Hiding Points in Polygons using Approximation Algorithms

Antonio L. Bajuelos

Mafalda Martins

Universidade de Aveiro & CEOC

Santiago Canales

Universidad Pontificia Comillas

Gregorio Hernández

Universidad Politécnica de Madrid

- Visibility Problems: Guarding and Hiding
- Input: simple polygon *P*
 - **Guarding:** find a minimum number of points (guards) in *P*, such that each point in *P* is seen by at least one guard

- Visibility Problems: Guarding and Hiding
- Input: simple polygon *P*
 - **Guarding:** find a minimum number of points (guards) in *P*, such that each point in *P* is seen by at least one guard

- Visibility Problems: Guarding and Hiding
- Input: simple polygon *P*
 - **Guarding:** find a minimum number of points (guards) in *P*, such that each point in *P* is seen by at least one guard

- Visibility Problems: Guarding and Hiding
- Input: simple polygon *P*
 - **Guarding:** find a minimum number of points (guards) in *P*, such that each point in *P* is seen by at least one guard

• **Hiding:** find a maximum number of points in *P*, such that no two of these points see each other

• **Hiding:** find a maximum number of points in *P*, such that no two of these points see each other

Shermer, 89

• **Hiding:** find a maximum number of points in *P*, such that no two of these points see each other

Shermer, 89

• **Hiding:** find a maximum number of points in *P*, such that no two of these points see each other

Shermer, 89

• Maximum Hidden Set (MHS) problem :

asks for a set S of maximum cardinality of points in a given polygon, such that no two points in S see each other

Maximum Hidden Vertex Set (MHVS) problem:

asks for a set S of maximum cardinality of vertices of a given polygon, such that no two vertices in S see each other

• MHS and MHVS problems are NP-hard for arbitrary and for orthogonal polygons

- Maximum Hidden Set (MHS)
- Maximum Hidden Vertex Set (MHVS)

(In-)Approximability Eidenbenz, 2000

MHS y **MHVS** are **APX-hard** for polygons without holes

The best approximating algorithm achieves ratio $\Theta(n)$

Let *P* be a polygon and *H* a set of vertices in *P*. We say that *H* is a **hidden vertex set** if no two vertices in *H* see each other

Given a polygon *P*, with *n* vertices,

determine *H* of maximum cardinality

Hiding (combinatorial problem)

- The size of the maximum vertex hidden set of a polygon with n vertices is at most [n/2]
- The size of the maximum vertex hidden set of an orthogonal polygon with **n** vertices is at most (n-2)/2

Staircase polygons

Approximation Algorithms

- Propose approximation algorithms to compute solutions for the MHVS problem on polygons (arbitrary and orthogonal)
 - Greedy constructive algorithms: A₁ and A₂
 - Two based on the general metaheuristics Simulated Annealing and Genetic Algorithms: M₁ and M₂
- Realize a comparative study of the solutions obtained by the different algorithms
- Determine the **approximation ratio** of our algorithms

Approximation Algorithms: Preprocessing

Visibility graph of *P*, VG(P)

The nodes of VG(P) are the vertices of P, and there is an edge between the vertices a and b if a sees b

Greedy Constructive Algorithms

Natural approach to find *H* is to do it greedily:

- start with an empty set
- add hidden vertices one by one until *H* is achieved selecting at each step a hidden vertex from the set of vertices of *P* according to some rule

We used two rules:

- The first rule is based in the **hidden region** concept
- The second rule is based in the number of vertices seen by each vertex

Greedy Algorithms: A₁

VisP(x) is the visibility polygon of x

2 hidden regions for x

4 hidden regions for z

Greedy Algorithms

We select vertices one to one, according to

• **A**₁

highest number of hidden regions

• A₂

lesser number visible vertices

Algorithms based in Metaheuristics

A metaheuristic is a set of concepts that can be used to define heuristic methods which can be applied to a wide set of different optimization problems.

- Simulated Annealing (SA)
- Iterated Local Search (ILS)
- > Tabu Search (TS).
- Genetic Algorithms (GA)
- Ant Colony Optimization (ACO)
- ▶ ...

Simulated Annealing: Overview

- SA tries to minimize the limitation of the local (maximizaton) search algorithms, which stop as soon as they find a local maximum
 - allows to accept solutions of worse quality than the current solution (downhill moves) with a certain probability

Fundamental idea

- If the new solution (neighbour solution) is better (high cost) than the actual solution, this new solution is accepted
- If the new solution is worse (low cost) than the actual solution, this new solution can be accepted with a given probability
- This probability is dependent of a parameter called Temperature (T), which decreases over the algorithm iterations according to a decrement rule.

