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Summary

The goal of this thesis is to estimate the length of Alzheimer’s disease’s preclini-
cal and prodromal phases using data from a database of individuals with amyloid
pathology at various stages of cognitive impairment. To do this, the study will
use a number of biomarkers, such as lumbar puncture markers, neuropsychological
assessment scores, and clinical imaging, to develop prediction models and disease
progression models utilizing Artificial Intelligence approaches. The research has four
primary aims, which will be discussed in further depth. The first goal is to look at
how Alzheimer’s disease progresses in the ADNI cohort, from normal cognition to
cognitive impairment and dementia. This will include following patients’ cognitive
impairment over time and detecting trends in clinical data that may suggest the
development of Alzheimer’s disease. The project will employ longitudinal data from
the ADNI cohort, a major multi-center study of Alzheimer’s patients, to do this.

The study will assess the tau pathology and neuro-degeneration profiles of the
study individuals to reach the second goal. The buildup of tau protein in the brain,
which is a characteristic of Alzheimer’s disease, is referred to as tau pathology.
Neuro-degeneration profiles, on the other hand, relate to changes in the brain that
occur as the illness advances, such as brain cell loss. The project intends to acquire a
better understanding of the underlying processes of Alzheimer’s disease and uncover
novel targets for treatments by studying these aspects. The third goal of the project
is to use a longitudinal study to discover the biomarker predictors with the highest
ability to estimate the progression of Alzheimer’s disease. This will entail examining
the links between various biomarkers and clinical outcomes in order to determine the
most accurate predictors of disease progression. The study believes that by doing
so, we may be able to better detect Alzheimer’s disease in its early stages, when
therapies are most successful.

Finally, the study intends to determine the duration of the disease’s preclinical
and prodromal stages based on the postulated natural history. The preclinical stage
of Alzheimer’s disease refers to the time before symptoms develop, whereas the
prodromal stage refers to the time when symptoms appear but are not severe enough
to fulfill the criteria for a dementia diagnosis. The study intends to acquire insights
into the natural history of the disease and influence the development of new therapies
and interventions by predicting the length of these stages.
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Abstract

The goal is to quantify the time length of the preclinical and prodromal phases
of Alzheimer’s disease using a database of individuals with amyloid pathology and
varying degrees of cognitive deterioration. We will begin with lumbar puncture
markers, neuro-psychological measures scores, and other measures retrieved from the
patients’ clinical pictures. Artificial Intelligence approaches will be used to create
prediction models and illness progression models using this data. The objectives
will be broken down as follows:

1. to investigate the progression of Alzheimer’s disease in the ADNI cohort of
patients from normal cognition to cognitive impairment and dementia.

2. Examine the tau pathology and neurodegeneration characteristics of the re-
search participants.

3. To identify the biomarkers with the best predictive potential for Alzheimer’s
disease progression through a longitudinal research.

4. Estimate the duration of the disease’s preclinical and prodromal stages based
on the postulated natural history.

Keywords: Alzheimer; Predictive Models; Machine Learning, Disease duration;
Preclinical; Prodromal
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Chapter 1

Introduction

1.1 Project Motivation

Alzheimer’s disease is a debilitating neurological illness that affects millions of indi-
viduals throughout the world. It is a progressive condition that starts with modest
cognitive impairment and develops to dementia. While there is currently no cure
for Alzheimer’s disease, early identification and care can help to slow its course
and improve patients’ and their families’ quality of life. One of the most difficult
issues in Alzheimer’s research is developing biomarkers that can properly predict
the disease’s start and progression. Lumbar puncture indicators, neuropsychologi-
cal scores, and other clinical pictures from individuals with amyloid pathology are
possible sources of biomarkers that may be utilized to develop prediction models
and disease progression models.

The goal of this thesis research is to estimate the length of Alzheimer’s disease’s
preclinical and prodromal phases in patients with amyloid pathology. To accom-
plish this purpose, the study will examine longitudinal data from patients in the
ADNI cohort using Artificial Intelligence approaches. The research will specifically
investigate the progression of Alzheimer’s disease in patients from normal cognition
to cognitive impairment and dementia, as well as identify the biomarker predictors
with the best potential to estimate the progression of Alzheimer’s disease. Further-
more, the project will examine the tau pathology and neuro-degeneration profiles
of the study participants in order to better understand the underlying causes of
Alzheimer’s disease. By merging these many data sources, the research hopes to
provide a full natural history of Alzheimer’s disease that may be used to predict the
duration of the illness’s preclinical and prodromal stages.

Overall, the findings of this thesis study have the potential to further our under-
standing of Alzheimer’s disease and give important insights into its early identifi-
cation and intervention. Clinicians may be able to act early and maybe reduce the
advancement of the disease by finding the biomarkers that are most predictive of
disease progression, eventually improving the lives of patients and their families.

1.2 Objetives

1. Analyze the progression of Alzheimer’s disease in the ADNI cohort participants
from normal cognition to cognitive impairment and dementia.

1
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2. Analyze the research subjects’ tau pathology and neuro-degeneration profiles
to better understand the underlying causes of Alzheimer’s disease.

3. Through longitudinal research, identify the biomarker predictors with the high-
est ability to predict the progression of Alzheimer’s disease.

4. Create prediction models and disease progression models utilizing Artificial
Intelligence approaches to estimate the temporal length of Alzheimer’s disease’s
preclinical and prodromal stages.

5. Create a detailed natural history of Alzheimer’s disease that may be used to
determine the duration of the disease’s preclinical and prodromal stages.

1.3 Socio-Economic Considerations in Addressing Alzheimer’s
Disease: Protecting Participants’ Rights and Promoting
Equitable Care

Alzheimer’s disease affects millions of people and their families, posing a serious
threat to world health. Even though there is no cure, improvements in early iden-
tification and management might lead to better patient outcomes. This section
examines the ethical issues surrounding research on Alzheimer’s disease and evalu-
ates the potential social, environmental, and financial repercussions of tackling this
complicated problem.

Ethical considerations

1. Informed permission: Obtaining informed permission from study participants
is necessary for Alzheimer’s disease research including biomarker prediction
models and disease progression analyses. Following ethical guidelines makes
ensuring that participants are aware of the dangers, advantages, and potential
uses of their data, promoting trust and respect for autonomy. [46]

2. Privacy and data protection: The use of AI algorithms and longitudinal data
analysis raises questions about privacy and the protection of sensitive medical
data. To ensure the confidentiality of participant data and prevent illegal access
or abuse, ethical guidelines must be implemented. [44]

3. Equity and Access: It is crucial to provide equal access to early detection and
care for people who are at risk of developing Alzheimer’s disease or who already
have it. Important ethical issues include addressing socioeconomic inequalities
and advancing inclusion in research involvement and healthcare services.

Social Impact

1. Enhanced Quality of Life: Alzheimer’s disease may be quickly identified, and
early intervention based on reliable prediction models has the potential to
greatly enhance patients’ and their families’ quality of life. Early assistance
and interventions can lighten the load on caregivers and help with better plan-
ning for future care requirements.

2. Education and Awareness: Research projects on Alzheimer’s disease work to
increase public understanding of the disease, its risk factors, and potential

2
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preventative strategies. Increased information enables people to make wise
health decisions and inspires proactive involvement in promoting brain health.
[25]

3. Reduction of Stigma: Research initiatives can work to combat the stigmatiza-
tion connected with Alzheimer’s by improving our understanding of the illness.
A more positive public image encourages compassion for those who are affected
and encourages others to assist them, which increases societal acceptability.

Economic Impact

1. Savings on costs: Early detection and treatments may lessen the financial bur-
den associated with Alzheimer’s disease. Healthcare expenses associated with
hospitalizations, long-term care, and caregiver assistance can be reduced by
decreasing disease development and postponing severe cognitive loss.

2. Research and Innovation: New discoveries in treatment methods, preventative
measures, and better healthcare delivery may be made as a result of advances
in Alzheimer’s disease research. This may have favorable economic effects,
such as the creation of jobs, funding of research infrastructure, and increased
competitiveness in the pharmaceutical and biotechnology industries. [60]

1.4 Document structure

In order to facilitate the reading of the document, the content of each chapter is
detailed below.

• Chapter 1: An introduction is given.

• Chapter 2: The articles that have been taken as a starting point for the devel-
opment of the project are presented.

• Chapter 3: The different materials used in the work are presented.

• Chapter 4: The methods of the different parts of the study are shown, with a
primary focus on the coding.

• Chapter 5: The results of the different parts of the study are shown.

• Chapter 6: The discussions obtained from the results are presented.

• Chapter 7: The final conclusions of the project are presented.

• Appendices: Additional information is provided extending that of the main
work.
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Chapter 2

Literature Review

In this chapter the used reference articles will be summarised including the relevant
plots, graphs and formula. The chapter will be ended with the applications of each
article on this paper.

2.1 NIA-AA Research Framework: Toward a biological def-
inition of Alzheimer’s disease (Jack et. all 2018) [34]

2.1.1 Introduction

The article emphasizes the significance of using biological indicators to define Alzheimer’s
disease (AD) rather than only relying on clinical symptoms. In the past, AD was
usually identified using a combination of symptoms and an autopsy (post-mortem
investigation). The line separating clinical symptoms from neuropathological al-
terations has, however, faded over time. As a result, the authors suggest an AD
research strategy built on a biomarker-based definition. This framework is focused
on identifying people who have certain biomarkers, such as amyloid plaques and tau
tangles, which are recognized neuropathological abnormalities linked to AD. The
framework does, however, offer a way for incorporating these people in the research
together with others who are on the Alzheimer’s continuum, even if not all partic-
ipants may be able to be categorized by these biomarkers. This biomarker-based
approach would bring all medical professionals and researchers together and increase
our knowledge of Alzheimer’s disease and its treatment.

