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Introduction

In a world where technology and science are advancing 
vertiginously, the graph theory is emerging as a powerful and 
versatile tool for its application in the pharmaceutical and 
healthcare industries. From its origin in the 18th century with 
the work of Euler to its modern application in bioinformatics, 
graphs have demonstrated their ability to solve complex 
problems and optimise processes in various areas. Graph-based 
artificial intelligence techniques, such as complex networks or 
graph neural networks, have also been developed.  

Nowadays, these techniques can have a relevant application in 
the prediction of medical interactions, the analysis of genetic 
mutations and drug repositioning, critical areas for the 
development of more effective and safer treatments. 

The combination of advances in genomic sequencing, artificial 
intelligence and big data has enabled further development in 
clinical practice, for example, by optimising drug therapies or 
improving the safety of treatments. In recent years, several 
studies have been published in this regard.  

For example, mCSM [1] emerges as a tool that uses graph-based 
signatures to predict the effects of protein mutations. In this 
paper,  mCSM is demonstrated to be effective in predicting 
changes in the stability of mutations in the p53 protein, 
outperforming other methods and showing its usefulness in 
complex disease contexts such as cancer.  

Convolutional neural networks have also been used to extract 
local features and attention mechanisms to obtain important 
information in the field of drug-protein interactions (DPIs) [2]. 

In tests with datasets such as C.elegans, humanos, and 
BindingDB [3], the proposed approach was shown to improve 
the effectiveness in predicting DPIs compared to conventional 
machine learning methods. It is worth noting that such studies 
need to be fed by good databases, an area that has also been 
recently developed with datasets such as DDInter [4]. This is a 
curated database of drug-drug interactions (DDI) designed to 
help clinicians identify dangerous drug combinations and 
improve healthcare systems. In addition to basic queries, it 
incorporates a prescription verification function to help 
physicians decide whether drug combinations can be used 
safely. 

This publication explores how graph theory and neural 
networks (both complex and graph neural networks) are 
transforming pharmaceutical research. It addresses current 
challenges in drug development, such as drug-protein 
interaction and drug-drug interaction prediction, and how 
methods based on these artificial intelligence techniques are 
providing new solutions. In addition, a concrete use case of 
drug repositioning is presented, highlighting the potential of 
these technologies to accelerate innovation and improve health 
outcomes.  
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Connection between networks and the 
pharmaceutical industry

Current overview of the pharmaceutical 
industry 

In recent decades, significant advances in human genome 
sequencing and bioinformatics have catalysed an 
unprecedented transformation in the field of medicine. One of 
the main beneficiaries of this phenomenon is the 
pharmaceutical industry, which has emerged as a key player in 
Spain's growth and development. The growth of Spain's Gross 
Domestic Product (GDP) to 3% by 2023 [5], according to data 
from the National Statistics Institute (INE), is a clear indicator of 
the positive impact this industry has had on the country's 
economy. This economic growth is largely attributed to the 
pharmaceutical industry's ability to capitalise on scientific and 
technological advances, as well as to meet the health needs of 
the population through the production and marketing of 
innovative medicines. 

In the field of clinical research into innovative medicines, 
national pharmaceutical laboratories play a leading role, with an 
investment of more than 750 million euros. Spain has a 
remarkably diverse pharmaceutical industry, with more than 
100 manufacturers of basic pharmaceutical products and more 
than 200 companies specialising in the preparation of highly 
complex medicines. In addition, the country is home to major 
global pharmaceutical companies that have established 
subsidiaries in Spain [6]. 

The development of new drugs in the pharmaceutical industry, 
a process that can take 10-15 years and require investments of 
up to $800 million, faces considerable challenges in terms of 
time and resources [7]. To speed up this process, reduce costs 
and improve the effectiveness of existing drugs, numerous 
computational approaches based on artificial intelligence and 
massive use of data are being integrated into clinical practice. 
These approaches allow optimisation of drug therapy, 
improving the safety and efficacy of treatment for the benefit of 
patients. Within the pharmaceutical industry, numerous lines of 
research are being explored to achieve the objectives, with 
three main approaches: drug-protein interaction prediction, 
amino acid mutation prediction and drug-drug interaction 
prediction. This convergence between technological innovation 
and biomedical research promises to further revolutionise the 
field of medicine, driving significant advances in treating 
diseases and improving people's quality of life. 

