n \geq 2 k+1$, can be $2 d$-dominated by $\lfloor n /(2 k+1)\rfloor$ edges,

Proof

Induction on n
Basic case: for $3 \leq n \leq 4 k+3$, lemmas 2,3
Inductive step: Let $\mathrm{n} \geq 4 \mathrm{k}+4$ and assume that the theorem holds for n < n
Lemma 1 guarantees the existence of a diagonal that divides T in G_{1} and G_{2}, such that G_{1} has m exterior edges, $2 \mathrm{k}+2 \leq \mathrm{m} \leq 4 \mathrm{k}+2$

EDGE DOMINATING (MOP's, distance k)

Upper bound

Every n-vertex MOP T, $n \geq 2 k+1$, can be $2 d$-dominated by $\lfloor n /(2 k+1)\rfloor$ edges,

Proof

Case $\mathrm{m} \leq 4 \mathrm{k}$

$$
\mathrm{G}_{2} \text { has } \mathrm{n}-\mathrm{m}+1 \leq \mathrm{n}-2 \mathrm{k}-1 \text { vertices }
$$

is 2 d -dominated by $\left\lfloor\frac{\mathrm{n}-2 \mathrm{k}-1}{2 \mathrm{k}+1}\right\rfloor=\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}+1}\right\rfloor-1$ edges

$$
\mathrm{G}_{1} \text { has } \mathrm{m}+1 \leq 4 \mathrm{k}+1 \text { vertices }
$$

Lemma 2
can be 2d-dominated by one edge

T can be 2d-dominated by $\square \mathrm{n} /(2 \mathrm{k}+1) \square$ edges

EDGE DOMINATING (MOP's, distance k)

Upper bound

Every n-vertex MOP T, $n \geq 2 k+1$, can be $2 d$-dominated by $\lfloor n /(2 k+1)\rfloor$ edges,
Case $m=4 k+1 \quad G_{1}$ has $m+1=4 k+2$ vertices

w apex of triangle T^{*} in G_{1} that is bounded by e C exterior cycle of $G_{1} \quad \operatorname{dist}_{C}(u, v)=4 k+1$ By minimality of $m \geq 2 k+2$ $\operatorname{dist}_{\mathrm{C}}(\mathrm{u}, \mathrm{w})=2 \mathrm{k}+1, \operatorname{dist}_{\mathrm{C}}(\mathrm{w}, \mathrm{v})=2 \mathrm{k}$

T' triangulation determined by uw and C $T^{\prime \prime}=\left(G_{2} \cup G_{1} \backslash T^{\prime}\right)$

EDGE DOMINATING (MOP's, distance k)

Upper bound

Every n-vertex MOP T, $n \geq 2 k+1$, can be $2 d$-dominated by $\lfloor n /(2 k+1)\rfloor$ edges,
Case $m=4 k+1 \quad G_{1}$ has $m+1=4 k+2$ vertices

w apex of triangle T^{*} in G_{1} that is bounded by e C exterior cycle of $G_{1} \quad \operatorname{dist}_{C}(u, v)=4 k+1$ By minimality of $m \geq 2 k+2$ $\operatorname{dist}_{\mathrm{C}}(\mathrm{u}, \mathrm{w})=2 \mathrm{k}+1, \operatorname{dist}_{\mathrm{C}}(\mathrm{w}, \mathrm{v})=2 \mathrm{k}$

T' triangulation determined by uw and C $T^{\prime \prime}=\left(G_{2} \cup G_{1} \backslash T^{\prime}\right)$

T' $2 \mathrm{k}+2$ vertices
T" $n-(2 k+1)+1=n-2 k$ vertices

EDGE DOMINATING (MOP's, distance k)

Upper bound

Every n-vertex MOP T, $n \geq 2 k+1$, can be $2 d$-dominated by $\lfloor n /(2 k+1)\rfloor$ edges,
Case $m=4 k+1$

$$
\begin{array}{ll}
\mathrm{T}^{\prime} & 2 \mathrm{k}+2 \text { vertices } \\
\mathrm{T}^{\prime \prime} & \mathrm{n}-(2 \mathrm{k}+1)+1=\mathrm{n}-2 \mathrm{k} \text { vertices }
\end{array}
$$

By lemma 4 T" can be 2d-edge dominated with

$$
\mathrm{f}(\mathrm{n}-2 \mathrm{k}-1)=\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}+1}\right\rfloor-1 \text { edges and an }
$$

additional "collapsed edge" (*) at the vertex u or w.

These edges dominate all edges of $\mathrm{T}^{\text {' }}$

EDGE DOMINATING (MOP's, distance k)

Upper bound

Every n-vertex MOP T, $n \geq 2 k+1$, can be $2 d$-dominated by $\lfloor n /(2 k+1)\rfloor$ edges,
Case $\mathrm{m}=4 \mathrm{k}+1 \quad$ T' $2 \mathrm{k}+2$ vertices

If we can choose collapsed edge with extremes degree ≥ 3

If we can not ...

EDGE DOMINATING (MOP's, distance k)

Every n-vertex maximal outerplanar graph, $\mathrm{n} \geq 2 \mathrm{k}+1$, can be 2d-edge dominated by $\lfloor n /(2 k+1)\rfloor$ edges. And this bound is tight in the worst case, that is

$$
\gamma_{\mathrm{kd}}^{\prime}(\mathrm{n})=\left\lfloor\frac{\mathrm{n}}{2 \mathrm{k}+1}\right\rfloor
$$

REMOTE MONITORING TRIANGULATION (distance 2)

			Watched elements	
		Vertices	Faces	Edges
		Dominating + Guarding$\left\lfloor\frac{\mathrm{n}}{5}\right\rfloor \leq \gamma_{2 \mathrm{~d}}(\mathrm{n}) \leq \mathrm{g}_{2 \mathrm{~d}}(\mathrm{n}) \leq\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor$		Covering $\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor \leq \beta_{2 \mathrm{~d}}(\mathrm{n}) \leq\left\lfloor\frac{\mathrm{n}}{3}\right\rfloor$
	e	Edge-covering $\left\lfloor\frac{\mathrm{n}}{4}\right\rfloor \leq \beta_{2 \mathrm{~d}}^{\prime}(\mathrm{n}) \leq\left\lfloor\frac{\mathrm{n}}{3}\right\rfloor$	Edge-guarding	Edge-dominating
	$\stackrel{O}{0}^{\mathscr{C}}$	Face-vertex cover	Face-guarding ?	Face-edge cover ?

Taller GC, (Abellanas, Canales, H. Martins, Orden, Ramos) marzo 2014

- Plane graphs (TRIANGULATIONS). Control by vertices, edges or faces
- REMOTE domination, covering, guarding, ...
- Combinatorial bounds for MAXIMAL OUTERPLANAR GRAPHS TRIANGULATIONS (partial results)
- FUTURE WORK: Triangulations more parameters of domination

Thanks for your attention!!

XIV Seminario de Matemática Discreta, Valladolid, $5^{\text {th }}$ June, 2015

[^0]: H., Martins '14

[^1]: H., Martins '15