2.1.2 AD Defnition, Biomarkers and AT(N) Classification

The committee described Alzheimer’s disease (AD) as a biologic entity that may
be recognized in live individuals by biomarkers. The biomarkers that were taken
into consideration to characterize AD were those exclusive to the characteristic pro-
teinopathies of AD, namely pathologic tau and Ab (b-amyloid). According to stud-
ies, those who have aberrant amyloid biomarkers typically experience the illness
more quickly and these biomarkers are the first signs of AD neuropathologic change
that can now be seen in live people. The committee came to the conclusion that
aberrant b-amyloidosis biomarkers might act as the only indicator of the pathologic
alteration associated with Alzheimer’s. But for the condition to be referred to as
”Alzheimer’s disease,” there must be proof of both pathologic tau abnormalities
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and Ab abnormalities. Alzheimer’s pathologic change would be given to people who
just had biomarker evidence of Ab deposition. Alzheimer’s disease and Alzheimer’s
pathologic change aren’t thought of as independent things, but rather as the early
and later stages of the ”Alzheimer’s continuum.” Based on their biomarker profiles,
each person may be classified into one of three main biomarker categories: those with
normal AD biomarkers, those with non-AD pathologic change, or those who are on
the Alzheimer’s continuum. Either Alzheimer’s pathologic change or Alzheimer’s
disease are referred to as the ”Alzheimer’s continuum”. See table 2.1.

Research on Alzheimer’s disease (AD) and brain aging frequently makes use of
several imaging techniques and cerebrospinal fluid (CSF) biomarkers. A methodical
strategy was used to guarantee a framework for the research that can be applied
generally. A ’+’ denotes abnormal levels and a ’-’ denotes normal levels in this
classification system, which is called AT(N), which divides the biomarkers into three
groups depending on the types of pathological processes that each one measures:

1. A comprises biomarkers of Ab plaques, such as cortical amyloid PET ligand
binding or low CSF Ab42.

2. T encompasses biomarkers of fibrillar tau, such as elevated CSF phosphorylated
tau (P-tau) and cortical tau PET ligand binding.

3. (N) represents biomarkers of neurodegeneration or neuronal injury, including
cerebrospinal fluid T-tau, FDG PET hypometabolism, and atrophy on MRI.

Cerebrospinal fluid (CSF) biomarkers and imaging biomarkers are both used
in the diagnosis of AD. The CSF biomarkers assess the concentration of proteins
within the cerebrospinal fluid at a particular time, which offers insight into both
the production and elimination of proteins, while the imaging biomarkers assess the
amount of damage that has accumulated within the brain over time. Given that
AD is a chronic illness that can endure for many years or even decades, there may
be differences between the results from these two biomarkers, but they ultimately
coincide in the long term.

Tau PET, a more recent imaging biomarker, is being used to diagnose AD and is
thought to be a trustworthy indication of tau accumulation. Two CSF biomarkers,
T-tau and P-tau, are used to diagnose AD, with P-tau being the most well studied
of the two. However, there is a significant association between T-tau and P-tau in
AD patients. P-tau is the only biomarker that has consistently shown an increase
in AD patients, despite the fact that these biomarkers may behave similarly in AD
but differently in other disorders.

2.1.3 Cognitive stages

Both interventional trials and observational research investigations can make use
of the framework. In observational research, all recruited sample members are in-
cluded regardless of their biomarker status, in contrast to interventional studies
where participants are often chosen based on the existence of specific biomarkers.
The NIA-AA framework specifies two categorical clinical staging approaches to suit
these various demands. The first system classifies the cognitive continuum into three
levels using the syndromal category staging scheme:

1. Cognitively Unimpaired (CU)
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Table 2.1: AT(N) Classification
[32]

2. Mild Cognitive Impairment (MCI)

3. Dementia

The recruited cohort as a whole, including individuals with normal Alzheimer’s
biomarkers and non-Alzheimer’s pathology as well as those in the Alzheimer’s con-
tinuum, are all subject to this plan. See figure 2.2. Only individuals who fall
inside the Alzheimer’s continuum can employ the second type of staging system,
the numeric clinical staging scheme, which may prove particularly helpful in clini-
cal studies. Additionally, the NIA-AA paradigm recognizes the value of cognitive
staging both in situations where participants have had access to earlier longitudi-
nal clinical or cognitive testing evaluations and in situations where they have not
and are being examined for the first time. The framework offers guidelines for in-
tegrating biomarker profiles with cognitive stages and coined the term ”prodromal
Alzheimer’s disease” to designate people with an early-stage Alzheimer’s biomarker
profile.

The numerical clinical staging is as follows:

1. Cognitive test results are within the predicted range. There have been no
reports of cognitive deterioration or a new development of neurobehavioral
disorders. No signs of deterioration or symptoms were noted by the observer
or, if available, by longitudinal cognitive testing.

2. Cognitive test results reveal typical performance. Any cognitive region, though,
may see a reduction in prior cognitive capability. The subject may experience
a reduction in cognitive function, or over time, minor changes in cognitive
tests may show a deterioration. Mild neurobehavioral changes like those in
motivation, anxiety, or mood may also occur in certain people. These symptoms
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Table 2.2: Syndromal Cognitive Stage
[33]

must be recent in start, persistent, and unrelated to current events. Daily
activities are unaffected despite the reduction.

3. When tested longitudinally, subjects with aberrant cognitive test scores exhibit
decrease from baseline, as stated by the subject or an observer. In addition
to memory, decline may affect other cognitive processes as well. Daily tasks
are still carried out autonomously, but with some little difficulty when they are
complicated, according to self-report or research partner verification.

4. Deterioration in various cognitive areas and/or neurobehavioral disruption are
symptoms of mild dementia. This can be mentioned by the subject, by a third
party, or by looking at the outcomes of cognitive tests. The decrease impairs
routine tasks of daily living, primarily instrumental ones, necessitating sporadic
help and reducing complete independence.

5. Progressive Cognitive Impairment, a reduction in cognitive function, and/or
modifications in neurobehavioral skills are all symptoms of moderate demen-
tia. This has a significant functional influence on everyday activities, such as
making it difficult to do simple chores, need frequent help, and causing loss of
independence.

6. A clinical interview may be impossible in cases of severe dementia due to pro-
gressive cognitive impairment, a reduction in cognitive function, or neurobe-
havioral abnormalities. due to the substantial impact on fundamental daily
tasks and self-care, full reliance results.
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2.2 Duration of preclinical, prodromal, and dementia stages
of Alzheimer’s disease in relation to age, sex, and APOE
genotype (Vermunt et. all 2019) [58]

2.2.1 Introduction and methods

This study aimed to determine the length of each stage of Alzheimer’s disease by
using a multistate modeling approach, which has been previously used in other AD
studies. The researchers of this study respected a couple of factors such as age, the
setting in which the patient is examined (clinical vs. research), sex (male or female),
APOE genotype, and baseline CSF tau levels. The data was collected from six
longitudinal cohort studies and the participants were selected according to following
criteria: 50 years or older and also showing evidence of amyloid accumulation. AD
was divided into four stages: preclinical AD, prodromal AD, mild AD dementia,
and moderate-to-severe AD dementia. Besides collecting mortality data, the study
also took in account predictor variables such as age, sex, and setting in the analysis.
The multistate model was employed to approximate the length of the disease and
the impact of different covariates on mortality. This model was fitted with distinct
numbers of covariates, for example: setting, sex, APOE genotype, and tau, with
the final model containing all five covariates. The results of this study provide
valuable insights into the duration of AD stages and the impact of various factors
on mortality.

2.2.2 Results and discussion

The study investigated the progression of Alzheimer’s disease (AD) by analyzing
data from six different groups of participants. The analysis included a total of 3268
people with an average age of 73 years at the start of the study. The length of
the study varied from 0.3 to 20 years, with an average follow-up time of 2.8 years.
Results showed that 32% of participants progressed to at least one subsequent stage
of AD. See table 2.3. Factors such as age, except for mortality in the preclinical
AD stage and progression from prodromal AD to mild AD dementia, influenced
the transition rates to subsequent stages of AD. It was also observed that a higher
progression rate was recorded in a clinical setting compared to a research setting.
Women showed a higher progression rate from mild AD to moderate AD dementia
and had a lower risk of mortality in moderate AD dementia. Carriers of APOE ϵ4
had a higher rate of progression from preclinical AD to prodromal AD and from
prodromal AD to mild AD dementia. The duration of the moderate AD dementia
stage was longer in women than in men. The overall predicted disease duration was
influenced by factors such as APOE genotype, age, and setting.

The results indicate that age has the strongest effect on the duration of the
preclinical and dementia stages, with higher progression and mortality rates. The
effect of setting showed that the preclinical and prodromal stage was shorter in
the clinical setting compared to the research setting. APOE genotype showed a
shorter age-specific duration of the preclinical stage in APOE ϵ4 carriers. Females
had a lengthier dementia stage duration amid the lower mortality. The presence
of increased CSF t-tau was associated with a shorter predementia disease period.
In some cases, the total estimated duration of the disease was longer than the
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Table 2.3: Baseline characteristics
[57]

Figure 2.1: Results
[59]

residual life expectancies, which may have been caused by participants who were
healthier or by an overestimation.. The MSM approach is a strength of the study,
but it has limitations, such as combining data from multiple cohorts and not being
representative of the general population. Clinicians can use these findings to provide
patients and their families with prognostic information.

