
Hiding Points in Polygons
using Approximation Algorithms

Antonio L. Bajuelos
Mafalda Martins

Universidade de Aveiro & CEOC

Santiago Canales
Universidad Pontificia Comillas

Gregorio Hernández
Universidad Politécnica de Madrid

Guarding

 Visibility Problems: Guarding and Hiding

 Input: simple polygon P
 Guarding: find a minimum number of points (guards)

in P, such that each point in P is seen by at least one
guard

Guarding

 Visibility Problems: Guarding and Hiding

 Input: simple polygon P
 Guarding: find a minimum number of points (guards)

in P, such that each point in P is seen by at least one
guard

Guarding

 Visibility Problems: Guarding and Hiding

 Input: simple polygon P
 Guarding: find a minimum number of points (guards)

in P, such that each point in P is seen by at least one
guard

Guarding

 Visibility Problems: Guarding and Hiding

 Input: simple polygon P
 Guarding: find a minimum number of points (guards)

in P, such that each point in P is seen by at least one
guard

Hiding

 Hiding: find a maximum number of points in P, such
that no two of these points see each other

Shermer, 89

Hiding

 Hiding: find a maximum number of points in P, such
that no two of these points see each other

Shermer, 89

Hiding

 Hiding: find a maximum number of points in P, such
that no two of these points see each other

Shermer, 89

Hiding

 Hiding: find a maximum number of points in P, such
that no two of these points see each other

Shermer, 89

 Maximum Hidden Set (MHS) problem :
asks for a set S of maximum cardinality of points in a given
polygon, such that no two points in S see each other

 Maximum Hidden Vertex Set (MHVS) problem:

asks for a set S of maximum cardinality of vertices of a given
polygon, such that no two vertices in S see each other

 MHS and MHVS problems are NP-hard for arbitrary
and for orthogonal polygons

Hiding

Shermer, 89

 Maximum Hidden Set (MHS)

 Maximum Hidden Vertex Set (MHVS)

Hiding

(In-)Approximability Eidenbenz, 2000

MHS y MHVS are APX-hard
for polygons without holes

The best approximating
algorithm achieves ratio (n)

Given a polygon P, with n vertices,

determine H of maximum cardinality

Hiding (algorithmic problem)

Let P be a polygon and H a set of vertices in P.
We say that H is a hidden vertex set if no
two vertices in H see each other

Hiding (combinatorial problem)

 The size of the maximum vertex hidden set of a polygon
with n vertices is at most n/2

 The size of the maximum vertex hidden set of an
orthogonal polygon with n vertices is at most (n-2)/2

Saw polygons Staircase polygons

 Propose approximation algorithms to compute
solutions for the MHVS problem on polygons (arbitrary
and orthogonal)

 Greedy constructive algorithms: A1 and A2

 Two based on the general metaheuristics Simulated Annealing and
Genetic Algorithms: M1 and M2

 Realize a comparative study of the solutions obtained by
the different algorithms

 Determine the approximation ratio of our algorithms

Approximation Algorithms

1

2

3

4

5
7

8

P

Approximation Algorithms: Preprocessing

Visibility graph of P, VG(P)

The nodes of VG(P) are the vertices of P, and there is
an edge between the vertices a and b if a sees b

1 2

3

4

56

7

8

VG(P)

Greedy Constructive Algorithms

Natural approach to find H is to do it greedily:

 start with an empty set

 add hidden vertices one by one until H is achieved
selecting at each step a hidden vertex from the set of vertices of

P according to some rule

We used two rules:

 The first rule is based in the hidden region concept

 The second rule is based in the number of vertices
seen by each vertex

Greedy Algorithms: A1

VisP(x) is the visibility polygon of x

x
z

2 hidden regions for x 4 hidden regions for z

Greedy Algorithms

We select vertices one to one, according to

 A1

highest number of hidden regions

 A2

lesser number visible vertices

Algorithms based in Metaheuristics

A metaheuristic is a set of concepts that can be used to
define heuristic methods which can be applied to a wide
set of different optimization problems.

 Simulated Annealing (SA)

 Iterated Local Search (ILS)

 Tabu Search (TS).