Specific Parameters (of the problem)

- Solution Space (set *S*)
- Cost or Objective Function, C
- Neighbourhood of each solution
- Initial Solution

Generic Parameters (of the annealing strategy)

- Initial temperature (T_0)
- Temperature Decrement Rule
- Number of iterations in each temperature, N(T)
- Termination condition

M₁: Specific Parameters (Solution Space)

M₁: Specific Parameters (Cost)

• Cost or Objective Function

 $f: S \rightarrow N$ $f(S_i) = number of 1's in S_i$

Given $S_i = v_0^i v_1^i \dots v_{n-1}^i$ we randomly generate a natural number $t \in [0, n-1]$ and then

- If $v_t^i = 1$ then we make $v_t^{i+1} = 0$ and accept this new solution, S_{i+1} , with probability
- If $v_t^i = 0$ then we make $v_t^{i+1} = 1$ and
 - > If S_{i+1} is a valid solution we accept it
 - > If S_{i+1} is not a valid solution we **validate** it (i.e., we mark all hidden vertices as not hidden if v_t sees them) and accept this new solution with probability

 v_{19}^{i+1}

 S_{i+1} $v_0^{i+1} v_1^{i+1} v_2^{i+1}$ 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0

 v_{19}^{i+1}

 S_{i+1} $v_0^{i+1} v_1^{i+1} v_2^{i+1}$ 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0

M₁: Generic Parameters (Initial Solution)

Initial Solution

 $S_0 = 10...00$

 v_0 is marked as hidden the remainder are labeled not hidden

M₁: Generic Parameters (*T*₀ & Decrement Rule)

• Initial Temperature, T_0

We realize a comparative study taking into account two different types of T_0 :

(1) $T_0 = n$ (dependent on the number of vertices of the polygon)

(2) $T_0 = 1000.0$ (constant)

• Temperature Decrement Rule

Three different types of decrement rules:

(1)
$$T_{k+1} = \frac{T_0}{1+k}$$
 (FSA decrease)

(2)
$$T_{k+1} = \frac{T_0}{e^k}$$
 (VFSA decrease)

(3) $T_{k+1} = \alpha T_k$, where $0 < \alpha < 1$ (geometric decrease)

M₁: Generic Parameters (*N*(*T*) & Termination condition)

Number of iterations in each temperature

N(T) = T

more iterations for high temperatures, which will be when the solutions are far to the optimum

Termination Condition

We choose to stop when $T \le 0.005$

Theoretically, the search should stop when T = 0. But, normally, it is possible to finish with a temperature greater then zero, without quality loss in the solution

Genetic Algorithms: Overview

• Are methods that simulate, through algorithms, the processes of the natural evolution (biological)

Genetic Algorithms: Overview

- A genetic representation of the possible solutions, individuals or chromosomes, to the problem (Encoding)
- Initial Population
- A function to evaluate each individual (Objective or Fitness function)
- Genetic operators (Selection, Crossover, and Mutation)
- Other parameters Population's Size, Probability of the operators, Population's Evaluation, Population's Generation, Termination Condition)

Encoding

An individual \mathbf{I} is a hidden vertex set for P

 $\mathbf{I} = g_0 g_1 \dots g_{n-1}$

 g_i is a gene and represents the vertex v_i

- If $g_i = 0$ the vertex v_i is marked as not hidden
- If $g_i = 1$ the vertex v_i is marked as hidden

M2: Parameters (Initial Population)

Initial Population

• The size of the population is *n*

V_1	10101000	V ₅	0010 <mark>1</mark> 001
V_2	0100000	V ₆	00000 <mark>1</mark> 01
V ₃	00101010	V ₇	00100010
V ₄	00010010	V ₈	0010100 <mark>1</mark>

M2: Parameters (Fitness function & Selection)

• Objective or Fitness Function

f(I) = number of 1's in I

Selection

- The best individuals should be chosen to be reproduced
- We use the roulette wheel selection

M2: Parameters (Crossover)

Crossover

- operates in selected genes of the parents and create new individuals (children)
- Single point crossover, to generate one child

• Crossover occurs with a given probability pc = 0.9

M₂: Parameters (Crossover)

The child resulting from this crossover may not be valid (i.e., it may not correspond to a hidden vertex set)

g_0	$\left \begin{array}{c} g_1 \\ 0 \end{array} \right $	1	0	0	1	0	g_s 0 1	g_9	g 0	11 l 0	0	0	0	0	$g_{18} = 0$	$g_{19} = 0$
							Inv	valic	l Ch	ild						
		5	8					9				18				

M2: Parameters (Crossover validation)

M₂ : Parameters (Mutation)

Mutation

probability pm = 0.05

randomly generate a natural number $0 \le t \le n-1$

- If $g_t=1$ then we change its value to 0
- If g_t=0 we change its value to 1 only if the resultant individual is valid

M₂: Parameters (Population's Generation and Fitness & T. Cond.)

Population's Generation

We replaced the worst individual of the population by the child obtained at the crossover.

