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Guarding

¢ Visibility Problems: Guarding and Hiding

e Input: simple polygon P

e Guarding: find a minimum number of points (guards)
iIn P, such that each point in P is seen by at least one
guard
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Hiding

e Hiding: find a maximum number of points in P, such
that no two of these points see each other

Shermer, 89
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Hiding

e Maximum Hidden Set (MHS) problem :

asks for a set S of maximum cardinality of points in a given
polygon, such that no two points in S see each other

e Maximum Hidden Vertex Set (MHVS) problem:

asks for a set S of maximum cardinality of vertices of a given
polygon, such that no two vertices in S see each other

e¢ MHS and MHVS problems are NP-hard for arbitrary
and for orthogonal polygons

Shermer, 89




Hiding

e Maximum Hidden Set (MHS)
e Maximum Hidden Vertex Set (MHVS)

(In-)Approximability Eidenbenz, 2000

MHS y MHVS are APX-hard
for polygons without holes

The best approximating
algorithm achieves ratio ®(n)



Hiding (algorithmic problem)

Let P be a polygon and H a set of vertices in P.
We say that H is a hidden vertex set if no
two vertices in H see each other

Given a polygon P, with n vertices,

determine H of maximum cardinality




Hiding (combinatorial problem)

e The size of the maximum vertex hidden set of a polygon
with n vertices is at most [n/2]

e The size of the maximum vertex hidden set of an
orthogonal polygon with n vertices is at most (n-2)/2

Saw polygons Staircase polygons



Approximation Algorithms

e Propose approximation algorithms to compute
solutions for the MHVS problem on polygons (arbitrary
and orthogonal)

Greedy constructive algorithms: A, and A,

Two based on the general metaheuristics Simulated Annealing and
Genetic Algorithms: M, and M,

e Realize a comparative study of the solutions obtained by
the different algorithms

e Determine the approximation ratio of our algorithms



Approximation Algorithms: Preprocessing

Visibility graph of P, VG(P)

The nodes of VG(P) are the vertices of P, and there is
an edge between the vertices a and b if a sees b

VG(P)
2




Greedy Constructive Algorithms

Natural approach to find H is to do it greedily:

« start with an empty set

- add hidden vertices one by one until H is achieved

selecting at each step a hidden vertex from the set of vertices of
P according to some rule

We used two rules:
e The first rule is based in the hidden region concept

e The second rule is based in the number of vertices
seen by each vertex



Greedy Algorithms: A,

VisP(X) is the visibility polygon of x

2 hidden regions for x 4 hidden regions for z



Greedy Algorithms

We select vertices one to one, according to
o A1

highest number of hidden regions

.Az

lesser number visible vertices



Algorithms based in Metaheuristics

A metaheuristic Is a set of concepts that can be used to
define heuristic methods which can be applied to a wide
set of different optimization problems.

» Simulated Annealing (SA)

» lterated Local Search (ILS)

» Tabu Search (TS).

» Genetic Algorithms (GA)

» Ant Colony Optimization (ACO)



Simulated Annealing: Overview

SA tries to minimize the Ilimitation of the local
(maximizaton) search algorithms, which stop as soon as
they find a local maximum

e allows to accept solutions of worse quality than the current
solution (downhill moves) with a certain probability

Fundamental idea

e If the new solution (neighbour solution) is better (high cost)
than the actual solution, this new solution is accepted

e If the new solution is worse (low cost) than the actual solution,
this new solution can be accepted with a given probability

e This probability is dependent of a parameter called Temperature
(T), which decreases over the algorithm iterations according to a
decrement rule.



Simulated Annealing: Overview

Specific Parameters Generic Parameters
(of the problem) (of the annealing strategy)
e Solution Space (set S) o Initial temperature (T,)
e Cost or Objective Function, C o Temperature Decrement Rule

e Neighbourhood of each solution | |© Number of iterations in each
temperature, N (T)

e Initial Solution
o Termination condition




M,: Specific Parameters (Solution Space)
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M,: Specific Parameters (Cost)

e Cost or Objective Function
f:S—>N f(S;) = number of 1's in S,



M,: Specific Parameters (Neighbourhood)

Given S; =V(')V{...V:,_1 we randomly generate a natural
numbert €[0,n—1] and then

o If vti =1 then we make vt”l:O and accept this new

solution, S;,,, with probability

o If Vti =0 then we make v,f” =1 and

> If S;,; is a valid solution we accept it

> If S, is not a valid solution we validate it (i.e., we mark all

hidden vertices as not hidden if V, sees them) and accept this
new solution with probability