2.3 CSF biomarkers of Alzheimer’s disease concord with
amyloid-β PET and predict clinical progression: A study
of fully automated immunoassays in BioFINDER and
ADNI cohorts (Hannson et al. 2018) [27]

2.3.1 Introduction and Methods

Treatments for Alzheimer’s disease (AD) are at the moment limited to providing
only temporary relief, however, researchers are working to develop medical drugs
that can modify the disease. An accurate diagnosis of AD is decisive for effective
treatment, although the current method based on clinical symptoms is not always
reliable. The usage of biomarkers like amyloid-β and tau protein is endorsed to
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optimize the accuracy of diagnosis. The only FDA-approved approach is a visual
analysis of amyloid-β PET scans, but this method is costly and needs specialized
equipment. Cerebrospinal fluid biomarkers such as Aβ(1-42), pTau, and tTau can
divide AD patients from those without the disease and could also predict future
progression. However, the available CSF assays for these biomarkers vary largely
between laboratories and batches. Roche Diagnostics is developing Elecsys CSF
immunoassays that are notably precise and consistent. A study was conducted to
determine if these assays can be utilised to establish global cutoffs that can be applied
to different populations, even when analyzed in distinct laboratories. The conclusion
was made that the Elecsys CSF immunoassays were consistent with amyloid PET
classification in two patient groups and had the ability to predict clinical progression
in patients with mild cognitive impairment.

The scientists followed a three-step methodology to find out if CSF biomarkers
could predict how well someone was doing on a PET scan measuring the presence of
amyloid-β proteins in the brain. Then, they made use of a ”CSF cutoff adjustment
factor” to adjust those biomarker results so that they could be used to predict future
clinical progression. Finally, they tested the ability of the adjusted cutoff to predict
future clinical progression in a second, different and independent group.

2.3.2 Study population

The study was done on two separate populations and containts three parts. In
the first part, the BioFINDER study, 728 patients were called up between 2010
and 2014 (with normal controls, with mild cognitive impairment, with Alzheimer’s
disease). The primary focus was to resolve the correlation between cerebrospinal
fluid (CSF) biomarkers and amyloid-b PET imaging by analysing the first group of
277 patients with mild cognitive impairment. The second part of the study looked
at differences of the effects of the use of the two different protocols (BioFINDER and
ADNI) for conducting CSF samples taken from 20 subjects who endured diagnostic
lumbar puncture. The results of this comparison were used to establish a ”CSF cut-
off adjustment factor.” The last part of the study was the ADNI validation study.
This study included 918 subjects (cognitively normal, mild cognitive impairment,
Alzheimer’s disease). The primary analysis group of 646 participants was utilised
to validate the concordance of the CSF biomarker cutoffs with the amyloid-β PET
classification and to assess the ability of CSF biomarker status to predict future
clinical progression in Alzheimer’s disease.

This paper focuses on studies of predictability of clinical progression, visual-
ization of CSF deposition and evaluation of CSF biomarkers in AD. The clinical
dementia rating–sum of boxes (CDR-SB) scores of 619 subjects with early or late
mild cognitive impairment (MCI) at baseline were followed for 2 years using ADNI
data. Cerebral amyloid-β deposits were visualized with positron emission tomogra-
phy (PET) imaging using either the PET tracer [18F]flutemetamol (BioFINDER) or
[18F]florbetapir (ADNI). The images were reevaluated by three independent readers
and quantitatively assessed using the standardized uptake value ratio (SUVR). CSF
samples were collected and biomarkers such as β-amyloid(1-42), phosphorylated-tau
(181P) and total-tau (Ttau) were measured. CSF biomarker cutoffs were determined
to optimize match with BioFINDER’s visual-read PET classification based on per-
formance and robustness. Pre-analytical procedures for CSF samples were compared
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Table 2.4: Performance of CSF biomarker cutoffs
[29]

between the BioFINDER and ADNI cohorts. Cut-off performance was assessed by
assessing the agreement of CSF biomarkers with PET visual read-based and SUVR-
based classifications. There was made use of a linear mixed-effects model to analyze
the predictive properties of the CSF biomarkers. This model was adjusted for de-
mographic variables such as age, gender, education, CDR-SB score at baseline, and
APOE genotype. The results of this study demonstrated that CSF biomarker cutoffs
were successfully matched optimally with BioFINDER’s visual-read PET classifica-
tion and that pre-analytical processing procedures were comparable between the
BioFINDER and ADNI cohorts. CSF biomarkers were found to have predictive
properties for clinical progression in AD.

2.3.3 Results

In the first part of the study the aim was to determine appropriate cutoff levels for
biomarkers in cerebrospinal fluid (CSF) that are concordant with visual read clas-
sifications of amyloid-b PET scans. The cohort consisted of 277 individuals, with
110 (40%) being positive and 167 (60%) negative according to the majority vote of
three independent visual reads. The interreader agreement was high with an aver-
age of 90.1%. The distribution of CSF biomarker concentrations was found to cor-
respond with the PET read classifications. Cutoffs for Aβ(1–42), pTau/Aβ(1–42),
and tTau/Aβ(1–42) were chosen based on values that separated the PET-positive
and PET-negative groups effectively and were stable across measurement levels. The
cutoff for Aβ(1–42) was set at 1100 pg/mL, while the cutoffs for pTau/Aβ(1–42) and
tTau/Aβ(1–42) were set at 0.022 and 0.26, respectively. The distribution of CSF
levels of pTau and tTau versus Aβ(1–42) revealed two clusters that corresponded
with the PET classification. The use of pTau/Aβ(1–42) and tTau/Aβ(1–42) cut-
offs showed a higher negative predictive accuracy (89%) than Aβ(1–42) alone (73%)
with the same positive predictive accuracy (91%) resulting in an overall accuracy of
90%. There was a strong correlation between CSF pTau and tTau measurements,
and there was no clear preference for either tau biomarker. See table 2.4.

In the second part, the authors examined the differences in levels of cerebrospinal
fluid biomarkers (Aβ(1-42), pTau and tTau) between two different preanalytical pro-
tocols (BioFINDER and ADNI) on samples from the same patient. I checked. They
found systematic differences (24%) in the measured levels of Aβ(1-42) in the cere-
brospinal fluid, but did not find significant differences in the measured levels of pTau
and tTau. To account for these differences, the authors apply threshold correction
factors of 0.8 for Aβ(1–42) and 0.821 for pTau/Aβ(1–42) and tTau/Aβ(1–42). We
calculated and validated these adjusted thresholds in Part 3. research. The final
cut-off values were defined as Aβ(1-42) = 880 pg/mL, pTau/Aβ(1-42) = 0.028 and
tTau/Aβ(1-42) = 0.33.
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Figure 2.2: Distribution of the CSF biomarkers colored by PET visual read classification.
(A–C) (BioFINDER cohort) and (F–H) (ADNI cohort): Frequency distribution of Aβ(1–42),
log(pTau/Aβ[1–42]) and log(tTau/Aβ[1–42]), respectively, by PET classification. (D and E)
(BioFINDER cohort) and (I and J) (ADNI cohort): Scatterplots of Aβ(1–42) versus pTau (D
and I) and tTau (E and J) with the cutoffs for the respective ratio pTau/Aβ(1–42) (BioFINDER:
0.022, ADNI: 0.028) and tTau/Aβ(1–42) (BioFINDER: 0.26, ADNI: 0.33) shown as diagonal lines.
n = 277 (BioFINDER A–E) and n = 646 (ADNI, F–J). Red bars or triangles, PET-positive; blue
bars or dots, PET-negative.

[28]
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Figure 2.3: Scatterplots of SUVRs vs CSF biomarkers in BioFINDER (A–C) and ADNI
[30]

Quantitative SUVR values were compared with qualitative imaging data from amyloid-
β PET scans. The results showed high concordance between the two methods in
the BioFINDER and ADNI groups. This study also found high concordance be-
tween CSF biomarkers and SUVR-based classification, with slightly higher concor-
dance in the BioFINDER cohort than in the ADNI cohort. Agreement between
CSF biomarkers and SUVR-based classification was very high for pTau/Aβ(1-42)
and tTau/Aβ(1-42) ratios. The ADNI MCI population (n = 619) was examined
to see if predefined cut-offs for CSF biomarkers could predict clinical development.
The results indicate that there was a significant difference in progression between
biomarker-positive subjects and biomarker-negative subjects (as measured by CDR-
SB change), with biomarker-positives progressing more. See figure 2.4 This trend
was evaluated for all three CSF biomarkers, pTau/Aβ(1-42) and tTau/Aβ(1-42)
ratios were more predictive of progression between the two groups than Aβ(1-42)
shows a significant difference. Results remained significant even after adjustments
of the APOE ϵ4 status.

2.4 Categorical predictive and disease progression modeling
in the early stage of Alzheimer’s disease (Platero and
Tobar 2022) [47]

2.4.1 Introduction and Materials

Many dementia therapies target the preclinical period, giving the chance to stop
or postpone the emergence of symptoms. Examining patterns of change in a vari-
ety of indicators, such as cognitive functioning, MRI scans, and cerebrospinal fluid
biomarkers, is required to comprehend the development of Alzheimer’s from the
early, asymptomatic stage to late-stage dementia. Cognitive tests are the conven-
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Figure 2.4: Time course of pTau/Aβ
[30]

tional way for diagnosing cognitive impairment, moderate cognitive impairment, or
dementia; however, a more precise prediction may be produced by considering nu-
merous domains. Cognitive deterioration and biomarker progression are increasingly
seen as continuing biological processes that take place over an extended length of
time in Alzheimer’s disease.

