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Guarding

 Visibility Problems: Guarding and Hiding

 Input: simple polygon P
 Guarding: find a minimum number of points (guards) 

in P, such that each point in P is seen by at least one 
guard



Guarding

 Visibility Problems: Guarding and Hiding

 Input: simple polygon P
 Guarding: find a minimum number of points (guards) 

in P, such that each point in P is seen by at least one 
guard



Guarding

 Visibility Problems: Guarding and Hiding

 Input: simple polygon P
 Guarding: find a minimum number of points (guards) 

in P, such that each point in P is seen by at least one 
guard



Guarding

 Visibility Problems: Guarding and Hiding

 Input: simple polygon P
 Guarding: find a minimum number of points (guards) 

in P, such that each point in P is seen by at least one 
guard



Hiding

 Hiding: find a maximum number of points in P, such 
that no two of these points see each other

Shermer, 89



Hiding

 Hiding: find a maximum number of points in P, such 
that no two of these points see each other

Shermer, 89



Hiding

 Hiding: find a maximum number of points in P, such 
that no two of these points see each other

Shermer, 89



Hiding

 Hiding: find a maximum number of points in P, such 
that no two of these points see each other

Shermer, 89



 Maximum Hidden Set (MHS) problem :
asks for a set S of maximum cardinality of points in a given 
polygon, such that no two points in S see each other

 Maximum Hidden Vertex Set (MHVS) problem:

asks for a set S of maximum cardinality of vertices of a given 
polygon, such that no two vertices in S see each other

 MHS and MHVS problems are NP-hard for arbitrary 
and for orthogonal polygons

Hiding

Shermer, 89



 Maximum Hidden Set (MHS) 

 Maximum Hidden Vertex Set (MHVS)

Hiding

(In-)Approximability Eidenbenz, 2000

MHS y  MHVS are APX-hard
for polygons without holes

The best approximating
algorithm achieves ratio (n)



Given a polygon P, with n vertices,

determine H of maximum cardinality

Hiding  (algorithmic problem)

Let P be a polygon and H a set of vertices in P. 
We say that H is a hidden vertex set if no 
two vertices in H see each other



Hiding (combinatorial problem)

 The size of the maximum vertex hidden set of a polygon 
with n vertices is at most   n/2

 The size of the maximum vertex hidden set of an 
orthogonal polygon with n vertices is at most  (n-2)/2 

Saw polygons Staircase polygons



 Propose approximation algorithms to compute 
solutions for the MHVS problem on polygons (arbitrary 
and orthogonal)

 Greedy constructive algorithms: A1 and A2

 Two based on the general metaheuristics Simulated Annealing and 
Genetic Algorithms: M1 and M2

 Realize a comparative study of the solutions obtained by 
the different algorithms 

 Determine the approximation ratio of our algorithms

Approximation Algorithms



1

2

3

4

5
7

8

P

Approximation Algorithms: Preprocessing

Visibility graph of P, VG(P)

The nodes of VG(P) are the vertices of P, and there is 
an edge between the vertices a and b if a sees b

1 2

3

4

56

7

8

VG(P)



Greedy Constructive Algorithms

Natural approach to find H is to do it greedily:

 start with an empty set 

 add hidden vertices one by one until H is achieved
selecting at each step a hidden vertex from the set of vertices of 

P according to some rule

We used two rules:

 The first rule is based in the hidden region concept

 The second rule is based in the number of vertices 
seen by each vertex



Greedy Algorithms: A1

VisP(x) is the visibility polygon of x

x
z

2 hidden regions for x 4 hidden regions for z



Greedy Algorithms

We select vertices one to one, according to

 A1

highest number of hidden regions

 A2

lesser number visible vertices



Algorithms based in Metaheuristics

A metaheuristic is a set of concepts that can be used to 
define heuristic methods which can be applied to a wide 
set of different optimization problems. 

 Simulated Annealing (SA)

 Iterated Local Search (ILS)

 Tabu Search (TS).