 Genetic Algorithms (GA)

 Ant Colony Optimization (ACO)

 …

Simulated Annealing: Overview

SA tries to minimize the limitation of the local
(maximizaton) search algorithms, which stop as soon as
they find a local maximum
 allows to accept solutions of worse quality than the current

solution (downhill moves) with a certain probability

Fundamental idea
 If the new solution (neighbour solution) is better (high cost)

than the actual solution, this new solution is accepted

 If the new solution is worse (low cost) than the actual solution,
this new solution can be accepted with a given probability

 This probability is dependent of a parameter called Temperature
(T), which decreases over the algorithm iterations according to a
decrement rule.

Simulated Annealing: Overview

Specific Parameters
(of the problem)

 Solution Space (set S)

 Cost or Objective Function, C

 Neighbourhood of each solution

 Initial Solution

Generic Parameters
(of the annealing strategy)

o Initial temperature (T0)

o Temperature Decrement Rule

o Number of iterations in each
temperature, N (T)

o Termination condition

M1: Specific Parameters (Solution Space)

 Cost or Objective Function

M1: Specific Parameters (Cost)

f : S N f(Si) = number of 1’s in Si

 If Si+1 is a valid solution we accept it

 If Si+1 is not a valid solution we validate it (i.e., we mark all
hidden vertices as not hidden if vt sees them) and accept this
new solution with probability

 If then we make and accept this new
solution, Si+1, with probability

1i
tv 01 i

tv

Given we randomly generate a natural
number and then

i
n

ii
i vvvS 110

]1,0[nt

 If then we make and0i
tv 11 i

tv

M1: Specific Parameters (Neighbourhood)

M1 : Specific Parameters (Neighbourhood)

M1 : Specific Parameters (Neighbourhood)

M1 : Specific Parameters (Neighbourhood)

M1 : Specific Parameters (Neighbourhood)

M1 : Specific Parameters (Neighbourhood)

Initial Solution
S0 = 10…00

v0 is marked as hidden the remainder are labeled not hidden

M1: Generic Parameters (Initial Solution)

 Initial Temperature, T0

We realize a comparative study taking into account two different
types of T0 :

(1) (dependent on the number of vertices of the polygon)

(2) (constant)

nT 0

0.10000 T

 Temperature Decrement Rule
Three different types of decrement rules:

(1) (FSA decrease)

(2) (VFSA decrease)

(3) , where 0 < < 1 (geometric decrease)

k
TTk

 1
0

1

kk e
TT 0

1

kk TT 1

M1: Generic Parameters (T0 & Decrement Rule)

Theoretically, the search should stop when . But, normally, it is
possible to finish with a temperature greater then zero, without quality
loss in the solution

more iterations for high temperatures, which will be when
the solutions are far to the optimum

 Termination Condition

We choose to stop when 005.0T

0T

 Number of iterations in each temperature

TTN)(

M1: Generic Parameters (N(T) & Termination condition)

Genetic Algorithms: Overview

 Are methods that simulate, through algorithms, the
processes of the natural evolution (biological)

Genetic Algorithms: Overview

 A genetic representation of the possible solutions, individuals
or chromosomes, to the problem (Encoding)

 Initial Population

 A function to evaluate each individual (Objective or Fitness
function)

 Genetic operators (Selection, Crossover, and Mutation)

 Other parameters Population’s Size, Probability of the
operators, Population’s Evaluation, Population’s Generation,
Termination Condition)

I = g0g1 … gn-1

Encoding

An individual I is a hidden vertex set for P

 If gi = 0 the vertex vi is marked as not hidden

 If gi = 1 the vertex vi is marked as hidden

M2: Parameters (Encoding)

,

gi is a gene and represents the vertex vi

Initial Population

 The size of the population is n

M2: Parameters (Initial Population)

1

2

3

4

5
7

8

P

v1 10101000

v2 01000000

v3 00101010

v4 00010010

v5 00101001

v6 00000101

v7 00100010

v8 00101001

6

M2: Parameters (Fitness function & Selection)

 Objective or Fitness Function

 Selection
 The best individuals should be chosen to be reproduced

 We use the roulette wheel selection

f(I) = number of 1’s in I

M2: Parameters (Crossover)

Crossover
 operates in selected genes of the parents and create new

individuals (children)

 Single point crossover, to generate one child

 Crossover occurs with a given probability pc = 0.9

M2: Parameters (Crossover)

The child resulting from this crossover may not be valid (i.e., it
may not correspond to a hidden vertex set)

M2: Parameters (Crossover validation)

M2: Parameters (Crossover validation)

M2: Parameters (Crossover validation)

M2: Parameters (Crossover validation)

M2: Parameters (Crossover validation)

M2 : Parameters (Crossover validation)

M2 : Parameters (Crossover validation)

M2 : Parameters (Crossover validation)

M2 : Parameters (Crossover validation)

M2 : Parameters (Crossover validation)

M2 : Parameters (Crossover validation)

Mutation

probability pm = 0.05
randomly generate a natural number 0 t n-1
 If gt=1 then we change its value to 0
 If gt=0 we change its value to 1 only if the resultant individual is

valid

M2 : Parameters (Mutation)

M2 : Parameters (Population’s Generation and Fitness & T. Cond.)