Age, gender, and APOE status are only a few of the variables that affect the risk of
progression. Combining factors associated to symptom onset, such as cerebrospinal
fluid biomarkers, brain volume, and cognitive test scores, has been attempted to
enhance the prediction of Alzheimer’s risk. In certain research, automated methods
have been utilized to categorize and forecast the diagnosis utilizing information from
various sources. In order to identify unique patterns of change and provide details
for a differential diagnosis, longitudinal studies are essential. A machine learning
system has recently been created to view the course of Alzheimer’s disease as a
continuous process, extracting long-term pathological trajectories from various data
sources. By combining temporal modeling of biomarker trajectories and extending
Cox survival analysis, survival models that take into consideration a particular clin-
ical group and account for conversion times, finite follow-up, or censoring may be
produced. This makes it possible to include exploratory variables that evolve over
time. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset was used to
examine a two-stage technique for describing the course of Alzheimer’s disease. 56
sites in the United States and Canada were used to gather more than 2100 partici-
pants, ages 54 to 92. For as long as 10 years, the study has been observed. ADNI
has been used in several articles to study age-related brain changes and the early de-
tection of AD. The ADNI has established procedures for contrasting outcomes from
various locations. The main goals of the tests were to assess cognitive function,
brain imaging, and CSF levels of beta-amyloid, tau, and phosphorylated tau. The
subjects of a second investigation were patients who had beta-amyloid data. It was
possible to anticipate cognitive decline by keeping track of patients who were first
diagnosed with cognitive impairment (CU) and identifying those whose symptoms
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had advanced to MCI or dementia over time. The conversion time was noted for
those who showed advancement.

2.4.2 Methods

Survival Analysis and Feature Selection

P markers were measured from n individuals over a series of follow-up times. The
outcome for the kth marker of the individual i at time j was recorded as yijk, with i
begin equal to 1...n, k equal to 1...p, and j equal to 1...qik. The data was analyzed
using a Longitudinal Mixed Effects (LME) model, this was mathematically expressed
as:

yijk = x′tijkβk + α0ik + α1iktijk + eijk

with tijk equal to a short-term observation time, x′
ijk equal to the row vector for the

fixed effects (including age and scan time) and βk equal to fixed effect coefficients.
The random intercept and slope for each subject and outcome are represented by
α0ik and α1ik respectively. The combination of these two values, represented by the
vector (α0ik, α1ik), follows a bivariate Gaussian distribution with a mean of zero and
a covariance matrix

∑
k. This represents how the regression parameters for the

i-th subject deviate from the population parameters. Additionally, eijk represents
a measurement error that follows a Gaussian distribution with zero mean and a
variance of σk.

A number of longitudinal measures taken from a population of CU patients were
analyzed using the Longitudinal Mixed Effects (LME) model. This allowed for the
approximate estimation of each marker’s value for each subject over time. Addi-
tionally, it was determined if the participants had dementia or MCI throughout the
observational period. When calculating the conversion time for pCU participants,
the baseline was utilized, but for sCU individuals, the censoring time was used. Each
important discrete period was given its own extended Cox model, which may take
both independent and dependent factors into account throughout time.

hij = hj exp

(
p1∑
k=1

ηk · yijk +
p2∑
l=1

θl · zil

)
The hazard ratio (HR) calculates the relative risk of an event occurring for one
individual compared to another one w.r.t. their specific time-varying characteristics
such as yijk, zil. This is further calculated using the baseline hazard function (hj) and
the effects of p1 and p2, which are independent variables yijk, zil with corresponding
coefficients ηk, ωl. The HR is determined by comparing the risk of an individual with
characteristics yijk, zil to that of a reference individual with characteristics yijk, zil
at the same point in time.

HRirj =
hij

hrj

= exp

(
p1∑
k=1

ηk (yijk − yrjk) +

p2∑
l=1

θl (zil − zrl)

)
The hazard ratio, written as HR, is a measure of the differential risk of disease

conversion between two subjects, one being characterized by the variables yijk and
zil and the other one being the reference subject characterized by yrjk and zrl. If
HR > 1, the subject characterized by yijk and zil has an increased risk of disease
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conversion compared to the reference subject, whereas if HR < 1, the risk of disease
conversion is decreased.

In the study, three models—one at the beginning of the trial and the other
two for follow-up at 12 and 24 months—were constructed to predict the conversion
of Cognitively Unimpaired (CU) individuals to Mild Cognitive Impairment (MCI)
or dementia. For each of these models, the hazard ratios were determined and
transformed into the likelihood that CU would progress to MCI or dementia using
a logistic regression model.

pirj =
1

1 + 1
HRirj

Let HRirj denote the hazard ratio at visit j, where j ∈ (0, 12, 24). The vectors
of exploratory variables for the subject and the reference at visit j are denoted by
yijk and zil, and yrjk and zrl, respectively. These vectors are formed with p1 time-
varying and p2 time-independent variables, the latter modeled using linear mixed-
effects (LME) models. HRirj was estimated using an extended Cox-LME model with
yrjk and zrl, calculated using a random subset of the training population at visit j,
which was sampled to include the same number of subjects representing both the
stable cognitively unimpaired (sCU) and prodromal cognitively unimpaired (pCU)
patients. The components of yrjk and zrl were defined by the average values of this
population and scaled by their standard deviations, resulting in each exploratory
variable being defined as a z-score. If HRirj > 1 for a subject with yijk and zil, then
the probability of conversion into mild cognitive impairment (MCI) or dementia for
that subject at visit j is denoted by pirj and is greater than 0.5. Conversely, if
HRirj < 1, then pirj < 0.5.

The accuracy was then checked using a cross-validation process to make sure it was
satisfactory and to guard against overfitting. The method consists of two steps: an
inner step that chooses the optimal feature subsets for the models and an outer step
that estimates the model’s performance objectively (see overfitting). It was a 10-
fold k-fold cross-validation technique design. The minimal-redundancy-maximum-
relevance (mRMR) method was used to choose the optimal feature subsets. The
inner stage involves repeatedly using the mRML algorithm, randomly partitioning
the training data, and recommending feature combinations 100 times. The best
three feature combinations were then chosen, and 30,000 assessments of chosen sub-
sets for each dimension were conducted in the outer stage. Sensitivity, specificity,
accuracy, and the area under the ROC curve were used to evaluate the models. On
the basis of their frequent occurrences in the feature subsets and superior classifica-
tion scores, the top models were finally picked. See Figure 2.5.

Disease progression models

While the Long-Term Joint Mixed Model (LTJMM) mandates that long-term tra-
jectories must be linear, GRACE permits many monotonous curve forms without
specifying any parametric families. The original values of the outcomes were con-
verted into percentiles using a weighted empirical cumulative distribution function
prior to fitting the DPM techniques to the data. This makes sure that the results
were orientated to be growing and on a common scale, which are the indicators of
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Figure 2.5: Cross-validation procedure
[50]

a disease’s progression from normal to abnormal. To create a uniform scale, the
percentile scale was chosen. The weighted empirical cumulative distribution func-
tion was used to generate the percentiles. The old scale was then changed using the
expected values on the new scale.

GRACE method

A new component is added the to mixed effects modeling represented by gk which is
a continuously differentiable monotone function and δi which is the subject-specific
time shift with mean zero and variance σ2

δ . The short-term observation time is
represented by tcijk = tijk − (tiend/2) and the response variable is given by:

yijk = gk
(
tcijk + δi

)
+ x′

tcijk
βk + α0ik + α1ikt

c
ijk + eijk

where tiend = max(qik) and k represents the long-term progression time which is
computed from tcijk + δi. A self-modeling regression model is applied with linear
subject-level effects and long-term features with nonparametric monotone smooth-
ing. The goal of the algorithm is to estimate both the time shift parameters and
the short-term and long-term curves.

LTJMM method

The parameter γk corresponds to the outcome-specific slope with respect to the
shifted or long-term time tcijk+ δi. The time shift δi quantifies the progression of the
i-th individual relative to the population and is assumed to follow a normal distri-
bution with mean 0 and variance σ2

δ (δi ∼ N(0, σ2
δ )). The distribution assumptions

for random effects are multivariate Gaussian, such that αi ∼ N(0,Σα).

yijk = γk
(
tcijk + δi

)
+ x′

tcijk
βk + α0ik + α1ikt

c
ijk + eijk

18



CHAPTER 2. LITERATURE REVIEW

Time zero

The study assumed that the time shift, δi, follows a normal distribution with mean
0 and variance σ2

δ , and the center years of visits are represented by tcijk. The time
shift measures the relative progression of the disease in the training population,
taking into consideration the variability of biomarkers. However, the time of onset
may be biased due to the unequal representation of MCI subjects and CU subjects
in the population. For a designated year of cognitive decline, or time zero, tonset,
the marker trajectories of sCU subjects should be located to the left of tonset, with
evolution in negative long-term times. Conversely, the marker trajectories of pCU
subjects should cross tonset and move towards positive values. The proposed tempo-
ral ordering allows for the measurement of sensitivity and specificity, with specificity
being defined as the percentage of sCU subjects whose last visits (tciend + δi where
iend = max(qik)) had negative times compared to the total number of sCU subjects.

SPE =

{
i | (i ∈ sCU) ∩

((
tcicend + δi

)
< tonset

)}
sCU

Sensitivity was established using two measures: (a) the proportion of pCU subjects
who did not show cognitive decline at baseline and whose first visit (tci1 + δi) was
negative. The proportion was calculated with respect to the total number of pCU
subjects (i1).

SEN1 =

{
i | (i ∈ pCU) ∩

((
tci1 + δi

)
< tonset

)}
pCU

and (b) the ratio of pCU subjects whose last visits have positive times with respect
to the total number of pCU subjects:

SEN2 =

{
i | (i ∈ pCU) ∩

((
tciend + δi

)
> tonset

)}
pCU

Thus, a time zero was estimated utilising the maximisation of the three previous
classification measures.