 Genetic Algorithms (GA)

 Ant Colony Optimization (ACO)

 …



Simulated Annealing: Overview

SA tries to minimize the limitation of the local
(maximizaton) search algorithms, which stop as soon as 
they find a local maximum
 allows to accept solutions of worse quality than the current 

solution (downhill moves) with a certain probability

Fundamental idea
 If the new solution (neighbour solution)  is better (high cost) 

than the actual solution, this new solution is accepted

 If the new solution is worse (low cost) than the actual solution, 
this new solution can be accepted with a given probability

 This probability is dependent of a parameter called Temperature 
(T), which decreases over the algorithm iterations according to a 
decrement rule. 



Simulated Annealing: Overview

Specific Parameters
(of the problem)

 Solution Space (set S) 

 Cost or Objective Function, C

 Neighbourhood of each solution

 Initial Solution

Generic Parameters
(of the annealing strategy)

o Initial temperature (T0)

o Temperature Decrement Rule

o Number of iterations in each 
temperature, N (T)

o Termination condition



M1: Specific Parameters (Solution Space)



 Cost or Objective Function

M1: Specific Parameters (Cost )

f : S  N f(Si) = number of 1’s in Si



 If Si+1 is a valid solution we accept it

 If Si+1 is not a valid solution we validate it (i.e., we mark all 
hidden vertices as not hidden if vt sees them)  and accept this 
new solution with probability

 If       then we make         and accept this new 
solution, Si+1, with probability
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M1: Specific Parameters (Neighbourhood)
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M1 : Specific Parameters (Neighbourhood)



Initial Solution
S0 = 10…00

v0 is marked as hidden the remainder are labeled not hidden

M1: Generic Parameters (Initial Solution)



 Initial Temperature, T0 

We realize a comparative study taking into account two different
types of T0 :

(1) (dependent on the number of vertices of the polygon)

(2) (constant)

nT 0

0.10000 T

 Temperature Decrement Rule
Three different types of decrement rules:

(1) (FSA decrease)

(2) (VFSA decrease)

(3) , where 0 <  < 1 (geometric decrease)
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M1: Generic Parameters (T0 & Decrement Rule)



Theoretically, the search should stop when       . But, normally, it is 
possible to finish with a temperature greater then zero, without quality 
loss in the solution

more iterations for high temperatures, which will be when 
the solutions are far to the optimum

 Termination Condition

We choose to stop when 005.0T

0T

 Number of iterations in each temperature

TTN )(

M1: Generic Parameters (N(T) & Termination condition)



Genetic Algorithms: Overview

 Are methods that simulate, through algorithms, the 
processes of the natural evolution (biological)



Genetic Algorithms: Overview

 A genetic representation of the possible solutions, individuals
or chromosomes, to the problem (Encoding)

 Initial Population

 A function to evaluate each individual (Objective or Fitness 
function)

 Genetic operators (Selection, Crossover, and Mutation)

 Other parameters Population’s Size, Probability of the 
operators, Population’s Evaluation, Population’s Generation, 
Termination Condition)



I = g0g1 … gn-1

Encoding

An individual  I is a hidden vertex set for P

 If gi = 0 the vertex vi is marked as not hidden

 If gi = 1 the vertex vi is marked as hidden

M2: Parameters (Encoding)

,

gi is a gene  and represents the vertex vi



Initial Population

 The size of the population is  n

M2: Parameters (Initial Population)
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v1 10101000

v2 01000000

v3 00101010

v4 00010010

v5 00101001

v6 00000101

v7 00100010

v8 00101001
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M2: Parameters (Fitness function & Selection)

 Objective or Fitness Function

 Selection
 The best individuals should be chosen to be reproduced

 We use the roulette wheel selection

f(I) = number of 1’s in I



M2: Parameters (Crossover)

Crossover
 operates in selected genes of the parents and create new 

individuals (children)

 Single point crossover, to generate one child

 Crossover occurs with a given probability     pc = 0.9



M2: Parameters (Crossover)

The child resulting from this crossover may not be valid (i.e., it 
may not correspond to a hidden vertex set)



M2: Parameters (Crossover validation)
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Mutation

probability   pm = 0.05
randomly generate a natural number 0  t  n-1
 If   gt=1 then we change its value to 0
 If   gt=0 we change its value to 1 only if the resultant individual is 

valid

M2 : Parameters (Mutation)



M2 : Parameters (Population’s Generation and Fitness &  T. Cond.)