Graph theory 

Graph theory [8] is one of the fundamental pillars of discrete 
mathematics, whose origin is attributed to the famous Swiss 
mathematician, Leonhard Euler. It was he who introduced the 
concept of graphs in his work Solutio problematis ad 
geometriam situs pertinentis (1736) [9], to solve the problem of 
the seven bridges of Königsberg. Thus began a whole new 
branch of mathematics, which continued to develop during the 
19th and early 20th century, thanks to the contributions of 
mathematicians such as Arthur Cayley and Gustav Kirchhoff in 
the study of connected trees and graphs [10] [11]. In the second 
half of the 20th century, graph theory began to be applied in 
computer science, especially in network algorithms, 
optimisation and theory of computation. This was consolidated 
with works such as Dijkstra's [12] [13] [14] and his algorithm for 
finding the shortest path in a graph. Starting in the 1990s, and 
including the study of real interaction networks, the science of 
complex networks [15] [16] emerged, extending graph theory 
by incorporating the dynamics and evolution of these graphs 
over time. A complex network refers to a network, modelled as 
a graph, that possesses certain non-trivial statistical and 
topological properties. Complex networks today are used in the 
study of critical phenomena in statistical physics, in bio-inspired 
problem solving or in the social sciences [17], exploring how 
systems behave under different conditions. Thus, graph theory 
and complex networks coexist in such a way that the former 
serves as a mathematical foundation and the latter extends its 
scope to address dynamic and applied problems in the real 
world. 

A graph [15] is a mathematical object consisting of a set of 
nodes (or vertices) and a set of edges (or links) connecting pairs 
of nodes. They are represented by diagrams like the one in Fig. 
1, where nodes are associated with points and edges with lines 
connecting connected nodes. They allow very complex 
connectivity structures to be represented in a simple way. This 
is why graphs are essential in the study of complex networks, as 
they provide the mathematical basis necessary to model, 
understand and analyse the phenomenon under study.  
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It is important to understand the concepts of nodes and edges. 
Nodes are the basic elements of a network and represent the 
individual entities within the system. Their definition depends 
largely on the network under study and its context. It is not the 
same to study the brain considering each neuron as a node, or 
defining each node as a brain region. Edges, on the other hand, 
represent the interactions or links given between nodes. These 
relationships can be physical, as in transport networks, or 
abstract, as in friendship networks. 

Graph theory and complex networks have become tools with 
great potential for understanding and analysing systems in a 
wide variety of fields. 

In social science, social network analysis allows to understand 
how information is disseminated, how communities are 
structured and the influence of certain individuals within a 
social network. This can be applied in politics, to understand 
the dynamics of social movements and the propagation of 
ideas, or in the field of digital social networks, to understand 
how connections between users are formed and evolve, 
allowing for improved algorithms for content recommendation 
and personalisation.  

Complex networks have become essential in various research 
works in biology and medicine. They can be used to study 
interactions between proteins, neural networks or the 
propagation of diseases. The latter are crucial for modelling the 
spread of diseases, allowing to anticipate and design more 
effective intervention strategies, such as vaccination campaigns 
or quarantine measures. 

Technological networks are another example. They include 
internet and transport networks. These networks help to 
optimise the efficiency and robustness of these systems to 
failures. The structure and operation of the global Internet, for 
example, is based on the principles of graphs and complex 
networks. 

In economics and finance, network theory provides tools for 
modelling the complex interactions in financial markets and 
economic transactions. This allows economists and financial 
analysts to identify potential points of systemic risk and 
develop strategies to mitigate the impact of financial crises. 

Finally, in ecology, they are used to model interactions within 
ecosystems, such as food webs. This helps to understand the 
stability of ecosystems and how different species may depend 
on each other, allowing the detection of keystone species for 
the preservation of the natural environment. 

