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Abstract

Some brief notes about phase coexistence, the common tangent, and
the Maxwell construction.

1 Thermodynamics

A quick review.
First Law, single component homogeneous system, for the internal energy

U = U(V, S,N)
dU = −p dV + T dS + µdN. (1)

Hence,

p = −
(
∂U

∂V

)
T,N

T =

(
∂U

∂S

)
V,N

µ =

(
∂U

∂N

)
V,T

Euler theorem for n-order homogeneous functions f = f(x, y, . . .) reads

f = f(λx, λy, . . .) = λnf =⇒ x
∂f

∂x
+ y

∂f

∂y
+ . . . = nf. (2)

The internal energy U is homogeneous, of first order, for all its three argu-
ments (they are all extensive variables: if the system size is by increased λ, all
three will increase in the same way, and so will U .) Therefore,

U = −pV + TS + µN. (3)

Helmoltz’s free energy is defined

A(V, T,N) = U − TS. (4)

This means:
A = −pV + µN. (5)

which also may be explained by F being homogeneous, first order, but only for
V and N .
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Taking differentials,

dA = −p dV + S dT + µdN. (6)

Hence,

S =

(
∂F

∂T

)
V,N

.

Gibbs’ free energy is defined

G(p, T,N) = U − TS + pV. (7)

This means:
G = µN. (8)

In other words, Gibbs’ free energy per molecule is just the chemical potential.
Finally, the grand potential is defined

Ω(p, V, µ) = U − TS − µN. (9)

This means:
Ω = −pV. (10)

In other words, ω = Ω/V = −p.

2 The common tangent

In many theories, a Helmholz free energy results that may contain a concave
region when plotted as a function of the density. See Fig. 1.

This region is not physical: the free energy must always be concave-up. A
simple way to fix is is to apply a common tangent, patching up the concave
region (a procedure to form what is called a convex hull.) This is the right
procedure: the densities at which the tangent is drawn are the equilibrium
densities of two phases (e.g. liquid and vapor.)

To see why this the right procedure, from Eq. (5)

a =
A

V
= µρ− p,

so that
∂a

∂ρ
= µ.

That derivative is the slope of the tangent, which is the same at both ends.
Indeed, the chemical potential of two phases in equilibrium must be the same.

This expresses the fact that the transfer of molecules between both phases is
balanced (in the sense that the molecular fluxes are equal, they do not have to
be zero.) It is clear that the densities should then correspond to points on the
a(ρ) curve with the same slope the fact that the tangent should be common is
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Figure 1: A possible isotherm of free energy density vs. density showing a
concave region. Function a = −0.2− 0.2ρ+ 0.1ρ2 − 0.7(ρ− 0.4)2 + 4(ρ− 0.4)4.

Figure 2: Helmholtz free energy density as a function of density. The common
tangent “convexifies” the function and actually yields the right coexisting den-
sities.
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Figure 3: Graph of µ as an implitic function of p. The point at which the
curve intersects itself gives the equilibrium values of both quantities. In this
example, p = 0.238 and µ = −0.12. The two kinks are the boundaries of the
spinodal region, and the short segment between them, in which µ decreases as
p increases, is unphysical and corresponds to the region inside the spinodal.

due to the fact that the pressure need also be the same for the two phases at
equilibrium. Mathematically, the line tangent to a(ρ1), at density ρ1, is

ā(ρ) = a1 +
∂a

∂ρ

∣∣∣∣
ρ1

(ρ− ρ1) = a1 + µ1(ρ− ρ1) = −p1 + µ1ρ

Since it reaches a(ρ2),

a2 = −p1 + µ1ρ2 =⇒ p1 = µ1ρ2 − a2 = p2.

So, indeed, the pressure is equal.
Incidentally, the fastest way to Fig. 3.

3 The Maxwell construction for the chemical
potential

If we plot the chemical potential as a function of density, we will find a loop.
This is of course the derivative of a(ρ). Equilibrium must correspond to a
horizontal line, since the chemical potential is the same for the two phases. The
other condition, equal pressure, is the equivalent of the common tangent in this
case, and represents a Maxwell construction. Namely: the two areas between
the horizontal line must be the same.
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Figure 4: Maxwell construction for the chemical potential. The areas above and
below the equilibrium chemical potential must be equal. Notice the Gibbs free
energy may be alternatively plotted, since G = µN .