2.4.3 Results

The objective of this study was to develop cognitive decline prediction models using
neuropsychological tests, cerebrospinal fluid (CSF) biomarkers, and MRI measure-
ments of brain anatomy. Five MRI brain structure images, thirteen NMs, and five
CSF biomarkers were used in the investigation. Due to the amount of assessments
they underwent and the accuracy of their predictions, the best predictive models
were chosen. The results show that the categorization scores of the two populations
were comparable. It was advised that the ADAS11, FAQ, and EcogSPTotal scores
as well as the normalized hippocampus volume be incorporated into the prediction
models. Additionally, the existence of pTAU or the ratio of pTAU/Aβ or TAU/Aβ
were taken into account when CSF markers were available. See table 2.5. The results
demonstrated that scores increased with time, particularly from the baseline (0m)
to the 12-month point, but there was no discernible change when age, gender, and
years of schooling were taken into account. The proposed prediction models were
also tested using the previously observed DPM algorithms GRACE and LTJMM,
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Table 2.5: Markers coefficients
[49]

Table 2.6: Scores for predictions
[48]

and the outcomes agreed with the doctor’s diagnosis. Based on the categorization
of individuals and clinical groups, as well as the assessment of conversion times for
patients exhibiting prodromal cognitive deterioration, the effectiveness of the DPM
algorithms was assessed. While the anticipated time zero for the second group (NM
+ MRI + CSF) was 2.6 years with both GRACE and LTJMM, it was 1.4 years with
GRACE and 3.6 years with LTJMM for the first cohort (NM + MRI).

2.4.4 Discussion

The researchers suggest a two-stage, data-driven framework for modeling Alzheimer’s
disease disease progression and categorical diagnostic prediction. The approach was
used to assess whether the conditions of a population recruited by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) who were initially identified as cognitively
unimpaired had later progressed to moderate cognitive impairment or dementia. In
order to further explore the relevance of amyloid pathology, the method was further
applied to a subset of the original data containing people having amyloid and tau
information made accessible by CSF biomarkers.

By merging a limited fraction of MRI-based data, CSF markers, and conventional
cognitive tests, the researchers created predicted models of CU-to-MCI/Dementia
development. The developed models make use of longitudinal data. The minimum
redundancy maximum relevance (mRMR) approach was used to preselect feature
subsets of various dimensions, and a resampling method was then used to identify
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the feature subsets that appeared most frequently for each dimension. The proposed
feature subsets were assessed for cross-validated classification accuracy, and the cor-
relation matrices between the random intercepts and random slopes from the chosen
markers show that these measures support the other approaches and also provide
additional insight into the issue. Numerous biomarker combination techniques that
are utilized for clinical categorization and subject selection for clinical trials have
been the topic of prior investigations. The pTAU/Abeta ratio and other CSF in-
dicators somewhat increased classification accuracy. It is important to confirm the
estimated dates of progression because the time zero was determined by the clinical
categorization of patients or the concept of preclinical AD. The pTAU/Abeta ratio
closely matches PET categorization and estimated clinical progression, and values
over 0.028 denote successful outcomes for A. The study offers a solid basis for cre-
ating verifiable and precise prediction models that can help identify patients who
experience cognitive decline more quickly and facilitate the selection of patients for
clinical trials.

2.5 Longitudinal survival analysis and two-group compar-
ison for predicting the progression of mild cognitive
impairment to Alzheimer’s disease (Platero and Tobar.
2020) [51]

2.5.1 Introduction and Materials

A crucial goal in the treatment of Alzheimer’s disease is mild cognitive impairment
(MCI), which is a stage between healthy aging and dementia. But MCI is a diverse
condition with a range of clinical consequences. To correctly identify MCI patients
who may develop Alzheimer’s disease, it is crucial to comprehend Alzheimer’s disease
and how it progresses. Clinical choices on treatment plans and the early identifi-
cation of patients at risk can be aided by accurate diagnostic prediction with high
sensitivity and specificity. The course of Alzheimer’s disease has been examined
using a variety of disease indicators, such as blood tests, neuropsychological evalu-
ations, and neuroimaging biomarkers. While some studies have indicated that neu-
roimaging, and more especially structural MRI-based indicators, support an earlier
and more accurate MCI-to-Alzheimer’s diagnosis, some have showed that baseline
cognitive measures have high power in predicting MCI progression to Alzheimer’s
disease. Combining these many methods may enhance the effectiveness of early
diagnosis.

Individual patterns of change can be seen in longitudinal research, which provides
pertinent data that can help narrow the differential diagnosis. For the purpose of
overcoming the limitations of group comparison based on categorizing MCI par-
ticipants into converters and non-converters, survival models take into account a
distinct clinical group that accounts for conversion timeframes and finite follow-up
or censoring. Cox proportional hazards regressions were used to create predictive
models for the transition from MCI to Alzheimer’s. The validity of these models de-
pends on the exploratory variables, which may not hold true for indicators that may
distinguish between individuals with stable MCI and those who are experiencing
progressive MCI.
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In patients with varied numbers of clinic visits, the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset was used to assess prediction models of MCI-
to-AD conversion. The dataset includes three years’ worth of longitudinal brain
T1-weighted MRI data from MCI patients who were monitored. The photos were
preprocessed using the N3 technique and B1 bias field correction. Patients were
divided into two groups - those with stable MCI (sMCI) and those who converted
to probable AD (pMCI) within the three-year follow-up period.

2.5.2 Methods

The goal of the study was to use a combination of brain imaging, cognitive assess-
ment, and machine learning approaches to predict the development of moderate
cognitive impairment (MCI) to Alzheimer’s disease (AD). A three-stage methodol-
ogy, consisting of feature extraction, feature selection, and classification, was em-
ployed in the investigation. The researchers collected a collection of data from MRI
scans and cognitive tests, narrowed them down using an algorithm, and then used
two longitudinal classification algorithms to assess various feature subsets. Specific
region-specific brain volumes and cognitive test results were among the features that
were chosen. Mixed effects modeling was employed by the researchers to analyse
longitudinal data and find the best feature subsets. Using a mix of brain imag-
ing, cognitive testing, and machine learning approaches, the study offers a thorough
approach to predicting the development of MCI to AD.

Longitudinal Classification

Based on the baseline and time-varying factors, the Cox proportional hazards model
is used to calculate the risk of clinical events (such the conversion from MCI to AD).

h(t,X) = h0(t) exp

(
p∑

k=1

αk ·Xk

)
where h0(t) is the baseline hazard function and α= (α1, α2, ..., αp) is a vector of
regression coefficients.

Longitudinal mixed-effects (LME) models are used to model the longitudinal
trajectories of the measurements, which allow estimates of these measurements to be
known at any time. The influence of sociodemographic characteristics, such as age,
sex, education, and the APOE genotype, is also considered in the LME modeling.
The best predictive results were obtained when constructing LME models that added
age, sex, and years of education as covariates. The hazard ratio (HR) quantifies the
differential risk of a subject characterized by XS in relation to a reference subject
characterized by XR :

HR (XS, XR) =
h (t,XS)

h (t,XR)
= exp

(
p∑

k=1

αk (XS,k −XR,k)

)
If HR is greater than 1, it means that the individual characterised by X has a higher
risk of disease conversion compared to the reference individual XR, as indicated by
the values of k in equation (1). On the other hand, if HR is less than 1, the risk of
conversion is lower. The primary assumption underlying the Cox model is that the
ratio of the hazard functions for the two groups remains constant over time.
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L =
M∏

m=1

Lm(α) Lm(α) =
h (tm, Xm)∑

r∈Rm
h (tm, Xr)

The method of maximizing partial likelihood is utilized to compute the α coef-
ficients (Cox, 1975). The time conversion from MCI to AD is denoted by m and
is part of the set 1, 2, ..., M, where M represents the number of converts. The
partial likelihood is the product of M terms, for each calculated between the hazard
functions of the subjects whose diseases converted at the mth event of time (tm)
in relation to all subjects whose diseases haven’t converted. The risk set at tm is
known as Rm, and it indexes the subjects who remain as MCI patients at tm. The
unknown α parameters of the model are then maximized with respect to the partial
likelihood function. A set of equations is derived from this process, which enables
the estimation of α parameters using a numerical optimization method.

Time is not a factor for variables like gender or years of schooling. While time
is proportionate to age. A longitudinal study’s majority of biomarkers, however,
are neither stable nor proportionate to time. For both independent and dependent
variables throughout time, the Cox model may be expanded:

L =
M∏

m=1

Lm(α) Lm(α) =
h (tm, Xm)∑

r∈Rm
h (tm, Xr)

where the second term in the exponential includes the effects of p2 timevarying vari-
ables Y(t) = (Y 1(t), Y 2(t), ...,Yp2(t)) with associated coefficients δ = (δ1, δ2, ..., δp2)
The time-varying variables and their associated coefficients are included in the ex-
ponential equation of the model, and the model’s parameters are estimated by max-
imizing partial likelihood. When analyzing the extended Cox model parameters,
the values of markers at each conversion time for all individuals in the risk set are
required. However, measurements may be obtained at random intervals and the ac-
quisition and conversion times may not line up in longitudinal studies. LME models
are used to model longitudinal data and estimate values at any time in order to get
around these challenges.

LME models are extensions of linear models that take into account the causes of
variation within and between subjects and allow for both fixed and random effects
(Bernal-Rusiel et al., 2013b). The LME model is written as follows:

Yi = Ziβ +Wibi + ei,

where Yi is the vector of a feature for subject i’s time points, Zi is the design matrix
for the fixed effects (which includes elements like clinical group, age, sex, education,
and scan time), and are the fixed effects coefficients, which are the same for every
subject. For subject-specific random effects in addition to the fixed effects, a mixed
effects model is employed, where Wi is the design matrix for the random effects, bi
is a vector of the random effects, and ei is a vector of measurement errors. The bi
components show the deviation of the subset of regression parameters for the ith
subject from the population’s values.