A common denominator in all these fields is the idea that 
complex networks allow to understand the underlying 
interactions and dynamics of the case study. While in other 
modelling domains it is necessary to resort to feature 
engineering techniques to understand the relationship 
between variables, graph networks inherently carry that 
relationship because of the way they are constructed. Initially, 
each node houses the information and characteristics that 
define it exclusively, but the very structure of the network 
predetermines what and how the different interactions with its 
environment will be, so that, ultimately, the feature vectors of 
each node will incorporate the information relating to its 
environment and how it interacts with its neighbours. In 
summary, graph theory and complex networks not only offer a 
way to represent and analyse complex structures and systems, 
but also provide crucial insights for predicting behaviour and 
designing effective interventions in a variety of fields.  

Fig. 1 Diagram of the structure of a graph. The circles (red) are the nodes 
and the edges (black) are the links between nodes.
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Complex networks and graph neural networks 

The evolution of graph theory has led to the development of 
complex networks and graph neural networks, tools for 
modelling and analysing dynamic systems and in various fields, 
including pharmaceutical research. These networks provide a 
robust framework for understanding complex interactions 
between different elements of a system, such as molecules, 
proteins and drugs, through the use of advanced artificial 
intelligence methods. 

Complex networks 

Complex networks are graphs characterised by non-trivial 
connection patterns that reflect the properties and 
relationships inherent in real systems. Unlike simple graphs, 
complex networks include features such as modularity, 
robustness and adaptability over time. These properties are 
essential for modelling biological and chemical systems where 
interactions are neither static nor homogeneous: 

1. Structure and Dynamics. Complex networks integrate 
both the topology (static structure) and dynamics 
(behaviour over time) of systems. In the pharmaceutical 
context, this allows modelling how drugs interact with 
multiple proteins and how these interactions may change 
due to mutations or the presence of other molecules. 

2. Applications in Biomedicine. Applications of complex 
networks in biomedicine include identifying new gene-
disease relationships, modelling the spread of infectious 
diseases and optimising combination therapies. These 
models help predict side effects and personalise medical 
treatments. 

Graph Neural Networks 

Graph neural networks (GNNs) represent an evolution of 
machine learning methods that can operate directly on graph 
structures. GNNs can learn representations of nodes and edges 
that reflect the characteristics and relationships of these 
elements in the graph. 

1. GNN capabilities. Graph neural networks are particularly 
effective for tasks where structural relationships between 
data are crucial. For example, in predicting drug-protein 
interactions, GNNs can integrate molecular structure and 
bioactivity data to make accurate predictions about how a 
drug will interact with a target protein. 

2. Integration with Biomedical Data. Combining GNNs with 
biomedical databases allows the extraction of complex 
features and the identification of patterns not evident at 
first sight. This is useful for predicting the effects of 
mutations, where GNNs can model how an alteration in 
amino acid sequence affects the structure and function of a 
protein. 
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Applications in pharmaceutical research 

In recent decades, complex networks have emerged as a 
powerful modelling tool. Some applications stand out, such as 
percolation, synchronization, epidemiological processes, and 
phase transitions, among others. The development that 
complex networks have undergone in these fields has also 
allowed them to expand their scope of application, being also 
used in the modelling and analysis of interactions between 
molecules, proteins and diseases, which offers new perspectives 
and innovative solutions for drug discovery and drug design. 
Some of the most promising proposals in this field are outlined 
below. 

Drug-protein prediction 

When a drug (a chemical molecule) binds to a biological target 
(such as proteins), it modulates its behaviour with the aim of 
returning it to its normal state. Predicting this drug-target 
interaction (DPI) is a very important step in the process of 
discovering new drugs and understanding their side effects [2] 
[19]. A clear example of the importance of investigating drug-
protein interactions is the emergence of the COVID-19 
pandemic. In the absence of specific drugs to combat this 
disease, detailed investigation of the interactions between 
SARS-CoV-2 proteins and various existing drugs led to the 
identification of compounds with therapeutic potential. 
Detailed study of the SARS-CoV-2 spike protein, as well as other 
key viral proteins such as the 3CLpro protease, enabled the 
development of antiviral therapies and guided the design of 
new targeted inhibitors [20].  

