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An introduction
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Plano metro Paris
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A tourist at Paris

Local information (coordinates of v, target, and neighbors N(v))
Limited memory allocation
Ecologically sound algorithms

Tour Eiffel

v
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Mobile ad hoc Wireless Networks (MANET)

• Sometimes there is no infrastructure
remote areas, unplanned meetings, disaster areas, ships in ocean

• Sometimes not every station can hear every other station
Data needs to be forwarded in a multihop manner
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Mobile ad hoc Wireless Networks (MANET)

Manet’s consist of wireless hosts that communicate with each
other in the absence of fixed infrastructure
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Nodes move!!
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Mobile ad hoc Wireless Networks (MANET)

Manet’s consist of wireless hosts that communicate with each
other in the absence of fixed infrastructure

A MANET as a graph
• A node is a mobile station
• If node v can “hear” node u
there is an edge (u,v)

• The graph is euclidean
(there is a link between two
nodes iff the distance is
less than their two broadcast
ranges) 
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Mobile ad hoc Wireless Networks (MANET)

If all nodes have the same
broadcast ranges, UDG are a 
model of MANETs

Unit disk graphs

Given a set of points V,
UDG(V) is a geometric graph,
in which there is an edge (u,v)
iff dist(u,v)  1

UDG has many edges
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• Classic routing
• Geometric graphs
• Memoryless algorithms: greedy, compass, ..
• O(1)-memory algorithms: face, ..
• Competitive algorithms

Overview



Geometric Routing 10

Classic Routing Flooding

A source s sends the message to all its neighbors; when a node
receive the message the first time it resends it to all its neighbors

Problems
• a node might see the same
message more than once

• what if the network is huge
and the target is next to s?
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Classic Routing Distance Vector

• Each node store a routing table that has an entry to each target
• If a node notices a change, it updates its routing table and sends
an update to all neighbors, and their ....

• Message follows shortest path

Problems
• every node needs to store 
a big table
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Geometric Routing
• Each node is equipped with a location service (they have GPS,
Galileo, or an ad-hoc way to know their coordinates)

• Each node knows all the neighbor nodes and their coordinates
• The messenger knows the coordinates of the target

The messages travel
in a 

geometric graph

What is geometric graph?
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GEOMETRIC  GRAPHS

Vertices  Points
Edges  Segments
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Triangulation of a set of points

Delaunay triangulation

GEOMETRIC  GRAPHS
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Subgraphs of Delaunay Triangulation

Relative Neighborhood Graph Gabriel Graph

GEOMETRIC  GRAPHS
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Convex subdivision Voronoi Diagram

GEOMETRIC  GRAPHS

Dual of DT
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MEMORYLESS  ALGORITHM

A routing algorithm is memoryless if the decision about which
vertex to visit when we are situated at vertex v and destinated for t
only depends of v, t, and N(v)

An algorithm A is defeated by a graph G if there exists a pair of
vertices s,t such that a packet stored at s never reaches t when
being routed using A. 
Otherwise, we say that A works for G
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Memoryless algorithm

Greedy routing

t

v

We greedily route to the neighbor which is closest to the target
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Memoryless algorithm

Greedy routing
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Memoryless algorithm

Greedy routing

v

t

Neighbors of v are not
closer to target

It fails!!
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Memoryless algorithm

Greedy routing • Fails on some graphs
• Fails on some triangulations
• Always works for Delaunay Triangulations

t

uv
Every vertex v of DT has a 
neighbor that is strictly
closer to t than v

Bose, Morin 99
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Compass Routing

t
v

CR always moves a packet situated at the vertex v to the neighbor
u of v that minimizes the angle  =  u,v,t

Memoryless algorithm

Kranakis, Urrutia 99

u


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Compass Routing

Memoryless algorithm

Kranakis, Urrutia 99

s

t
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Compass Routing

Memoryless algorithm

Kranakis, Urrutia 99

• Might fail, even in a 
triangulation. 
When we try to go from s to t,
we travel around the cycle
v0,w0v1w1v2w2v3w3v0w0 ....
shown in red.

• Works well for Delaunay
triangulations.
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Greedy-Compass Routing

Memoryless algorithm

Bose, Morin 99

t

GCR always moves a packet situated at the vertex v to
u  {b+(v), b(v)} such that dist(u, t) is minimized

b+(v)

b(v)
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Greedy-Compass Routing

Memoryless algorithm

Bose, Morin 99



Geometric Routing 27

Greedy-Compass Routing

Memoryless algorithm

Bose, Morin 99

Greedy-Compass Routing is a memoryless algorithm that is not
defeated by any triangulation.

But, what happen for general graphs?

