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Wireless networks

1) Earthquake or eruption occurs
2} Nodes detect seismic event

3} Each node sends event .I"Eﬂﬂ'ﬂ'
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...other networks
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...other networks

A tourist in Barcelona
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...other networks

A tourist in Barselona

Sagrada Familia

NO MAP

Local information (coordinates of v, target, and neighbors N(v))
Limited memory allocation

Ecologically sound algorithms 6



...other networks

Sagrada Familia

How can we move In
an unknown network?



Wireless networks

With the sensors ... No map!

No paths!
p P
P
P
P
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Wireless networks

(1) How to organize the network?
(2) How to send messages?

(3) How to recover, store and index the data
of the network?



Wireless networks

(1) How to organize the network? DESIGN

(2) How to send messages? ROUTING
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Wireless networks

With the sensors ... No map!

11




Wireless networks

NETWORK MODEL Unit Disk Graph UDG
1 ° o
Neighbors of p are the points of S Lem Tl
contained in the circle of center p and // *
radius 1 / " @
\ O
. \ /
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Wireless networks

LOCAL ALGORITHM

For each node we know:

(1) Position of u

(2) Neighbors of u (until distance k)
(3) The subyacent graph is UDG(S)
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Wireless networks

ROUTING PROBLEM

PROBLEM 1

Let G be a geometric planar network. Is there a deterministic algorithm that
allows an agent A standing at a vertex s to travel to a vertex t of G under

the following conditions:

(1) A has a constant amount of memory; that is, at any point in time A
knows the position of s and t, and the positions of a constant number

of nodes in G.

(2) When the agent visits a vertex x of G, it can use the list of vertices
(and their positions) adjacent to x

(3) A is not allowed to leave any marks along its way

14



Wireless networks ROUTING

Greedy Routing

@1

We greedily route to the neighbor which is closest to the target
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Wireless networks ROUTING

Greedy Routing

pe
A
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Wireless networks ROUTING

Greedy Routing’

.
Py

Neighbors of v are not
...................... closer to target
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Wireless networks ROUTING

Greedy Routing

Memoryless algorithm

* Fails on some graphs
* Fails on some triangulations
 Always works for Delaunay Triangulations

18



Wireless networks ROUTING

Greedy Routing

Always works for Delaunay Triangulations

ol

Every vertex v of DT has a
neighbor that is strictly
closer totthan v
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Wireless networks ROUTING

Face Routing
Kranakis, Singh, Urrutia, ‘99

Route along the boundaries of the faces that lie on the source-target line st

20



Wireless networks ROUTING

FACE ROUTING

1. Let F be the face incident to the source s, intersected by line s,t

2. Explore the boundary of F; remember the point p where the
boundary intersects with (s,t) which is nearest to t.
Go back to p, switch the face and repeat step 2 until you hit the target t



Wireless networks ROUTING

FACE ROUTING

Theorem
Face routing terminates on any simple planar graph in O(n) steps,
where n is the number of the nodes in the network

Proof:
It is straightforward to deduce that we reach the the destination t

We can order the faces that intersect the (s,t) line, therefore

we never visit a face twice.
Each edge is in at most two faces, therefore each edge is visited at

most 4 times.
Since a simple planar graph has at most 3n-6 edges, the

algorithm terminates in O(n) steps.

22



Wireless networks ROUTING

FACE ROUTING

Theorem
Face routing terminates on any simple planar graph in O(n) steps,
where n is the number of the nodes in the network

Constant memory algorithm

Vertex of the face closest to target
Last vertex reached

23



Wireless networks ROUTING

ROUTING PROBLEM

FACE ROUTING

PROBLEM 1

Let G be a geometric planar network. Is there a deterministic algorithm that
allows an agent A standing at a vertex s to travel to a vertex t of G under

the following conditions:

(1) A has a constant amount of memory; that is, at any point in time A
knows the position of s and t, and the positions of a constant number

of nodes in G.

(2) When the agent visits a vertex x of G, it can use the list of vertices
(and their positions) adjacent to x

(3) A is not allowed to leave any marks along its way
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Wireless networks ROUTING

ROUTING PROBLEM

FACE ROUTING

PROBLEM 1

Let G be a geometric planar network. Is there a deterministic algorithm that
allows an agent A standing at a vertex s to travel to a vertex t of G under
the following conditions:

(1) A has a constant amount of memory; that is, at any point in time A
knows the position of s and t, and the positions of a constant number
of nodes in G.