Within this field of study, drug-protein interaction networks 
have emerged, networks aimed at representing the interactions 
between drugs and target proteins in the human body. The 
nodes correspond to the drugs and proteins, and the edges 
represent the different interactions between them. The 
development of these networks can help predict the efficacy 
and side effects of drugs, as well as identify possible drug 
combinations for new therapies. 

Most approaches rely on drug and protein information 
represented by feature vectors. For example, one of the 
common approaches often formulated is to obtain DTI 
predictions as a binary classification task. These approaches 
make use of databases such as BindingDB that contain 
information on binding interactions between proteins and 
ligands, which are small molecules such as drugs. Their main 
goal is to provide detailed experimental data on binding 
affinity, which is a measure of how strongly a ligand binds to a 
protein [3]. KIBA (Kinase Inhibitor BioActivity) is a collection of 
data designed to facilitate research in the field of drug 
discovery, particularly in relation to kinase inhibitors. KIBA 
integrates information from several bioactivity databases and 
standardises interaction data between kinases and their 
inhibitors [21].  



Graphs exhibit several properties that allow the characterisation 
and study of network behaviour in a variety of practical and 
theoretical applications. The main properties of graphs include:  

• Degree of a node: indicates how many edges impinge on it.  

• Connectivity: measures the robustness of the graph to node or 
edge deletion.  

• Clustering coefficient: evaluates the tendency of nodes to form 
clusters. 

• Centrality: measures the importance of a node in the network.  

• Communities: are densely connected subsets of nodes.  

• Modularity: quantifies the structure of the network in 
communities.  

• Paths: represent sequences of edges between nodes. There are 
also those known as cycles or closed paths.  

• Average path length: is the average of the distances between all 
pairs of nodes. 

• Diameter: the longest distance between two nodes.   

• Pearson correlation: a metric by which the relationship between 
the properties of connected nodes is assessed.  

Depending on the properties and characteristics of the network 
under study, and on how the nodes and edges of the network are 
defined, different types of networks can be distinguished, namely:  

• Directed or non-directed: the latter are bidirectional, while in 
the former it is of relevance which is the starting and end node 
in a link, as in a social network where one user can follow 
another without reciprocity. 

• Weighted or non-weighted: depending on whether all links are 
treated equally or whether some are given more importance 
than others.  

• Connected or unconnected: if at least one pair of nodes is not 
connected by a path, the network is connected.  

• Homogeneous or heterogeneous: depending on whether 
different types of elements are present, such as a biological 
network that includes different types of molecules and 
interactions. 

• Static or dynamic: if the network structure changes over time. 

• Scale-free: these are those that follow a power law; some nodes 
have many connections, while most have few. 

 

 

Fig. 2. Examples of different types of complex networks. 

(a) Network of friends at school. It is an undirected network - being friends is a two-way relationship - and not weighted - all friendships 
are of equal value. It can be non-connected if there are people in class who do not have any friends. It is homogeneous and dynamic - 
interpersonal relationships vary over time. It does not normally follow a power law, so it is not scale-free.  

(b) Network of scientific collaborations. It is an undirected network - the fact of collaborating in a publication implies both - and weighted - 
those collaborations that are more cited are considered more relevant. Moreover, it is a connected network, homogeneous -one type of 
nodes or scientists and one type of links or collaborations-, dynamic and scale-free -scientists usually have few citations, although some are 
highly cited-.  

(c) Spanish transport network [18]. In this case, we are dealing with a directed network - journeys have an origin and destination - and a 
weighted network - there are routes that are more relevant than others. It is also a connected network, heterogeneous -different types of 
passengers and transport methods-, dynamic -it develops over the years- and scale-free -there are places with more connections than others. 
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Properties of graphs 
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Prediction of amino acid mutations 

Sequencing of the human genome has revealed great genetic 
diversity in human populations, including mutations that alter 
the sequence of amino acids in proteins. These mutations, called 
nonsense variants, can be pathogenic, affecting protein 
function and patient health, or benign, with minimal effects 
[22]. More than 15 million nucleotide variations have been 
catalogued in the human population, yet many variants are still 
unknown, and many others still have an unknown impact, 
representing a challenge in human genetics [23]. The human 
immunodeficiency virus (HIV), responsible for 630,000 deaths in 
2022 [24], has a high rate of mutations in its proteins. 
Antiretroviral drugs approved to combat HIV are designed to 
inhibit two specific proteins. However, mutations in the amino 
acids of these proteins can alter their structure, causing the 
drugs to lose their effectiveness and stop working against the 
virus [25].  

