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Wireless networks
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…other networks
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…other networks

A tourist in Barcelona

Sagrada Familia
v
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A tourist in Barcelona

Sagrada Familia

…other networks

A tourist in Paris

v

NO MAP
Local information (coordinates of v, target, and neighbors N(v))
Limited memory allocation
Ecologically sound algorithms
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…other networks

?
How can we move in 
an unknown network?

Sagrada Familia
v
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Wireless networks

With the sensors ... No map!

No paths!
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Wireless networks

(1)  How to organize the network?

(2)  How to send messages?

(3)  How to recover, store and index the data 
of the network?
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Wireless networks

(1) How to organize the network?

(2) How to send messages? ROUTING 

DESIGN 
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Wireless networks

With the sensors ... No map!

No paths!
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Wireless networks

NETWORK  MODEL Unit Disk Graph UDG

Neighbors of p are the points of S 
contained in the circle of center p and
radius 1

1

p
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Wireless networks

LOCAL  ALGORITHM
For each node we know:
(1) Position of u
(2) Neighbors of u (until distance k)
(3) The subyacent graph is UDG(S)
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Wireless networks

ROUTING PROBLEM

PROBLEM 1

Let G be a geometric planar network. Is there a deterministic algorithm that
allows an agent A standing at a vertex s to travel to a vertex t of G under
the following conditions:

(1) A has a constant amount of memory; that is, at any point in time A 
knows the position of s and t, and the positions of a constant number
of nodes in G.

(2) When the agent visits a vertex x of G, it can use the list of vertices
(and their positions) adjacent to x

(3) A is not allowed to leave any marks along its way
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Wireless networks ROUTING

Greedy Routing

v

We greedily route to the neighbor which is closest to the target

t
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Greedy Routing

Wireless networks ROUTING
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Greedy Routing

v

t

Neighbors of v are not
closer to target

It fails!!

Wireless networks ROUTING
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• Fails on some graphs
• Fails on some triangulations
• Always works for Delaunay Triangulations

Wireless networks ROUTING

Greedy Routing

Memoryless algorithm
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t

uv
Every vertex v of DT has a 
neighbor that is strictly
closer to t than v

Wireless networks ROUTING

Greedy Routing
Always works for Delaunay Triangulations
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Face Routing
Kranakis, Singh, Urrutia, ‘99

s
t

Route along the boundaries of the faces that lie on the source-target line st

Wireless networks ROUTING
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s
t

1. Let F be the face incident to the source s, intersected by line s,t

FACE ROUTING

2. Explore the boundary of F; remember the point p where the
boundary intersects with (s,t) which is nearest to t.
Go back to p, switch the face and repeat step 2 until you hit the target t

Wireless networks ROUTING
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Theorem
Face routing terminates on any simple planar graph in O(n) steps, 
where n is the number of the nodes in the network

FACE ROUTING

Proof:
It is straightforward to deduce that we reach the the destination t
We can order the faces that intersect the (s,t) line, therefore
we never visit a face twice.
Each edge is in at most two faces, therefore each edge is visited at
most 4 times.
Since a simple planar graph has at most 3n6 edges, the
algorithm terminates in O(n) steps.

Wireless networks ROUTING
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Theorem
Face routing terminates on any simple planar graph in O(n) steps, 
where n is the number of the nodes in the network

FACE ROUTING

Constant memory algorithm

Vertex of the face closest to target
Last vertex reached

Wireless networks ROUTING
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ROUTING PROBLEM

PROBLEM 1
FACE ROUTING

Let G be a geometric planar network. Is there a deterministic algorithm that
allows an agent A standing at a vertex s to travel to a vertex t of G under
the following conditions:

(1) A has a constant amount of memory; that is, at any point in time A 
knows the position of s and t, and the positions of a constant number
of nodes in G.