Population's Evaluation or Population's Fitness,
 F(P(t)) = max {fitness of individuals}

Termination Condition

If the fitness of the populations remains the same for a large number of iterations, h, we can assume that we are close to the optimal

h = 5000

Experiments & Results

- Computational Geometry Algorithms Library (CGAL)
- We realized our experiments on a large set of randomly generated polygons
 - General polygons

generated using the CGAL's function random_polygon_2

Orthogonal polygons

we used the polygon generator developed by O'Rourke

• Four sets of polygons, each one with 50 polygons of 50, 100, 150 and 200 vertices

Experiments & Results: SA's Parameters (Arbitrary polygons)

• Initial Temperature, T_0

(1) $T_0 = n$ (2) $T_0 = 1000.0$

• Temperature Decrement Rule

(1)
$$T_{k+1} = \frac{T_0}{1+k}$$
 (FSA decrease)
(2) $T_{k+1} = \frac{T_0}{e^k}$ (VFSA decrease)
(3) $T_{k+1} = \alpha T_k$, where $0 < \alpha < 1$ (geometric decrease)

The choice of $T_0 = n$ and FSA is the best one.

Experiments & Results: Four Algorithms (Arbitrary polygons)

Results obtained with M_1

Vertices	PP (seconds)	H	Time (seconds)	Iterations
50	0.48	13.96	0.04	9999
100	2.42	27.4	0.1	19999
150	7.2	40.5	0.26	29999
200	15.58	53.86	0.36	39999

Results obtained with A_1

Vertices	PP (seconds)	H	Time (seconds)	Iterations
50	0.48	12.1	0.08	12.1
100	2.42	24.18	0.46	24.18
150	7.2	35.12	0.5	35.12
200	15.58	46.62	0.9	46.62

Results obtained with A_2

Vertices	PP (seconds)	H	Time (seconds)	Iterations
50	0.48	13.58	0	13.58
100	2.42	27.12	0	27.12
150	7.2	39.88	0	39.88
200	15.58	52.68	0	52.68

Results obtained with M_2

Vertices	PP (seconds)	H	Time (seconds)	Iterations
50	0.48	13.54	0.06	5226.4
100	2.42	26.28	0.08	5680.0
150	7.2	38.3	0.26	6666.7
200	15.58	50.34	0.5	7160.2

General conclusions

The algorithm M_1 seems to be the best one, since:

- the obtained average of hidden vertices is better than the others; and
- in spite of the average of the number of iterations is the biggest, the only algorithm that is faster than it, is the A₂

Vertices	20	40	60	80	100	120	140	150	200
H	5.7	10.98	16.3	21.58	26.88	32.08	37.2	39.7	53.22

Using the least squares method, we obtained the following linear adjustment

$$f(n) = 0.2667n + 0.6182 \approx \frac{n}{3.7} + 0.6182$$

On average, the maximum number of hidden vertices in an arbitrary polygon *P* with *n* vertices is $\left|\frac{n}{3.7}\right|$ How can to prove that our approximate solutions are "good"?

UPPER BOUND for the optimal solution of the problem

CLIQUE PARTITION of VG(P)

Approximation Ratio

For each clique of the partition C we can hide at most one vertex in P $|C| \ge |H| \forall C, H$ $|C| \ge a(P) \ge h(P) \ge |H|$

a(P) number of cliques in a minimum-cardinality clique partitionh(P) number of hidden vertices in a maximum-cardinality hidden vertex set

Approximation ratio of the solution H^* h(P) / H^*

We obtain a hidden vertex set **H*** that approximates h(P) with approximation ratio **C**/**H***

Approximation Ratio

- The problem of determining *a*(P) (Minimum Clique Partition problem) is *NP*-Hard, so we developed a greedy algorithm to obtain one solution C
- M₁ algorithm has an approximation ratio of 1.7, being equal to 3/2 for 98.44% of the instances
- This means that, the obtained approximate solution, |H*|, has
 - at least 1/1.7 of the optimal number of hidden vertices, for all instances;
 - And at least 2/3 of the optimal number of hidden vertices, for 98.44% of the instances

Experiments & Results: Orthogonal Polygons

• A similar study was made for orthogonal polygons

- The best algorithm is M_1 (case: $T_0 = n$ and FSA decrease), with significantly different results from the other algorithms
- On average the maximum number of hidden vertices in an orthogonal polygon *P* with *n* vertices is *n*/4
- The approximation ratio is 3/2 , for all randomly generated instances

Future Work

- Different parametrizations of genetic algorithms
- Hybrid metaheuristics

PROBLEMS

Optimal triangulations, polyhedral terrains
 Optimal polygonizations, watchman routes
 Cooperative guarding, another variants, ...
 Rectangular partitions, ...

	COMBINATORIAL BOUND	APPROX ALGORITHM
VERTEX-GUARD	n/3	n/6.48
HIDDEN VERTEX	n/2	n/3.7
2-MODEM ILLUMINATION	n/6?	n/26
4-MODEM ILLUMINATION	?خ	n/52

Hiding Points in Polygons using Approximation Algorithms

Gracias por su atención

Gregorio Hernández

Universidad Politécnica de Madrid