To demonstrate this, let us begin again from

p = µρ− a.

Differentiating with respect to ρ,

∂p

∂ρ
= ρ

∂µ

∂ρ
, (11)

since µ = ∂a/∂ρ. Integrating from one density to another,∫ ρ2

ρ1

∂p

∂ρ
=

∫ ρ2

ρ1

ρ
∂µ

∂ρ
,

or

p1 − p2 = 0 =

∫ ρ2

ρ1

ρ
∂µ

∂ρ
.

The latter integration corresponds in general to a vanishing area over the
mean, as demonstrated by this little lemma.

Lemma 1. If a function f(x) satisfies f(x1) = f(x2) := f0 and the following
integral vanishes: ∫ x2

x1

x
df

dx
dx = 0,

then ∫ x2

x1

(f − f0)dx = 0,
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Figure 5: The usual Maxwell construction: pressure vs. volume. The areas
below and under the equilibrium pressure are equal.

Proof. Integrating by parts:∫ x2

x1

x
df

dx
dx = [xf ]

x2

x1
−

∫ x2

x1

fdx.

As f is assumed to be the same at both ends,∫ x2

x1

x
df

dx
dx = f0(x2 − x1)−

∫ x2

x1

fdx =

∫ x2

x1

(f0 − f)dx.

Therefore, if the originating integral vanishes, so does this one, and∫ x2

x1

(f − f0)dx = 0.

4 The Maxwell construction for the pressure

If we now plot the pressure a function of density, another loop will be found.
Again equilibrium must correspond to a horizontal line, since the pressure must
be the same for the two phases. The other condition is now equal chemical
potential. This is the better known Maxwell construction. Namely: the two
areas between the horizontal line must be the same, but this time in a plot
against the volume (not the density.)

We may rewrite Eq. (11) as

∂µ

∂ρ
=

1

ρ

∂p

∂ρ
.
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Integrating, ∫ ρ2

ρ1

∂µ

∂ρ
dρ =

∫ ρ2

ρ1

1

ρ

∂p

∂ρ
dρ.

The integral on the left is zero, since it evaluates to µ(ρ2) − µ(ρ1) = 0.
Therefore ∫ ρ2

ρ1

1

ρ

∂p

∂ρ
dρ = 0.

This integral does not comply with our previous lemma, but if we change
variables from ρ to v = 1/ρ,

∂p

∂ρ
dρ =

∂p

∂v
dv.

The integral is now ∫ v2

v1

v
∂p

∂v
dv = 0.

Our lemma now applies, hence the areas of p(ρ) around the equilibrium
pressure must be equal. In practice, it is often the total volume V = Nv what
is used in the x axis, which of course does not change the result. The difference
is that, in this shape, those areas mean mechanical work, W =

∫
pdV , and an

alternative argument can be put forward about why this construction must be
valid. I think this was historically the first explanation.

5 A note about the forbidden region

The section of the free energy, pressure, and chemical potential that is fixed by
this constructions does not correspond to an equilibrium situation. This does
not mean it is entirely unphysical. Part of it corresponds to a valid physical
system, but in a metastable state. This is the part is most clearly explained
in the p vs ρ plot: regions where p(ρ) is an increasing function. In practice,
they correspond to situations where a fluid is compressed beyond its phase
coexistence conditions, in such a way that a small disturbance may bring about
the phase change. The case where the phase transition is driven by temperature
is well-known: overheating and undercooling of fluids. (In a p vs V diagram,
the pressure must decrease with V .)

The region where the pressure decreases with the density is completely un-
physical. No system can be placed in that region, called the spinodal. Still,
if a system is suddenly turned to those conditions, an interesting dynamical
phenomena occurs, called spinodal decomposition (in the metastable zones, the
dynamics is rather driven by nucleation.)

There is also a theory where the information in this region is used: the van
der Waals theory for the molecular structure of the interface. In this theory, the
density changes smoothly from a value ρ1 to ρ2, therefore necessarily passing
through forbidden values.
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