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Abstract

Development of an idea found in Susskind’s book [1], about finding
the Coriolis force only from the kinetic energy

1 Sliding frames

First, let us consider two coordinate systems: a fixed one (x, y, z) and a moving
one (X,Y, Z). We consider rectilinear motion, along axes x and X (they may
be aligned, without loss of generality.) The x coordinate from the fixed one to
the moving one is L, and it changes with time, L = L(t). The transformation
from the moving frame to the fixed one reads

X = x− L

Y = y

Z = z.

(1)

Notice an observer at X = 0 sees an object at x = 0 as being in the negative
direction, X = −L (if L is assumed positive.)

The time derivative of x and X are linked by

Vx = vx − U,

while Vy = vy, and Vz = vz. The velocity U is the relative velocity between
frames, U = dL/dt.

The kinetic energy can be written as

T =
1

2
mv2 =

1

2
m

[
(Vx + U)

2
+ V 2

y + V 2
z

]
.

Writing the Lagrangian
L = T − E

(where E is the potential energy, which depends on either set of coordinates),
the Euler-Lagrange equation of the X coordinate is

d

dt

∂L

∂Vx
=

∂L

∂X
.
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In this case, only T depends on the velocities, and only E on positions, so

d

dt

∂T

∂Vx
= − ∂E

∂X
= Fx,

where FX is the force due to potential E.
The derivative of the kinetic energy is

∂T

∂Vx
= m (Vx + U) ,

so, finally
m (Ax +A) = Fx =⇒ mAx = Fx −mA.

In this expression A = dU/dt is the relative acceleration between frames.
The final implication is that if A = 0 Newton’s equation of motion is the same

for both frames (Galilean relativity.) However, if the (X,Y, Z) is an accelerating
frame, a fictitious, inertial force appears, which seems to “pull” things to the
left (if A > 0). A familiar effect in our daily lives as a train car, automobile,
airplane, etc., accelerates, and we feel pulled towards the rear.

This inertial forces receive their “fictitious” name because they are not “true”
forces: the do not represent a physical interaction. However, they are very real,
in the sense that they are felt by the bodies in non-inertial frames. A telling
sign of an inertial force is that it is always proportional to the mass of the
moving body. A force that would not be inertial but nevertheless happens to
be proportional to the mass is the gravitational force. This prompted Einstein
to investigate whether the gravitational force was in fact some kind of inertial
force. We demonstrated this to be the case in his theory of general relativity.

2 Rotating frames

2.1 Coordinates

A rotation matrix by an angle θ has the form

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

(For simplicity, we only consider the two-dimensional case.)
Its effect on coordinates is :(

x′

y′

)
= R(θ)

(
x
y

)
so that the resulting point at coordinates (x′, y′) comes from the original one at
(x, y) with a rotation around the origin of θ (in the same direction as the sign
of θ.)
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Consider rotating unit vectors ı̂

ı̂′ = cos θ ı̂+ sin θ ȷ̂ (2)

ȷ̂′ = − sin θ ı̂+ cos θ ȷ̂. (3)

The inverse transformation is given by

ı̂ = cos θ ı̂′ − sin θ ȷ̂′ (4)

ȷ̂ = sin θ ı̂′ + cos θ ȷ̂′. (5)

Now, a given point in the plane can be written as

r⃗ = xı̂+ yȷ̂ (6)

Writing the rotating vectors as in Eqs. (10),

r⃗ = x (cos θ ı̂′ − sin θ ȷ̂′) + y (sin θ ı̂′ + cos θ ȷ̂′) (7)

= (cos θx+ sin θy) ı̂′ + (− sin θx+ cos θy) ȷ̂′. (8)

The result is clearly another way to write the same vector in terms of the rotating
frame:

r⃗ = X ı̂′ + Y ȷ̂′, (9)

where

X = cos θ x+ sin θ y (10)

Y = − sin θ x+ cos θ y. (11)

Notice this reads (
X
Y

)
= R(−θ)

(
x
y

)
.

Indeed, if the rotation is positive (θ > 0), the coordinates in the (X,Y ) rotating
frame will look as rotated a negative angle. This is the rotation equivalent of
X = x− L of Eq. (1)! In [1] this equation has the wrong sign in the angle.

2.2 Velocities

Taking the time derivative of Eq. (6) results in

v⃗ = ẋ ı̂+ ẏ ȷ̂

(a dot means a time derivative), with the resulting kinetic energy

T =
1

2
m

(
ẋ2 + ẏ2

)
.