 Population’s Generation

We replaced the worst individual of the population by the child
obtained at the crossover.

 Population’s Evaluation or Population’s Fitness,
F(P(t)) = max {fitness of individuals}

 Termination Condition
If the fitness of the populations remains the same for a large
number of iterations, h, we can assume that we are close to the
optimal

h = 5000

Experiments & Results

 Computational Geometry Algorithms Library (CGAL)

 We realized our experiments on a large set of randomly generated
polygons

 General polygons
generated using the CGAL's function random_polygon_2

 Orthogonal polygons
we used the polygon generator developed by O'Rourke

 Four sets of polygons, each one with 50 polygons of 50, 100, 150
and 200 vertices

 Temperature Decrement Rule

(1) (FSA decrease)

(2) (VFSA decrease)

(3) , where 0 < < 1 (geometric decrease)

k
TTk

 1
0

1

kk e
TT 0

1

kk TT 1

The choice of T0 = n and FSA is the best one.

Experiments & Results: SA’s Parameters (Arbitrary polygons)

 Initial Temperature, T0

(1)

(2)

nT 0

0.10000 T

General conclusions
The algorithm M1 seems to be
the best one, since:

 the obtained average of
hidden vertices is better than
the others; and

 in spite of the average of the
number of iterations is the
biggest, the only algorithm
that is faster than it, is the A2

Experiments & Results: Four Algorithms (Arbitrary polygons)

On average, the maximum number of hidden vertices in
an arbitrary polygon P with n vertices is

Experiments & Results: M1 Heuristic (Arbitrary polygons)

Using the least squares method, we obtained the following linear
adjustment

0.6182
73

0.61820.2667
.
nn)n(f

73.
n

Approximation Ratio

UPPER BOUND for the optimal solution of the problem

How can to prove that our approximate solutions are
“good”?

CLIQUE PARTITION of VG(P)

For each clique of the partition C we
can hide at most one vertex in P

a(P) number of cliques in a minimum-cardinality clique partition

h(P) number of hidden vertices in a maximum-cardinality hidden vertex set

Approximation Ratio

|C|≥ |H| C, H

|C|≥ a(P) ≥ h(P) ≥ |H|

Approximation ratio of the solution H* h(P) /|H*|

We obtain a hidden vertex set H* that approximates h(P) with
approximation ratio |C|/ |H*|

Approximation Ratio

 The problem of determining a(P) (Minimum Clique Partition problem)
is NP-Hard, so we developed a greedy algorithm to obtain one
solution C

 M1 algorithm has an approximation ratio of 1.7, being equal to 3/2 for
98.44% of the instances

 This means that, the obtained approximate solution, |H*|, has

 at least 1/1.7 of the optimal number of hidden vertices, for all
instances;

 And at least 2/3 of the optimal number of hidden vertices, for
98.44% of the instances

Experiments & Results: Orthogonal Polygons

 A similar study was made for orthogonal polygons

 The best algorithm is M1 (case: T0 = n and FSA
decrease), with significantly different results from the
other algorithms

 On average the maximum number of hidden vertices in
an orthogonal polygon P with n vertices is n/4

 The approximation ratio is 3/2 , for all randomly
generated instances

Future Work

• Different parametrizations of genetic algorithms
• Hybrid metaheuristics

 Optimal triangulations, polyhedral terrains
 Optimal polygonizations, watchman routes
 Cooperative guarding, another variants, …
 Rectangular partitions, …

PROBLEMS

n/52¿?4-MODEM
ILLUMINATION

n/26¿n/6?2-MODEM
ILLUMINATION

n/3.7n/2HIDDEN
VERTEX

n/6.48n/3VERTEX-GUARD

COMBINATORIAL
BOUND

APPROX
ALGORITHM

Hiding Points in Polygons
using Approximation Algorithms

Gregorio Hernández
Universidad Politécnica de Madrid

Gracias por su atención