(2) When the agent visits a vertex x of G, it can use the list of vertices
(and their positions) adjacent to x

(3) A is not allowed to leave any marks along its way

Wireless networks ROUTING
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Wireless networks ROUTING

ROUTING PROBLEM

PROBLEM 1
FACE ROUTING

Let G be a geometric planar network. Is there a deterministic algorithm that
allows an agent A standing at a vertex s to travel to a vertex t of G under
the following conditions:

(1) A has a constant amount of memory; that is, at any point in time A 
knows the position of s and t, and the positions of a constant number
of nodes in G.

(2) When the agent visits a vertex x of G, it can use the list of vertices
(and their positions) adjacent to x

(3) A is not allowed to leave any marks along its way
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Wireless networks

Unit Disk Graph UDG

Unit Disk Graph, UDG, canNOT be a planar graph
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LOCAL ALGORITHM FOR ROUTING

PROBLEM 2

Given a UDG network N, find a local algorithm to extract a planar
subgraph H such that if N is connected, then the subgraph H is also
connected.

Solving problem 2 and using face routing in the resulting planar subgraph
would inmediately give an on-line local algorithm for routing in UDG 
networks

Wireless networks
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p,q   are adjacents if the circle of diameter pq does not contain
in its interior other points of S

Proximity graphs GG

a b
c

d

c, d   are not Gabriel neighborsa, b   are Gabriel neighbors

Gabriel Graph
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Gabriel Graph GG

Gabriel Graph

p,q   are adjacents if the disk of diameter pq does not contain
in its interior other points of S
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Gabriel Graph GG

Gabriel Graph

p,q   are adjacents if the disk of diameter pq does not contain
in its interior other points of S

DT  GG  EMST
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Unit Disk Graph UDG

Problem 2
Given UDG(S), construct a planar subgraph locally

Lemma 1
Given S, if UDG(S) is connected, then UDG(S)GG is connected

Proof: Let T=MST(S), we know that GG contains T. Therefore it
is sufficient to prove that if UDG is connected then it contains T=MST(S)

We suppose there exists an edge uv in T with lenght >1

u
v

T-(uv) has two components ,  Tu, Tv
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Unit Disk Graph UDG

Problem 2
Given UDG(S), construct a planar subgraph locally

Lemma 1
Given S, if UDG(S) is connected, then UDG(S)GG is connected

We suppose there exists an edge uv in T with lenght >1

T-(uv) has two components ,  Tu, Tv

u
v

p

q
UDG connected, then exists pq,   |pq|<1

The tree T-(uv)+(pq) weighs less than T!!

Proof: Let T=MST(S), we know that GG contains T. Therefore it
is sufficient to prove that if UDG is connected then it contains T=MST(S)
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u v

z
If (uv) is an edge of UDG(S) and (uv)GG(S) 
then exists a point z inside the disk of diameter uv

witness
Lemma 2
If (uv) GG(S) and z is a witness, then the edges uz and vz
belong to UDG(S) 

y

Each vertex u deletes in UDG(S) the edges
which do not belong to GG(N(u){u}) u v

x

Unit Disk Graph UDG

Problem 2
Given UDG(S), construct a planar subgraph locally
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Algorithm GABRIEL-UDG

For each neighbor xN(u)
if disc(u,x)(N(u){u,v}) then delete the edge ux

The cost in each vertex u is O(d2)    where d=degree(u)

Problem 2
Given UDG(S), construct a planar subgraph locally

Unit Disk Graph UDG
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FACE ROUTING  and GABRIEL GRAPH solve the problem, but ….

… the path,  is a good path?

Wireless networks ROUTING

s t

Can be very bad compared to the optimal route

How to improve 
face routing?
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ADAPTIVE FACE ROUTING  AFR

Wireless networks ROUTING

s t
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Wireless networks ROUTING

Theorem
If the optimal s-t route in the UDG has cost k, then
AFR terminates with a route whose cost is  O(k2).

ADAPTIVE FACE ROUTING  AFR Analysis

“cost” c = c hops
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Let k be the length of the optimal path between s and t. There are networks
for a which the route found by any local algorithm has cost (k2)

Kuhn, Wattenhofer, ‘02

LOWER BOUND

Wireless networks ROUTING
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LOWER BOUND

On a circle we evenly distribute 
2k nodes such that the distance 
between two neighboring points 
is exactly 1.
For every second node of the circle 
we construct a chain of k/2 - 1 nodes
arranged on a line pointing towards
the center.
The distance between two neighbors
of a chain is exactly 1
Node w is one taken arbitrarily on the
circle. The chain of w consists of k/ 
nodes with distance 1

Wireless networks ROUTING

w
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LOWER BOUND

The unit disk graph has k chains 
with Θ(k) nodes each.