(2) When the agent visits a vertex x of G, it can use the list of vertices
(and their positions) adjacent to x

(3) A is not allowed to leave any marks along its way
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Wireless networks

Unit Disk Graph UDG

Unit Disk Graph, UDG, canNOT be a planar graph

26



Wireless networks

LOCAL ALGORITHM FOR ROUTING

PROBLEM 2

Given a UDG network N, find a local algorithm to extract a planar

connected.

subgraph H such that if N is connected, then the subgraph H is also

Solving problem 2 and using face routing in the resulting planar subgraph

would inmediately give an on-line local algorithm for routing in UDG

networks

27




Gabriel Graph

Proximity graphs GG

p,q are adjacents if the circle of diameter pq does not contain
in its interior other points of S

a, b are Gabriel neighbors c, d are not Gabriel neighbors

28



Gabriel Graph

Gabriel Graph GG

p,q are adjacents if the disk of diameter pg does not contain
in its interior other points of S

29



Gabriel Graph

Gabriel Graph GG

p,q are adjacents if the disk of diameter pg does not contain
in its interior other points of S

DT > GG > EMST

30



Unit Disk Graph UDG

Problem 2
Given UDG(S), construct a planar subgraph locally

Lemma 1
Given S, if UDG(S) is connected, then UDG(S)NGG is connected

Proof: Let T=MST(S), we know that GG contains T. Therefore it
is sufficient to prove that if UDG is connected then it contains T=MST(S)

We suppose there exists an edge uv in T with lenght >1

T-(uv) has two components , T,, T,

31



Unit Disk Graph UDG

Problem 2
Given UDG(S), construct a planar subgraph locally

Lemma 1
Given S, if UDG(S) is connected, then UDG(S)NGG is connected

Proof: Let T=MST(S), we know that GG contains T. Therefore it
is sufficient to prove that if UDG is connected then it contains T=MST(S)

We suppose there exists an edge uv in T with lenght >1

T-(uv) has two components, T,, T,
- \ UDG connected, then exists pq, |pq|<1

PR
The tree T-(uv)+(pq) weighs less than T!!

32



Unit Disk Graph UDG

Problem 2
Given UDG(S), construct a planar subgraph locally

If (uv) is an edge of UDG(S) and (uv)gGG(S)

then exists a point z inside the disk of diameter uv U Y
witness

Lemma 2

If (uv) ¢ GG(S) and z is a witness, then the edges uz and vz

belong to UDG(S)

Vi
Each vertex u deletes in UDG(S) the edges ‘6‘
U Y

which do not belong to GG(N(u)w{u})



Unit Disk Graph UDG

Problem 2
Given UDG(S), construct a planar subgraph locally

Algorithm GABRIEL-UDG

For each neighbor xeN(u)
if disc(u,x)"(N(u)-{u,v})=J then delete the edge ux

The cost in each vertex u is O(d?) where d=degree(u)

34



Wireless networks ROUTING

FACE ROUTING and GABRIEL GRAPH  solve the problem, but ....
... the path, is a good path?

Can be very bad compared to the optimal route

How to improve
face routing?

2




Wireless networks ROUTING

ADAPTIVE FACE ROUTING AFR

A

G Ny

36



Wireless networks ROUTING

ADAPTIVE FACE ROUTING AFR Analysis

Theorem
If the optimal s-t route in the UDG has cost k, then
AFR terminates with a route whose cost is O(k?).

“cost” ¢ =c hops
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Wireless networks ROUTING

LOWER BOUND

Let k be the length of the optimal path between s and t. There are networks
for a which the route found by any local algorithm has cost Q2(k?)

Kuhn, Wattenhofer, ‘02
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Wireless networks ROUTING

LOWER BOUND

On a circle we evenly distribute
2k nodes such that the distance
between two neighboring points
is exactly 1.

For every second node of the circle
we construct a chain of k/2r - 1 nodes
arranged on a line pointing towards
the center.