 Population’s Generation

We replaced the worst individual of the population by the child 
obtained at the crossover.

 Population’s Evaluation or Population’s Fitness,   
F(P(t)) = max {fitness of individuals}

 Termination Condition
If the fitness of the populations remains the same for a large 
number of iterations, h, we can assume that we are close to the 
optimal

h = 5000



Experiments & Results

 Computational Geometry Algorithms Library (CGAL)

 We realized our experiments on a large set of randomly generated
polygons

 General polygons
generated using the CGAL's function random_polygon_2 

 Orthogonal polygons
we used the polygon generator developed by O'Rourke

 Four sets of polygons, each one with 50 polygons of 50, 100, 150 
and 200 vertices



 Temperature Decrement Rule

(1) (FSA decrease)

(2) (VFSA decrease)

(3) , where 0 <  < 1 (geometric decrease)
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The choice of T0 = n and FSA is the best one.

Experiments & Results: SA’s Parameters (Arbitrary polygons)

 Initial Temperature, T0 

(1)

(2)

nT 0

0.10000 T



General conclusions
The algorithm M1 seems to be 
the best one, since:

 the obtained average of 
hidden vertices is better than 
the others; and

 in spite of the average of the 
number of iterations is the 
biggest, the only algorithm 
that is faster than it, is the A2

Experiments & Results: Four Algorithms (Arbitrary polygons)



On average, the maximum number of hidden vertices in 
an arbitrary polygon P with n vertices is

Experiments & Results: M1 Heuristic (Arbitrary polygons)

Using the least squares method, we obtained the following linear
adjustment

0.6182
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Approximation Ratio

UPPER BOUND for the optimal solution of the problem

How can to prove that our approximate solutions are 
“good”?

CLIQUE PARTITION of VG(P)



For each clique of the partition C we 
can hide at most one vertex in P

a(P) number of cliques in a minimum-cardinality clique partition

h(P) number of hidden vertices in a maximum-cardinality hidden vertex set

Approximation Ratio

|C|≥ |H|  C, H

|C|≥ a(P) ≥ h(P) ≥ |H|

Approximation ratio of the solution H* h(P) /|H*|

We obtain a hidden vertex set H* that approximates h(P) with
approximation ratio |C|/ |H*|



Approximation Ratio

 The problem of determining a(P) (Minimum Clique Partition problem) 
is NP-Hard, so we developed a greedy algorithm to obtain one 
solution C

 M1 algorithm has an approximation ratio of 1.7, being equal to 3/2 for 
98.44% of the instances

 This means that, the obtained approximate solution, |H*|, has

 at least 1/1.7 of the optimal number of hidden vertices, for all 
instances; 

 And at least 2/3 of the optimal number of hidden vertices, for 
98.44% of the instances



Experiments & Results:  Orthogonal Polygons

 A similar study was made for orthogonal polygons

 The best algorithm is M1 (case: T0 = n and FSA
decrease ), with significantly different results from the 
other algorithms

 On average the maximum number of hidden vertices in 
an orthogonal polygon P with n vertices is n/4 

 The approximation ratio is 3/2 , for all randomly 
generated instances



Future Work

• Different parametrizations of genetic algorithms
• Hybrid metaheuristics

 Optimal triangulations, polyhedral terrains
 Optimal polygonizations, watchman routes
 Cooperative guarding, another variants, …
 Rectangular partitions, …

PROBLEMS
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