Computational methods are being used to study the molecular 
mechanism of mutation-induced drug resistance and to 
develop predictive tools to detect mutations that affect amino 
acid sequence and thus protein structure and function [26]. One 
approach that has already achieved good results is the mCSM 
method [1] [27] (mutation cutting scanning matrix), which uses 
graph-based signatures to represent the wild-type structural 
environment and machine learning to predict the effect of 
mutations on protein stability. In this context, proteins are 
represented as networks where the nodes are atoms and the 
edges are the interactions between these atoms. By analysing 
how mutations affect the local and global properties of these 
networks (e.g. changes in connectivity or in the distribution of 
interactions), mCSM can predict the impact of mutations on 
protein stability and function. Extensions of the mCSM method 
have been developed in Cambridge to predict the impact of 
mutation on protein-ligand (mCSM-lig) [28] and protein-protein 
interactions (mCSM-PPI2) [29], and more recently in Fiocruz, 
Brazil and Melbourne, Australia, by Douglas Pires and David 
Ascher for protein-nucleic acid (mCSM-NA) [30], antigen-
antibody (mCSM-AB) [31] interactions and conformations and 
dynamics of proteins in combination based on normal mode 
dynamics (DynaMut) [32]. 

To develop this line of research, there are several databases, 
among the most prominent of which are UniProtKB, which 
houses an extensive collection of detailed and curated 
information on proteins. It provides data on sequences, 
functions, three-dimensional structures, cellular localization, 
interactions with other molecules and biological annotations 

[33]. DbSNP focuses on genetic variations, including mutations 
and single nucleotide polymorphisms (SNPs) [34]. The Human 
Gene Mutation Database contains detailed information on 
human genetic mutations, including data on the exact location 
of the mutation in the genome, the nature of the mutation (e.g. 
whether it is a single nucleotide substitution, insertion or 
deletion), and any known effects of the mutation on gene 
function or human health [35]. 

Drug-drug interaction prediction 

The combination of two or more drugs is known as combination 
therapy and is a common strategy to improve therapeutic 
efficacy and reduce side effects. However, inappropriate drug 
selection may result in adverse reactions. Therefore, knowledge 
of drug-drug interactions (DDIs) is of particular interest [36]. 
DDIeffects are an important risk factor for hospitalization, 
especially among elderly outpatients. In fact, it is estimated that 
DDIs contribute to 5-14% of adverse reactions in hospitalized 
patients [37]. An example of this dangerous IDD could be the 
combination therapy of warfarin (anticoagulant that prevents 
thrombus formation) with non-steroidal anti-inflammatory 
drugs (reduce inflammation, pain and fever) such as ibuprofen, 
which can cause bleeding by inhibiting the metabolism of the 
anticoagulant [38]. 

Drug-drug interaction networks can be used in this line of 
research. The underlying idea is similar to the previously 
exposed, with the particularity that the nodes represent drugs 
and diseases, and the edges indicate the association between 
them. In this case, the intention is to look for possible side 
effects and, once these side effects are located, and we 
understand why they arise, to find out how to prevent them or 
find a possible solution. Predictive algorithms take advantage of 
pharmacokinetic and pharmacodynamic data to predict how 
drugs will interact in the human body [39], so they can identify 
patterns and correlations that may not be apparent to 
traditional methods.  