The distance between two neighbors
of a chain is exactly 1

Node w is one taken arbitrarily on the
circle. The chain of w consists of k/ &
nodes with distance 1

XX
°® o o o %o
.o: .0. .o. .. .. : : .o. .'. ..o.vv
®. o o o0 0 0, o o ,°
o o ° oo o ) °o 0
o ‘g © © g0 0o g © 0 o e
oo o.o.o..o.::::..o.o. o’ °,
o. .o..o.o o..O.....:..O.O.o..o.. .o
o % 0.000. ° 0 o 0 Lo,
o o %o o0 o 0.0 % o .
0%y o, 0, ) e® 0° o0°%
° ®eq % ° 0® o°®% _oo
° ........ .. .. ..‘.. °
®000e0 g o eooeoeo®
:oooo:::: 0y .o.o.oooooo.o
[ J o0 LX) ¢
AN YL Jeeesles
° ° ° °
°o® ... A o ... o9
..o'...o..o:. ..:o.'o..'to:
Y o® e’ e e%*° o 0y %0
°* o® ,° o o o:o...o'.. ° e °, % o
o'.. .o'o.o.::::z.o.o.o. .o
% o. .. .. :: : : : '..o '. .. .o.o.
o® o O, o & 0o 04
0,0 0 000 5T, e
®el o 2 ° %% %,
....:.:.:....

39



Wireless networks ROUTING

LOWER BOUND

The unit disk graph has k chains W
with ©(k) nodes each.

We route from an arbitrary node
on the circle (the source s) to the
center of the circle (the destination t).

An optimal route between s and t
follows the shortest path on the circle

to w, and then directly
follows w’s chain to t with total

length ¢ € O(k)

40



Wireless networks ROUTING

LOWER BOUND

The unit disk graph has k chains
with ©(k) nodes each.

A geometric routing algorithm has
to find the “correct” chain w.

Since there is no routing information
stored at the nodes, this can only be
achieved by exploring all the chains.

Any deterministic algorithm needs to
explore all the chains until it finds the
chain w.

The algorithm will therefore explore
0(k?) (instead of only O(k)) nodes

i

41



Wireless networks ROUTING

Theorem

Adaptive Face Routing is asymptotically optimal

42



Wireless networks ROUTING

ROUTING PROBLEM

Adaptive FACE ROUTING GREEDY ROUTING

GREEDY — Other Adaptive FACE ROUTING
GOAFR

43



Wireless networks ROUTING

ROUTING PROBLEM

GREEDY — Other Adaptive FACE ROUTING
GOAFR

1. Route greedily as long as possible
2. Circumvent “dead ends” by use of face routing
3. Then route greedily again

44




Wireless networks ROUTING

ROUTING PROBLEM | GREEDY — Other Adaptive FACE ROUTING
GOAFR

Theorem

GOAFR is still asymptotically worst-case optimal...
...and it is efficient in practice, in the average-case

45



Wireless networks ROUTING
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Routing 3D

Wireless networks are in three-dimensional space

Can we translate 2D solutions to the 3D space?

» Greedy Routing?

« Face Routing?

There is not local memoryless routing algorithm, that deliver messages
deterministically in 3D

Durocher et al. 2008
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Routing 3D

There is not local memoryless routing algorithm, that deliver messages
deterministically in 3D

If the nodes are contained within a slab of thickness 1/+/2, there exists a
2-local routing algorithm that succeeds for UnitBallGraph(S).

48



Routing 3D

and randomized?

There are networks for which
the route found by any
randomized geometric routing
algorithm has expected length
Q(d?3)

- - i
s Lt
"‘._.-"T:. '-"'H".
e :.,_.r“'
il o

Flury, Wattenhofer, ‘08



Local Algorithms

50



Local Algorithms

MST(UDG) Minimum Spanning Tree

It is NOT possible to calculate MST(S) with a local algorithm

_ n points on a circle C such that
o the distances between two consecutive
Q nodesonCare 1-g i=1,..,n

©  Finding MST(S) is equivalent to
' identifying the smallest ¢

Therefore is not possible to
obtain MST(S) locally

o1



Local Algorithms

It is NOT possible to calculate DT(S) with a local algorithm

S The circle may be arbitrarily large

52



Local Algorithms

UnitDiskGraph

Czyzowicz et al. '07, ‘08

* Dominating set S-approx
« Connected Dominating Set  7.4-approx
 Vertex Color 7/-approx

Wiese, Kranakis, ‘08

PTAS for Independent Set, Vertex Cover, Dominating Set
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Local Algorithms

Graphs
Kuhn, Moscibroda, Wattenhofer, ‘04

Many graph problems cannot be solved locally on general graphs.
Min Vertex Cover, Min Dominating Set, Max Independent Set, ...

Lenzen, Wattenhofer

'08 Dominating Set (planar graph), 74-aprox.
10 (bounded arboricity a) O(a?)-aprox.

Schneider, Wattenhofer
'10 MaxIndependentSet (bounded independence)

Polishchuk, Suomela, ‘09
Vertex Cover (bounded degree), 3-aprox.
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