M, : Specific Parameters (Neighbourhood)
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M, : Specific Parameters (Neighbourhood)
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M, : Specific Parameters (Neighbourhood)
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M, : Specific Parameters (Neighbourhood)
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M,;: Generic Parameters (Initial Solution)

Initial Solution

So=10...00
Vy Is marked as hidden the remainder are labeled not hidden

0 .0 0
Vo Vi Vig

So [1[o]ofo]o]o]o[o]o]o]o]o[o]o][o[0]0]0]0]0



M,: Generic Parameters (T, & Decrement Rule)

e Initial Temperature, T,

We realize a comparative study taking into account two different
types of T, :

(1) To=n (dependent on the number of vertices of the polygon)

(2) T,=1000.0 (constant)

e Temperature Decrement Rule

Three different types of decrement rules:

1) Ty = To (FSA decrease)

1+ Kk

(2) T =Zﬁ (VFSA decrease)

(3) Ty =aT, ,where 0 <o <1 (geometric decrease)



M,: Generic Parameters (N(T) & Termination condition)

e Number of iterations in each temperature
N(T)=T

more iterations for high temperatures, which will be when
the solutions are far to the optimum

e Termination Condition
We choose to stop when T <0.005

Theoretically, the search should stop when T =0. But, normally, it is
possible to finish with a temperature greater then zero, without quality
loss in the solution




Genetic Algorithms: Overview

e Are methods that simulate, through algorithms, the
processes of the natural evolution (biological)

Generate

initial Evaluate Termination Best
population population condition individuals
‘ Selection ‘ ’
’ Solution
Generate
new population ‘ Ciossover ‘

\

Mutation



Genetic Algorithms: Overview

e A genetic representation of the possible solutions, individuals
or chromosomes, to the problem (Encoding)

¢ Initial Population

e A function to evaluate each individual (Objective or Fithess
function)

e Genetic operators (Selection, Crossover, and Mutation)

e Other parameters Population’s Size, Probability of the
operators, Population’s Evaluation, Population’s Generation,
Termination Condition)




M,: Parameters (Encoding)

Encoding

An individual I is a hidden vertex set for P

I= 9091 gn—]!

gi Is a gene and represents the vertex v;

o Ifg,=0  the vertex v; is marked as not hidden

e Ifg,=1  the vertex v, is marked as hidden



M2: Parameters (Initial Population)

Initial Population

e The size of the population is n

1 p .
8 4
5
;
6
A 10101000 Ve 00101001
Vv, 01000000 Vg 00000101
V3 00101010 Vs 00100010

Vv, 00010010 Vg 00101001



M,: Parameters (Fitness function & Selection)

e Objective or Fithess Function
f(1) = number of 1's in |

e Selection
e The best individuals should be chosen to be reproduced

e We use the roulette wheel selection



M,: Parameters (Crossover)

Crossover

e oOperates in selected genes of the parents and create new
Individuals (children)

e Single point crossover, to generate one child

randomly
selected point

Parents Child

e Crossover occurs with a given probability pc = 0.9



M,: Parameters (Crossover)

The child resulting from this crossover may not be valid (i.e., it
may not correspond to a hidden vertex set)
=8

[1]o]1]o[o]1]o]o[1]0]o]0]1]0]0]1]0]0]1]0 } 80 & 8s & 810
1 0

101000000

101010000101 000000°T10

Child
Parents

|' R )3\
\

l{\\\ "‘/]\IO\ \\> >
b /
= oV
Parent |

e

=

| e
\ =~ N
\ \ / Invalid Child
\ N
\ A
g\\\_\;_ “——i\:#/ 0
9 18

Parent 1




M,: Parameters (Crossover validation)
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M,: Parameters (Crossover validation)
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M,: Parameters (Crossover validation)
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M,: Parameters (Crossover validation)
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M, : Parameters (Mutation)

Mutation
probability pm =0.05

randomly generate a natural number 0 < t<n-1
e If g,=1 then we change its value to O

e If g,=0 we change its value to 1 only if the resultant individual is
valid

t

!