Age, sex, education level, and other sociodemographic details were gathered. The
genotype of the Apolipoprotein E (APOE), a genetic risk factor for AD, was also
recorded. Also taken into account was the relationship of time and APOE genotype
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status. The greatest predictive outcomes were from LME modeling without APOE
genotype as a covariate, with age, sex, and education as covariates. The clinical
group was taken into account via a Boolean variable and its interaction with time
for a two-group comparison.

yij = (β1 + β2 ·Groupi +β3 · Agei +β4 · Education i + β5 · Sexi+bri)

+ (β6 + β7 ·Groupi +bsi) tij + eij

where tij is the scan time from baseline (in years), yij is the jth measure of a feature
from subject I, j=1,..., n indexes the time points, n indicates the number of scans
for subject I and βr = (β1, β2, β3, β4, β5)

T and βs = [β6, β7]
T stands for slope and

intercept, respectively. If the ith subject advances to AD, the boolean variable
Groupi is true; otherwise, it is false. Unfortunately, the LME modeling did not take
into account the impact of the clinical group in the survival analysis:

yij = (β1 + β2 · Agei+β3 · Education i + β4 · Sexi +bri)

+ (β5 + bsi) tij + eij·

Predictive models using the two-group comparison

The random vectors bi and ei, which adhere to mean zero-Gaussian multivariate
distributions, describe the difference between the longitudinal trajectory of each
subject and the LME model. These vectors are utilized to determine the longi-
tudinal trajectory residue, and the features are trained and classified using linear
discriminant analysis (LDA). No parameter adjustments are necessary because the
LDA is fed the marginal residues of the markers’ longitudinal trajectories as inputs.

li =
1

ni

ni∑
j=1

(
yij − (Zi)j β

)
,

where (Zi)j is the design matrix’s j-row vector, which is triggered by the clinical
group’s boolean variable (Groupi = 1), indicating the effects of AD progression
relative to stable MCI.

Predictive models using survival analysis

The models were modified to take age, education, and gender into consideration.
The disease conversion time for those who progressed to AD and the censoring time
for those with stable MCI were both known. Extended Cox models were created
at each key time point, and hazard ratios were then calculated and turned into
probabilistic terms of conversion from MCI to AD using logistic regression:

p (XS,v) =
1

1 + 1

HRv(XS,v ,XR,v)

,

Where HRv is the hazard ratio in visit v with v = 0, 12, 24, 36. The exploratory
variables for the subject and the reference in the visit v are represented by the vectors
XS,v and XR,v, respectively. These vectors are made up of p1 time-independent
and p2 time-varying variables, with the latter being modeled by means of LME.
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Table 2.7: The most significant p-values
[52]

Feature selection and building the predictive models

The study employed layered cross-validation to avoid overfitting and biased model
performance predictions. The best feature subsets were selected using an inner
loop, while the model’s performance was objectively estimated using an outer loop.
Using a 10-fold cross-validation design, the procedure was repeated with different
data divisions in both loops to enhance repeatability. Using a collection of combi-
nations of markers with different dimensions that were assessed in the outer loop,
predictive models were built for each inner loop. The chosen subsets for each di-
mension underwent 30,000 evaluations, with the best feature combinations in terms
of classification accuracy being selected for each outer iteration. The most accu-
rate prediction models had higher AUC values and a decent ratio of sensitivity to
specificity.

2.5.3 Results

Using the suggested methods, the study processed 1330 images from 321 partici-
pants. The longitudinal image processing pipeline’s consistency was verified using a
quality control procedure. For each visit by each individual, cortical thickness and
subcortical volumes were measured using Freesurfer’s longitudinal pipeline. 40 MRI
predictors of cortical and subcortical regions as well as 11 neuropsychological mea-
sures were obtained during the feature extraction stage. Each of the 51 indicators
was subjected to a univariate study before a multivariate analysis was carried out
to produce the suggested prediction models.

Univariate analysis of the markers

In the study, marker discrimination capacities according to clinical group and time
were tested using LME modeling:

H0 : Cβ = 0 and HA : Cβ ̸= 0

The contrast matrix was used to test the null hypothesis, and table 2.7’s p-values for
the top markers that distinguished between sMCI and pMCI are displayed. Based on
the sum of the two p-values, the markers were sorted, with absent markers denoting
subgroups of markers or the same marker on different sides. The left hippocampus
normalized volume was the first volume measurement. The smoothed longitudinal
trajectories of a few of the top biomarkers from the univariate analysis were shown
in Figure 2.6.

Performance of the predictive models of MCI-to-AD progression

The experiment included both a survival analysis method and a two-group compari-
son technique. Using the two-group comparison method, the longitudinal trajectory
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Figure 2.6: Longitudinal trajectories of biomarkers
[55]
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Table 2.8: Scores for predicting MCI-to-AD conversion: only MRI-based biomarkers.
[54]

residue of a few markers was compared between MCI persons who progressed to
AD and those who did not. Based on the longitudinal trajectories of the selected
markers, the survival analysis technique was used to examine the time to conversion
to AD.

Both techniques used longitudinal mixed effects (LME) modeling to identify the
trajectories of the selected markers for each person. The scientists found that in-
tegrating MRI-derived markers with neuropsychological measures (NMs) improved
prediction accuracy compared to using only MRI-derived indicators. The results
showed that during the longitudinal investigation, the extended Cox models had a
better overall balance of sensitivity and specificity, and they also showed an increas-
ing trend in sensitivity and specificity scores. While the specificity of the two-group
comparison approach increased over time, its sensitivity remained stable over time at
roughly 74%. The survival analysis method outperformed the two-group comparison
technique after the second year.

When compared to recently published models, the suggested prediction models
performed well overall and revealed combinations of markers with comparable per-
formance. The study is significant for generating baseline ratings with a more con-
trollable and unique feature vector than those generated by previous cross-sectional
methodologies. The prediction models improved as more patient visits became avail-
able. In addition, the study included more people and visits to the ADNI database
in developing the prediction models compared to past papers.

See table 2.8 and table 2.9.

Correlations between the proposed predictive models and ADAS-Cog

The ADAS-Cog, a cognitive exam that scores a person’s memory, language, praxis,
and orientation, is crucial for Alzheimer’s disease clinical trials. The test’s longitu-
dinal score can be used to accurately estimate how long it will take MCI patients to
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Table 2.9: Scores for predicting MCI-to-AD conversion: only multisource biomarkers.
[53]

progress to AD. The combination of the ADAS13 with additional indications, such
as MRI-based markers and NMs, increased the accuracy of predictions for the con-
version of MCI to AD. The ADAS13 is the most reliable approach for discriminating
between sMCI and pMCI patients. In multisource models that combine ADAS13
with other markers, the association between ADAS13 scores and predictive models
rose over time. The prediction models with the best sensitivity and specificity ratios
were those that exclusively employed MRI data.

2.5.4 Discussion

The authors draw attention to past studies that focused on a single biomarker, such
as shrinkage rates in specific brain areas, which does not sufficiently account for the
complexity and diversity of AD. The two objectives of longitudinal studies of MCI
patients are to maximize prediction accuracy and to identify a limited number of in-
terpretable signs that aid in understanding the course of AD. Predictive models were
created using longitudinal data supplied by MCI patients. The mRMR method was
used to extract a large number of cortical and subcortical features from the results
of neuropsychological tests, MRI data, and feature subsets of different dimensions.
The most frequent feature subsets were then analyzed for each dimension using a
resampling method. The best feature subsets for the final models were chosen based
on how frequently suggested features were evaluated using the CV method, better
AUC values, and the optimal balancing of sensitivities and specificities.

Comparing two clinical groups—stable MCI (sMCI) and progressive MCI (pMCI)—and
employing models based on survival analysis were the two approaches used to build
longitudinal prediction models. The longitudinal trajectories of the markers were
modelled using LME in both methodologies. However, the two-group compari-
son strategy considered differences between converter and non-converter individu-
als, whereas the survival analysis only examined data up to conversion or censoring
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dates. The analysis of the MMSE of the investigated MCI population over a pe-
riod of 36 months revealed that the pMCI group was not homogenous with regard to
conversion time, which undermined the fundamental tenet of the two-group compar-
ison approach. The AD-prediction markers were reevaluated and statistical survival
analysis approaches were used to overcome these problems. The Cox proportional
hazards model and LME models were linked to examine the relationship between
time-dependent markers and the timing of conversion to AD or the censure times
of the samples. In both instances, a comparatively modest collection of easily com-
prehendible characteristics that created reliable, robust, and trustworthy prediction
models were chosen. Additionally, it was easy to add the patients’ age, sex, and
number of years of schooling as variables in the prediction models. In order to fairly
evaluate the performance of the prediction models, nested CV loops were utilized.
Two nested CV loops were used in the process: an inner loop to choose the optimal
feature set for the recommended models, and an outside loop to provide an impartial
evaluation of model performance. The use of k-fold CV was suggested as a way to
uniformly evaluate prognostic models of MCI-to-AD development. Instantaneous
risk assessment is made possible by the dynamic prediction frameworks’ capacity to
update the predictive models whenever fresh longitudinal measurements for the tar-
get patients become available. According to the authors, the recommended models
outperform models based on lone markers, and the combination of biomarkers and
cognitive tests can enhance the prediction of the change from MCI to AD.

One of the study’s flaws is that the outputs of the prediction models could have
been altered by the choice of a certain cohort. Additionally, more samples could
be employed. It is customary to use a linear function to characterize dynamic
changes in structural MRI-based markers, but more complex modeling could result
in predictions from predictive models that are more accurate. The probable AD
diagnosis has an accuracy of 70–90% compared to pathological diagnosis, and the
research’s criteria for dividing MCI patients into stable and converter groups are
not especially unique. The three-year follow-up period utilized in the study makes
it simpler to compare the various suggestions. When predicting the onset of AD,
predictive models with follow-up periods longer than three years are less reliable.

2.6 Predicting the progression of mild cognitive impairment
using machine learning: A systematic, quantitative and
critical review (Ansart et. all 2021) [16]

2.6.1 Introduction

Machine learning algorithms have been used to identify and forecast clinical status
in Alzheimer’s disease, which emphasizes the importance of early diagnosis. It’s cru-
cial to distinguish between moderate cognitive impairment (MCI) sufferers who will
develop Alzheimer’s and those who won’t. This paper covers techniques for utilizing
machine learning to forecast this evolution and suggests a systematic and quantita-
tive examination of these investigations. The review will outline the various features
of the suggested approach, analyze the data to determine which features have the
greatest influence, and offer suggestions for assuring the algorithm’s applicability in
clinical settings.