This is the usual. However, if we suppose the rotation angle changes with time
θ = θ(t), then taking the time derivative of Eq. (9) results in

v⃗ = Ẋ ı̂′ + Ẋ ȷ̂′ +X ˙̂ı′ + Y ˙̂ȷ′,
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because the rotation vectors are also changing with time!
It is easy to obtain their time derivatives from Eq. (12):

˙̂ı′ = θ̇ (− sin θ ı̂+ cos θ ȷ̂) = θ̇ȷ̂′ (12)

˙̂ȷ′ = θ̇ (− cos θ ı̂− sin θ ȷ̂) = −θ̇ı̂′. (13)

Indeed, the time derivative of a vector of fixed length will always be perpendic-
ular to that vector, and it is easy to understand the fact that the change in ı̂′

is related to ȷ̂, and vice-versa, with the sign change.
This permits to write the velocity as

v⃗ = Ẋ ı̂′ + Ẋ ȷ̂′ + θ̇ (X ȷ̂′ − Y ı̂′) .

An interesting way to write the last summand is as a vector product:

θ̇ (X ȷ̂′ − Y ı̂′) =

∣∣∣∣∣∣
ı̂′ ȷ̂′ k̂′

0 0 θ̇
X Y Z

∣∣∣∣∣∣ = ω × r,

with ω := θ̇k̂′, the usual angular velocity vector, perpendicular to the plane of
the rotation. (Of course, k̂′ is actually the same as k̂, but the expressions look
more elegant with it.)

Therefore, we may write

v⃗ = v⃗′ + ω × r,

which shows that the velocity from the fixed frame is the one measured from
the rotating frame, v⃗′ = Ẋ ı̂′ + Ẋ ȷ̂′, plus a term stemming from rotation.

Another expression that is convenient for operation is

v⃗ =
(
Ẋ − θ̇Y

)
ı̂′ +

(
Ẏ + θ̇X

)
ȷ̂′ (14)

2.3 Lagrangian

Since the unitary vectors are mutually perpendicular, it is easy to obtain the
kinetic energy in terms of rotating frame quantities:

T =
1

2
mv2 =

1

2
m

[(
Ẋ − θ̇Y

)2

+
(
Ẏ + θ̇X

)2
]
.

In the Euler-Lagrange equation of the X coordinate is,

d

dt

∂L

∂Ẋ
=

∂L

∂X

where L = T − E, but now T depends on velocities and positions. We can
expand the T as

T =
1

2
m

(
Ẋ2 + Ẏ 2

)
︸ ︷︷ ︸

T ′

+
1

2
mθ̇2

(
X2 + Y 2

)
︸ ︷︷ ︸

E′

+mθ̇
(
−ẊY + Ẏ X

)
︸ ︷︷ ︸

EC

.
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We can identify three terms. The first, T ′, is the usual kinetic energy, but built
from the velocity components in the rotating frame. The second looks very
much like a central potential:

E′ =
1

2
mθ̇2

(
X2 + Y 2

)
=

1

2
mθ̇2r2.

The reader may recognize it as a centrifugal potential, as will become clearer
soon.

The final part is the Coriolis contribution, and mixes position and velocities:

EC = mθ̇
(
−ẊY + Ẏ X

)
= mθ̇

∣∣∣∣X Y

Ẋ Ẏ

∣∣∣∣
If we suppose E still depends only on positions,

d

dt

∂T

∂Ẋ
=

∂T

∂X
+ FX ,

where FX = −∂E/∂X. We can calculate

∂T

∂Ẋ
= m

(
Ẋ − θ̇Y

)
(15)

∂T

∂X
= mθ̇

(
Ẏ + θ̇X

)
. (16)

If we assume θ̇ is constant (i.e. constant angular velocity), we arrive at

m
(
Ẍ − θ̇Ẏ

)
= mθ̇

(
Ẏ + θ̇X

)
+ FX ,

or

mẌ = FX +mθ̇2X + 2mθ̇Ẏ (17)

mŸ = FY +mθ̇2Y − 2mθ̇Ẋ, (18)

where we have added the equation for Y , that can be obtained in the same way.
Two inertial terms arise: the first has the shape of a central force, directed

outwards from the origin, of strength mθ̇2r. This we recognize as the centrifugal
force, which acts like a repulsion from the axis of rotation. Notice θ̇r = vrot, the
rotation velocity, so we can write this force as mv2rot/r, a familiar expression.

The other term is the Coriolis force. It has a strange shape: it depends on
the velocities, to begin with. It is also always perpendicular to the velocity in
the rotating frame, since we can write

F⃗C = 2mθ̇
(
Ẋ ı̂′ + Ẏ ȷ̂′

)
= −2m

∣∣∣∣∣∣
ı̂′ ȷ̂′ k̂′

0 0 θ̇

Ẋ Ẏ Ż

∣∣∣∣∣∣ = −2mω × v′
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