Before: ‘1]1]o]1]1]o]1]0]0]1]1]0]1]1]1]0]

After: 1[1]o[1]1[oolo]1][1]o]1]1]1]0]



M, : Parameters (Population’s Generation and Fitness & T. Cond.)

e Population’s Generation

We replaced the worst individual of the population by the child
obtained at the crossover.

e Population’s Evaluation or Population’s Fitness,
F(P(t)) = max {fitness of individuals}

e Termination Condition

If the fitness of the populations remains the same for a large
number of iterations, h, we can assume that we are close to the

optimal
h = 5000



Experiments & Results

e Computational Geometry Algorithms Library (CGAL)

e We realized our experiments on a large set of randomly generated
polygons
» General polygons
generated using the CGAL's function random_polygon 2

» Orthogonal polygons
we used the polygon generator developed by O'Rourke

e Four sets of polygons, each one with 50 polygons of 50, 100, 150
and 200 vertices



Experiments & Results: SA’s Parameters (Arbitrary polygons)

e Initial Temperature, T,

(1) |To=n
(2) T,=1000.0
e Temperature Decrement Rule

)| T, = o (FSA decrease)
1+k

(2) T,..= Tg (VFSA decrease)
e

(3) Tka=al , where 0 < o <1 (geometric decrease)

The choice of T, =n and FSA is the best one.




Experiments & Results: Four Algorithms (arbitrary polygons)

Results obtained with M;

[Vertices|PP (seconds)| [H| |Time (seconds)|Iterations|

50
100
150
200

0.48
2.42

=1
[}

15

(i) 4
(v §

8

13.96
274
40.5

53.86

0.04
0.1
0.26
0.36

9999
19999
29999
39999

Results obtained with 44

[Vertices|PP (seconds)| [H| |[Time (seconds)|Iterations|

50
100
150
200

0.48
2.42

=1
[

15.

(i) 4
v §

8

12.1
24.18
3512
46.62

0.08
0.46
0.5

0.9

12.1
24.18
35.12
46.62

Results obtained with A,

|Vertices| PP (seconds)| |H| [Time (seconds)|Iterations|

50
100
150
200

0.48
2.42

=1
]

1

o
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13.58
27.12
39.88
52.68

0

0
0
0

13.58
27.12
39.88
52.68

Results obtained with Ms

[Vertices|PP (seconds)| [H| |[Time (seconds)|Iterations|

50
100
150
200

0.48
242

[S L |
]

15.58

[ §

13.54
26.28
38.3
50.34

0.06
0.08
0.26

0.5

5226.4
5680.0
6666.7
7160.2

General conclusions

The algorithm M, seems to be
the best one, since:

the obtained average of
hidden vertices is better than
the others; and

in spite of the average of the
number of iterations is the
biggest, the only algorithm
that is faster than it, is the A,



Experiments & Results: M, Heuristic (Arbitrary polygons)

Vertices| 20| 40 | 60 | 80 | 100 | 120 | 140 150| 200
|H| |5.7[10.98/16.3(21.58|26.88(32.08|37.2(39.7|53.22

Using the least squares method, we obtained the following linear
adjustment

f(n)=0.2667n+0.6182 ~ 3l7+ 0.6182

On average, the maximum number of hidden vertices In
an arbitrary polygon P with n vertices is L n J
3.7



Approximation Ratio

How can to prove that our approximate solutions are
“good”?

UPPER BOUND for the optimal solution of the problem

—

o

CLIQUE PARTITION of VG(P)




Approximation Ratio

For each clique of the partition C we
can hide at most one vertex in P

|C|= |H| vVCH

|C|= a(P) = h(P) = |H]|

a(P) number of cliques in a minimum-cardinality clique partition

N(P) number of hidden vertices in a maximum-cardinality hidden vertex set

Approximation ratio of the solution H* h(P) /| H*|

We obtain a hidden vertex set H* that approximates h(P) with
approximation ratio |C|/ |H*|



Approximation Ratio

The problem of determining a(P) (Minimum Cligue Partition problem)
is NP-Hard, so we developed a greedy algorithm to obtain one

solution C

M, algorithm has an approximation ratio of 1.7, being equal to 3/2 for
98.44% of the instances

This means that, the obtained approximate solution, |H*|, has

>

at least 1/1.7 of the optimal number of hidden vertices, for all
Instances;

And at least 2/3 of the optimal number of hidden vertices, for
98.44% of the instances



Experiments & Results: Orthogonal Polygons

e A similar study was made for orthogonal polygons

e The best algorithm is M; (case: T, = n and FSA
decrease ), with significantly different results from the
other algorithms

e On average the maximum number of hidden vertices in
an orthogonal polygon P with n vertices is n/4

e The approximation ratio is 3/2 , for all randomly
generated instances



Future Work

e Different parametrizations of genetic algorithms
e Hybrid metaheuristics

PROBLEMS

» Optimal triangulations, polyhedral terrains
» Optimal polygonizations, watchman routes
» Cooperative guarding, another variants, ...
» Rectangular partitions, ...
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