Wireless networks ROUTING

We route from an arbitrary node
on the circle (the source s) to the
center of the circle (the destination t).

An optimal route between s and t 
follows the shortest path on the circle
to w, and then directly
follows w’s chain to t with total
length c  O(k)

w

s

t
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LOWER BOUND

The unit disk graph has k chains 
with Θ(k) nodes each.

Wireless networks ROUTING

A geometric routing algorithm has 
to find the “correct” chain w.

Since there is no routing information
stored at the nodes, this can only be 
achieved by exploring all the chains.

Any deterministic algorithm needs to
explore all the chains until it finds the
chain w. 

The algorithm will therefore explore 
Θ(k2) (instead of only O(k)) nodes

w

s

t
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Adaptive Face Routing is asymptotically optimal

Wireless networks ROUTING

Theorem
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Wireless networks ROUTING

ROUTING PROBLEM

Adaptive FACE ROUTING GREEDY ROUTING

GREEDY – Other Adaptive FACE ROUTING
GOAFR
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Wireless networks ROUTING

ROUTING PROBLEM

s t

1. Route greedily as long as possible
2. Circumvent “dead ends” by use of face routing

GREEDY – Other Adaptive FACE ROUTING
GOAFR

3. Then route greedily again
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Wireless networks ROUTING

ROUTING PROBLEM

GOAFR is still asymptotically worst-case optimal…
…and it is efficient in practice, in the average-case

GREEDY – Other Adaptive FACE ROUTING
GOAFR

Theorem
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Wireless networks ROUTING

AFR

GOAFR+

Greedy success

Connectivity
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Kuhn, Wattenhofer
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Routing 3D

Can we translate 2D solutions to the 3D space?

Wireless networks are in three-dimensional space

• Greedy Routing?

• Face Routing?

There is not local memoryless routing algorithm, that deliver messages
deterministically in 3D

Durocher et al. 2008
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If the nodes are contained within a slab of thickness        , there exists a 
2-local routing algorithm that succeeds for UnitBallGraph(S).

2/1

Routing 3D

There is not local memoryless routing algorithm, that deliver messages
deterministically in 3D
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There are networks for which
the route found by any
randomized geometric routing
algorithm has expected length
(d3)

Flury, Wattenhofer, ‘08

and randomized?

Routing 3D
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Local Algorithms
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Local Algorithms MST

It is NOT possible to calculate MST(S) with a local algorithm

S
n points on a circle C such that

the distances between two consecutive
nodes on C are  1i i=1, .. , n

Finding MST(S) is equivalent to
identifying the smallest i

Therefore is not possible to
obtain MST(S) locally

MST(UDG)    Minimum Spanning Tree
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S The circle may be arbitrarily large

Local Algorithms DT

It is NOT possible to calculate DT(S) with a local algorithm
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UnitDiskGraph

Czyzowicz et al. ’07, ‘08

• Dominating set 5-approx
• Connected Dominating Set 7.4-approx
• Vertex Color 7-approx

Wiese, Kranakis, ‘08

PTAS for Independent Set,  Vertex Cover, Dominating Set

Local Algorithms
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Graphs

Kuhn, Moscibroda, Wattenhofer, ‘04

Many graph problems cannot be solved locally on general graphs.
Min Vertex Cover, Min Dominating Set, Max Independent Set, …

Lenzen, Wattenhofer

’08   Dominating Set (planar graph),  74-aprox. 
‘10 (bounded arboricity a)  O(a2)-aprox.

Local Algorithms

Polishchuk, Suomela,  ‘09
Vertex Cover (bounded degree),  3-aprox.

Schneider, Wattenhofer
’10  MaxIndependentSet (bounded independence)
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