There is no  deterministic memoryless routing algorithm
that works for all convex subdivisions
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Memoryless algorithm

Random-Compass Routing Bose, Morin 99

t

b+(v)

b(v)

RCR  moves a packet situated at the vertex v to one of
{b+(v), b(v)} with equal probability

Randomized
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Random-Compass Routing

Memoryless algorithm

Bose, Morin 99

Randomized
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Random-Compass Routing

Memoryless algorithm

Bose, Morin 99

• Works for any triangulation
• Works for any convex subdivision

t

b-(v)
b+(v)

Randomized
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Assume that there is a convex subdivision G with s, t such that the
probability of reaching s from t using RCR is 0

Then there is a subgraph H,  sH, tH
with b+(v) and b(v) en H for all vH

Since G is connected, it must be u on the
boundary of F, such that b+(v) or b(v) is
in the interior of F

t u
F

F convex face of t

Random-Compass Routing

Memoryless algorithm

Bose, Morin 99

Randomized

Works for any convex subdivision
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O(1)-Memory algorithm

Face Routing Kranakis, Urrutia 99

Route along the boundaries of the faces that lie
on the source-target line

s t
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O(1)-Memory algorithm

Face Routing Kranakis, Urrutia 99

1. Let F be the face incident to the source s, intersected by line s,t

2. Explore the boundary of F; remember the point p where the
boundary intersects with (s,t) which is nearest to t.
Go back to p, switch the face and repeat 2 until you hit the target t

s
t
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O(1)-Memory algorithm

Face Routing Kranakis, Urrutia ‘99

Theorem: Face routing terminates on any simple planar graph in
O(n) steps, where n is the number of the nodes in the network.

Proof: It is straightforward to see that we reach the the destination t
We can order the faces that intersect the (s,t) line, therefore
we never visit a face twice. Each edge is in at most two faces, 
therefore each edge is visited at most 4 times.
Since a simple planar graph has at most 3n6 edges, the
algorithm terminates in O(n) steps.
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O(1)-Memory algorithm

Face Routing 2 Bose, Morin, Sojmenovic, Urrutia ‘99

Idea: Traverse F until reaching an edge that intersects (s,t) line
at some point p, switch the face and repeat until to reach t

s
t
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O(1)-Memory algorithm

Face Routing 2 Bose, Morin, Sojmenovic, Urrutia ‘99

Efficiency: Face-2 reaches t in a finite number of steps, seems to be
practicallymore efficient than face routing, but in pathological
cases it may visit (n2) edges of G
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Hybrid strategie

GOAFR - Greedy Other Adaptive Face Routing

BMSU ‘99   KWZ ‘03

s t

1. Route greedily as long as possible
2. Circumvent “dead ends” by use of face routing
3. Then route greedily again
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Competitiveness of paths (and routing algorithms)

Greedy Routing

Compass Routing

Random-Compass Routing

are “good”?

A(s,t)    length of the path found by A
SP(s,t)   length of the shortest path between s and t

An algorithm A is c-competitive for G  if c
)t,s(SP
)t,s(A


Now, we must consider the length of the path found by every
routing algorithm
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Competitiveness of paths (and routing algorithms)

Greedy Routing

Compass Routing

Random-Compass Routing

are “good”?

Theorem
For any constant c, there exist Delaunay triangulations for which
none of the GREEDY, COMPASS, GREEDY-COMPASS and
RANDOM-COMPASS algorithms are c-competitive

Euclidean metric or Link metric?
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Competitiveness of paths (and routing algorithms)

Greedy Routing

Compass Routing

Randomized Compass Routing

are “good”?

SP(s,t) = (/2) dist(s,t)

A(s,t) = O(n) dist(s,t)

Greedy routing

s t
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Bose, Morin ‘99
Parallelal Voronoi Routing is an O(1)-memory routing that is
c-competitive for all Delaunay triangulations under the euclidean
distance metric.

Bose, Morin , + ‘00
Under the link distance metric, no routing is c-competitive for
all Delaunay triangulations.

Is there exists any competitive algorithm?

And for all greedy or minimum weight triangulations
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s t

Segment st intersects the Voronoi regions R1, R2, ... , Rm (in order)

VR moves the packet along the path PV:    s = v1, v2, ... , vm= t
where vi is the vertex defining Ri

Voronoi routingCompetitive algorithms
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Voronoi routing is an O(1)-memory routing algorithm

VR is not c-competitive for all Delaunay triangulations

Voronoi routingCompetitive algorithms
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1. DT approximates the complete euclidean graph, i.e.
SPDT(a,b)  k ·dist(a,b)

SPDT(a,b)   length of the shortest path between a and b in DT

s t

Parallelal Voronoi routingCompetitive algorithms

Properties of DT (Dobkin et al. ‘90)
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Assume that s and t both lie on the x-axis

Parallelal Voronoi routingCompetitive algorithms

s t
PV

2. The path PV is x-monotone
3. The length of the subpaths above the x-axis is  (/2) dist(s,t)
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Assume that s and t both lie on the x-axis

Parallelal Voronoi routingCompetitive algorithms

s t
PV

2. The path PV is x-monotone
3. The length of the subpaths above the x-axis is  (/2) dist(s,t)
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s t

Competitive algorithms Parallelal Voronoi routing

What happens between two vertices bi bi+1 of PV situated
above x-axis, when the Voronoi path is not a direct edge? 

bi bi+1
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s t

bi bi+1

PV

PF

|PV|  c* (xi+1 xi) or |PF|  c* (xi+1  xi)

PVR travels an overall distance of, at most

),()2/*9( tsdistc 

Competitive algorithms Parallelal Voronoi routing
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Open problems

There is competitive routing algorithms for Delaunay, Greedy
and Minimum Weight Triangulations (EUCLIDEAN METRIC)

1. For what other classes of geometric graphs do competitive
routing algorithms exist? 

There is no competitive routing algorithms for Delaunay, Greedy
and Minimum Weight Triangulations ( LINK METRIC)

2. Is there a class of geometric graph that admits a competitive
routing algorithm ? (meshes don’t count)
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