29



CHAPTER 2. LITERATURE REVIEW

Figure 2.7: Recent trends
[18]

2.6.2 Materials and methods

The four-part query used to pick the paper on Scopus produced the identification
of 330 articles, which were then processed and reduced to 172 articles by removing
unrelated papers. Only articles (sMCI and pMCI) with more than 30 people in each
category were thoroughly read, yielding 111 articles for analysis. One of 19 readers
evaluated each of the 111 articles before one of the authors completed a final curation
to ensure homogeneity. A table including the papers and reported values may be
obtained on the provided website. A total of 234 trials were looked at. To prevent
having a detrimental effect on the experiments, the problems mentioned in each
article were taken from the table.

The text outlines a number of methodological problems that were discovered while
reading studies on the classification of people with various types of mild cognitive
impairment (MCI) using machine learning algorithms. These problems include the
absence of a test data set, feature embedding on the entire data set, data leakage,
automatic feature selection on the entire data set, and choosing the input visit
for pMCI patients based on the date of their AD diagnosis. The authors further
point out that additional methodological problems that did not fall under these
headings were also observed, like incompatibility between various reported metrics.
The authors state that only articles with no reported issues were used when analyzing
the performance of the methods, but acknowledge that some issues may not have
been detected or identified during reading.

2.6.3 Descriptive analysis

the number of articles published on the prediction of MCI to AD dementia has been
steadily increasing since 2010, along with an increase in the number of individuals
used for experiments, with 84.6% of articles using data from the ADNI study. The
reported AUC is also increasing over time, which can be attributed to new algorithms
and features, as well as the use of larger data sets. See figure 2.7 and figure 2.8.

The most frequently used feature is T1 MRI, which is followed by cognitive tests
and socio-demographic characteristics. Less often used biomarkers in research in-
clude FDG PET, APOE, and CSF AD. Whereas neuro-psychological tests often
assess many cognitive domains, studies using T1 MRI mostly concentrate on partic-
ular brain regions of interest or the entire brain. Since T1 MRI researchers frequently
originate from the medical imaging community, its ubiquity is not surprising. The
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Figure 2.8: Recent trends
[17]

level of familiarity with them in the imaging community may also have an impact on
the selection of cognitive characteristics. In none of the cited research was functional
MRI employed.

Support Vector Machines (SVM) and logistic regressions are the most often em-
ployed algorithms in studies of Alzheimer’s disease; they are utilized in 32.6% and
15.0% of instances, respectively. 63.2% of the SVM studies employ non-linear ker-
nels, whereas 30.3% use linear kernels. Only 10% of the time do other algorithms
get used. While neural networks have just been employed in the previous two years,
random forests have been in use since 2014. The profession has been sluggish to
adopt new algorithms even though the percentage of SVM has been declining since
2013 on average. This can be the case since the algorithm of choice has little to no
effect on performance.

17.5% of Alzheimer’s disease-related experiments use leave-one-individual vali-
dation, while 29.1% use the 10-fold cross-validation approach. The same subjects
are used in about 7.3% of investigations, whereas 7.3% train one cohort and test
another. The algorithm’s performance may be impacted by the cross-validation
method used, with a bigger training set and smaller test set being preferable. To
compare the outcomes of various investigations, reporting variance or confidence
intervals is crucial; however, this data was not gathered in the current study.

2.6.4 Performance Analysis

A linear mixed-effect model was utilized for the performance analysis in the study
to assess how different method characteristics affected the AUC (area under the
curve) of the prediction models. The findings demonstrated that the AUC was
significantly improved by the use of EEG and MEG, domain-targeted cognitive
characteristics, FDG PET, or APOE. However, neither the algorithm type nor the
subject count demonstrated a substantial impact, nor did the utilization of the ADNI
cohort and longitudinal data. The use of T1-ROI features, FDG PET features, and
domain-targeted cognitive features had a significant effect on the AUC when just the
studies carried out on the ADNI cohort were examined. The study compared the
effects of using each feature individually to using them all together. The findings
demonstrated that employing T1 MRI in combination with other features had a
considerably better effect on the AUC than doing so with just T1 MRI. However,
the correlation between cognition and FDG PET was not significant.
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Cognition, medical Imaging and biomarkers

The study demonstrated that the performance of AD diagnosis methods was greatly
enhanced when cognitive factors were included to T1 MRI. The performance of
other modalities, including EEG, MEG, FDG PET, and APOE, also significantly
improved. However, compared to using cognitive variables alone, using additional
modalities in combination with cognitive variables did not significantly improve
performance. Consequently, approaches that are only cognition-focused, especially
those that incorporate domain-specific cognitive scores, ought to be further investi-
gated because they are affordable and have a history of improving AD diagnosis.

The most accurate modality for predicting the development to AD, according to
the researchers, is FDG PET, which is followed by cognitive characteristics and T1-
ROI features. T1 MRI alone did not perform as well as other modalities, and neither
amyloid PET nor CSF value significantly affected the accuracy of the predictions.
Although Tau PET has not been thoroughly researched, early detection is predicted
to benefit from it. Performance may also be significantly impacted by the use of
EEG or MEG, but further study is required to prove this. Therefore, the authors
contend that although cognitive features may be a more cost-effective option for
routine clinical use, imaging methods can still offer insightful information on the
progression of disease.

Longitudinal data, algorithms and other methodological characteristics

The evolution of AD can be better understood with the help of longitudinal data,
which may also enhance prediction accuracy. However, the review study found that
performance was unaffected significantly by the use of longitudinal data. This is in
line with earlier research on AD and other degenerative disorders in general. Since
that there is no distinct temporal marker of illness progression prior to diagnosis,
designing longitudinal research in age-related disorders can be difficult. Moreover,
patients are visited at various intervals, and not all features are acquired during
each appointment, which causes missing values. Hence, compared to cross-sectional
techniques, methodologies for longitudinal analysis in AD are more exploratory.
It is important to remember that longitudinal data might still be beneficial for
comprehending the disease process and locating potential AD biomarkers. To further
understand how to include longitudinal data into AD prognostic models, more study
is nonetheless required.

Table 2.10 demonstrates that there is no appreciable difference in performance
depending on the algorithm used, with non-linear models having a marginally higher
coefficient than linear and modified linear models. Unfortunately, none of the model
coefficients are statistically significant. The authors take into account how the model
selection and the application of imaging features interact (see table 2.11). The
interaction between linear models and imaging characteristics is highly positive,
demonstrating that adding imaging features can significantly improve performance
when using a linear model, even if linear models perform noticeably worse than
other models. Similar outcomes are shown for generalized linear models, but the
impact on non-linear models is negligible. The authors draw the conclusion that
non-linear models, which do not greatly benefit from the addition of imaging data,
yield the best results when the various coefficients are combined. Both the use of
the ADNI data set and its impact on data set size are examined by the authors,
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Table 2.10: Impact of method characteristics
[14]

Table 2.11: Impact of method characteristics
[15]

who find that neither element significantly affects performance. Nevertheless, the
outcomes differ slightly depending on whether all experiments or just the ADNI
experiment are used. Despite using a hierarchical grouping of the variables to boost
statistical power, the authors highlight that few p-values and corrected p-values are
significant, indicating that the reported performance measures’ variation is excessive
in comparison to the effect sizes.

The performance of the classification models was not significantly affected by
the number of subjects in the data set (coefficient = -0.39, p = 0.76). In Section
5.1.2, the effect of data set size was examined in more detail. The performance was
unaffected by the use of the ADNI data set (coefficient = 0.011, p = 0.995), however
the outcomes differed slightly depending on whether all experiments or just the
ADNI experiment were used. It was challenging to determine the effect of its usage
independently from other variables because only 14 of the listed research did not
use the ADNI database. Even though the variables were grouped hierarchically to
boost statistical power, only a small number of p-values and corrected p-values were
significant. This shows that there is a large range between the stated performance
metrics and the effect sizes.
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Figure 2.9: Relation between the AUC and n
[19]

2.6.5 Design of the decision support system and methodological issues

The effectiveness of machine learning models for predicting Alzheimer’s disease is
explored in relation to a number of concerns that have been observed in the research
that have been analyzed (AD). The absence of test data sets and data leakage are the
first problem, which might cause an overestimation of the model’s performance. The
temptation to execute feature selection throughout the entire data set is the second
problem, which can also result in overfitting. An upper-limit and a lower-limit of
AUC are determined by analyzing how well models perform as a function of data
set size. The two lines converge to an AUC of approximately 75% as the number of
subjects rises, which may indicate the genuine performance for current state-of-the-
art methodologies (see figure 2.9. High-performing studies typically include more
detected faults.

The use of test subject characteristics as well as the use of the diagnostic date are
excluded since they may hinder the approach from being used to clinical practice.
It is advised to favor approaches that forecast the precise dates of progression over
those that predict the diagnosis at a specific time when it comes to the choice of
time-to-prediction, which is also mentioned. Lastly, suggestions for how to assess
various approaches objectively without abusing basic metrics like AUC or accuracy
are discussed. According to the authors, one should use such measures carefully
in order to avoid discouraging the publication of novel methodological research and
obscuring the importance of understanding why some approaches are more effective
than others.