The data used in studies such as the one mentioned above are 
extracted from large interaction databases known as DrugBank 
and DDInter. DrugBank has a total of 570,091 pharmaceuticals 
including approved small molecule drugs and experimental 
drugs, among others [40]. It provides more than 200 data fields 
for each drug, with half of the information devoted to chemical, 
pharmacological, pharmaceutical and other aspects of the drug 
and the other half devoted to documenting the sequence, 
structure and route of the target drug [41]. DDInter contains 
more than 236,834 IDDs involving 1833 drugs and documents 
detailed information on each DDI such as mechanisms, risk 
levels, recommendations for drug matching, etc. [4] [42].  
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Drug repositioning consists of identifying new therapeutic uses 
for drugs that have previously been approved for different 
medical purposes [43]. Until now, these studies relied on 
manual screening and statistical techniques, methods that 
required considerable time and effort. However, new 
computational methods make it possible to analyse large 
volumes of genetic and clinical data, discovering new drug 
targets and predicting the efficacy and toxicity of compounds 
with high accuracy. This accelerates the drug development 
process.  

Deep learning algorithms such as those based on graph neural 
networks are used to study drug repositioning. These tools have 
been used to identify Janus Kinase 2 (JAK2) inhibitor drugs [44]. 
Impaired JAK function is associated with various inflammatory 
disorders, such as rheumatoid arthritis and psoriasis, among 
others [45]. Inhibition of this enzyme reduces the negative 
consequences of these diseases.  

In this particular use case, data from the DUD-E database [46], 
which contains physicochemical properties of different drugs 
already approved by the FDA (Food and Drug Administration), 
have been used for training a graph convolutional network 
(GCN) provided by DeepChem [47], an open-source Python 
library with the GraphConvMol model. These data have been 
used to train a graph convolutional network (GCN) provided by 
DeepChem [47], an open-source Python library with the 
GraphConvMol model. This model is intended to determine the 
inhibitory capacity of drugs based on their molecular structure. 

This graph model converts each atom of the drug into a node 
and each covalent bond into an edge, such that each atom 
communicates its unique characteristics to adjacent atoms [48]. 
The JAK2 dataset was split into training, validation and test sets 
in a ratio of 8:1:1 and then subjected to the GraphConvMol 
model using cross-validation with 5 iterations.  

The trained model, using DeepChem's GraphConvMol 
algorithm, processed drugs approved by the US FDA to assess 
their potential JAK2 inhibitory activity. 20 active compounds 
were identified as having JAK2 inhibitory activity, including 
some already known. The JAK2 inhibitory activity of the 20 
detected drugs was evaluated experimentally and all of them 
showed inhibition of JAK2 enzyme activity. 

By integrating NGS with molecular docking techniques and 
applying it to a database of active compounds, a more 
comprehensive screening of potential JAK2 inhibitors has been 
achieved. This approach has enabled the efficient identification 
of new drug candidates that had not previously been 
considered. These compounds include ribociclib, amodiaquine, 
topiroxostat and gefitinib, all of which have shown promising 
JAK2 inhibitory potential. Furthermore, experimental validation 
has corroborated the results obtained by deep learning and 
molecular docking. Therefore, this procedure is proposed for 
drug repositioning across a broad spectrum of therapeutic 
targets. 

Use case: Drug repositioning 
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vGraph theory and its evolution through artificial intelligence 
techniques have proven to be a tool with great potential in the 
pharmaceutical industry, successfully tackling complex 
challenges in drug-drug interaction prediction, genetic 
mutation analysis and drug repositioning. Its integration with 
advanced technologies and the analysis of large volumes of 
data has significantly optimised drug research and 
development. 

Recent studies have validated the effectiveness of graph-based 
methods for predicting the effects of protein mutations and 
improving the stability of complex mutations. In addition, 
convolutional neural networks and other machine learning 
approaches have improved the prediction of drug-protein and 
drug-drug interactions, which are crucial for the development of 
safe and effective therapies. 

Conclusions 

In addition, the creation of databases has facilitated the 
identification of dangerous drug combinations and the 
optimisation of drug therapies. These advances underline the 
importance of continued collaboration between 
bioinformatics, graph theory and the pharmaceutical industry 
to improve health outcomes and accelerate innovation. 

In short, graph theory has not only revolutionised the field of 
pharmaceutical research but has also opened new 
opportunities for the development of more effective and safer 
treatments. With their ability to model and analyse complex 
systems, graphs will continue to play a crucial role in the 
evolution of medicine and public health.  
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