2.6.6 Conclusion

A thorough and quantitative assessment of 111 articles on the automatic forecasting
of the clinical status progression of people with mild cognitive impairment is pre-
sented in this article (MCI). According to the study, cognitive factors and FDG PET
are more useful than other feature categories in predicting dementia progression in
MCI patients. Despite the several strategies created for this imaging modality, T1
MRI alone produces noticeably lesser performance. The article offers recommen-
dations for developing a technique that can serve as clinical decision support, em-
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phasizing the value of an independent test set and pre-registering the time window.
According to the review, clinical decision support systems may be more interested
in forecasting future values of biomarkers or images. The study suggests looking
into more focused cognitive assessments and digital assessments that patients can
take at home. The essay concludes by advising prospective clinical trials to assess
the efficiency of such systems.

2.7 Predicting Progression from Mild Cognitive Impairment
to Alzheimer’s Dementia Using Clinical, MRI, and Plasma
Biomarkers via Probabilistic Pattern Classification (Ko-
rolev et. all 2020) [40]

2.7.1 Introduction

The increased risk of Alzheimer’s disease (AD) among those with mild cognitive
impairment (MCI) is discussed in this research paper. To predict the progression of
MCI to dementia, the authors created a multivariate predictive model utilizing clin-
ical data, structural magnetic resonance imaging (MRI), and blood plasma-based
proteomic data. To combine data from several sources, they employed multiple ker-
nel learning (MKL) and a kernel-based classifier. The study focuses on probabilistic
prediction, which enables categorization of MCI patients into various risk groups
and defers judgment regarding the future state of dementia for instances that are
unclear. By taking into account the confidence of the predictions, the paper intends
to assess the prognostic model’s efficacy, sensitivity to patient heterogeneity, and
improvement in model performance.

2.7.2 Materials and methods

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database was used in the
analysis. The ADNI is an observational study that was started in 2003 to see if
neuroimaging, fluid and genetic biomarkers, and cognitive tests could be used to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). The study made use of baseline visit information gathered from MCI
individuals recruited for ADNI-1. The website for the ADNI lists its qualifying
requirements, and participants with MCI satisfied the Petersen (Mayo Clinic) di-
agnostic standards for amnestic MCI. There were 259 MCI subjects in the study;
139 of them were progressors (P-MCI), meaning they developed AD-type dementia
within 36 months of enrolling in the trial, and 120 were non-progressors (N-MCI),
indicating they did not develop dementia within 36 months of enrolling in the study.
The participants in the study completed a thorough clinical examination, cognitive
and functional tests, and a structural brain MRI scan. Blood was also donated by
the participants for proteomic and genotyping studies on apolipoprotein E (APOE).
Thereafter, subjects were given longitudinal follow-up at predetermined intervals (6,
12, 18, 24, 36 months). At each follow-up appointment, each MCI subject’s clinical
state was reevaluated and updated to reflect one of many results (NC, MCI, AD, or
other).

The classification analyses of the study took into account a total of 186 clinical
characteristics (features) as potential predictors of MCI-to-dementia progression.
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Table 2.12: Subject characteristics at baseline
[41]

Risk factors and evaluations/markers were the two categories of clinical character-
istics. Age, sex, education, APOE genotype, familial dementia history, risk factors
for cerebrovascular illness, body mass index, and a history of psychiatric problems,
alcohol misuse, head trauma, and sleep apnea were risk factors. The evaluation-
s/markers included overall and breakdown results from several clinical, functional,
and cognitive tests. The study analyzed the data using a variety of statistical and
machine learning techniques to find predictors of the development from MCI to de-
mentia. The study’s findings demonstrated that the greatest predictors of the devel-
opment from MCI to dementia were clinical and proteomic characteristics combined.
The best predictors were specifically shown to be a mix of 19 clinical factors and
9 proteomic characteristics. See table 2.12. For the purpose of feature selection
and classification analysis, the researchers employed MATLAB R2010b. To find
a subset of informative features, they transformed the feature data and employed
a combined filter-wrapper technique. They then developed dementia prognostic
models using the probabilistic multiple kernel learning (pMKL) classification ap-
proach. Both single-kernel mode and multiple-kernel mode can be utilized with
pMKL, which is analogous to the support vector machine (SVM). The Generalized
Linear Model (GLM) regression framework serves as the foundation for the pMKL
classifier, which makes probabilistic predictions. The multinomial probit likelihood
provided by the formula below is used as the basis for the pMKL classifier, which is
built on a Generalized Linear Model (GLM) regression framework:
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where p(u) = N(0,1) and are the cumulative distribution function and E is the
expectation with regard to the standard normal distribution. This function, given
the feature data (in the form of a kernel matrix kb Y) and regression coefficients W,
calculates the probability P that example n belongs to class/outcome I (as opposed
to class j). The weights n that training instances used to build the model vote for
a given class/outcome are reflected in the regression coefficients.

The study used a variety of data sources alone and in combination to develop
and evaluate nine predictive models for categorizing specific patients into N-MCI
or P-MCI groups. Models with many kernels and sources were also looked at. The
accuracy of the top-performing model was then examined under various patient
heterogeneity conditions, as well as the association between predicted probabilities
and time to progression for P-MCI patients. Cross-validated metrics like sensitivity,
specificity, balanced accuracy rate, calibration, and AUC were used to assess the
performance of the model. To prevent model overfitting, a nested stratified cross-
validation approach was adopted, and the models were cross-validated on all 259
subjects. For improved reproducibility, the process was done ten times. Statistical
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Table 2.13: Cross-validated performance estimates
[39]

tests were run to look for any notable variations in model pair performance.

2.7.3 Results

The efficacy of various machine learning models in predicting the progression from
moderate cognitive impairment (MCI) to dementia is discussed by the authors in this
findings section. They assessed the performance of nine models, including five multi-
source models and four single-source models (CRF, CAM, MRI, and PPM) (CON-
CAT, MKL-Linear, MKL-RBF, MKL-Polynomial, MKL-Gaussian). The models’
validation and test set accuracies were within 3% of one another, showing little
overfitting and efficient cross-validation techniques. All of the single-source models
performed better than chance-level accuracy, with CAM doing the best. All single-
source models were surpassed by the single-kernel, multi-source model CONCAT,
and model 6 (MKL-Gaussian) outperformed CONCAT in calibration while retaining
a comparable level of accuracy. See table 2.13.

The top 10 predictors of MCI to dementia development for each model were also
determined by the authors. The number of APOE ϵ4 alleles was the single-source
model’s most frequently chosen feature, whereas the results of three evaluations were
the model’s most frequently chosen feature (ADAS-Cog, FAQ, RAVLT). Measures
of volume and cortical thickness in the temporoparietal brain areas were typically
chosen by the MRI model. The PPM model typically chose proteins linked to lipid
metabolism, immunological response, and inflammatory processes. Only CAM and
MRI variables were consistently chosen as predictors in the multi-source models.

The baseline predictors of MCI-to-dementia progression between the N-MCI and
P-MCI groups were then compared in a confirmatory study by the authors. Ac-
cording to higher scores on the ADAS-Cog and FAQ, P-MCI patients had more cog-
nitive and functional impairment at baseline than N-MCI respondents. They also
displayed baseline evidence of atrophy in the temporoparietal brain areas and had
more severe verbal memory impairment, as shown by lower RAVLT scores. Overall,
the authors showed the value of multi-source models for predicting progression and
found a number of predictors of MCI-to-dementia progression.

2.7.4 Discussion

Predictive utility and predictors

The most reliable predictors were discovered to be cognitive and functional tests,
followed by MRI measurements and clinical risk factors. Plasma proteomic infor-
mation was rarely chosen as a predictor since it had the lowest accuracy. The
best prediction accuracy was produced by multi-source models that included CF
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Table 2.14: Comparison of models for predicting MCI-to-AD progression
[38]

assessment scores and morphometric MRI measurements. The most accurate model
was able to more accurately identify MCI patients who had AD dementia within
18 months of their baseline than those who did not. The results imply that cer-
tain biomarkers have distinctive temporal trajectories and may be most sensitive to
AD-related alterations at particular points in time. The transition from mild cog-
nitive impairment (MCI) to dementia over a three-year period was predicted most
accurately by analyzing data from a variety of sources. With a 76.1% prediction
accuracy rate, cognitive and functional (CF) evaluations were determined to be the
most reliable. This was more accurate than cerebrospinal fluid (CSF) biomarkers
over a two-year period and structural MRI. The least reliable predictor, plasma
proteomic data, had a 53.2% predicted accuracy rate, which was barely better than
chance. Additionally, the study discovered that employing multi-source models like
CONCAT and MKL-Gaussian increased predicted accuracy to about 80%. Our
models consistently included CF evaluations and morphometric MRI measurements
as predictors, showing that both data sources offer complementary knowledge on the
progression of MCI to dementia. Contrarily, plasma proteomic measurements and
clinical risk indicators were not frequently chosen as predictors, indicating that the
information offered by these data sources about progression is redundant or limited.
The baseline scores on cognitive and functional examinations, as well as morphome-
tric data for three different brain regions, were the predictors of MCI-to-dementia
progression that were found in the multi-source models (left hippocampus, middle
temporal gyrus, and inferior parietal cortex). In addition to memory function scores,
cognitive assessment results were chosen as predictors, which implies that cognitive
impairment in more than simply memory function is a sign of dementia. The choice
of functional status scores as predictors suggests that in patients with MCI, a mild
but reliable impairment in functional status occurs before the onset of overt demen-
tia. The study also discovered that the preference for the left hemisphere in the use
of morphometric MRI parameters as predictors was in line with the evidence that
suggests Alzheimer’s disease-related atrophy happens there more quickly.

Comparison with models in literature

Table 2.14 demonstrates that when compared to recently published models, our
top prediction model (AUC = 0.87, accuracy = 79.9%) performed remarkably well.
We restrict this comparison to studies that employed baseline data from the ADNI
dataset to forecast MCI-to-AD development within a 24-48 month follow-up period
in order to make it more compatible with the current analysis. With a sensitivi-
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ty/specificity differential of only 7%, our model’s prediction accuracy was not only
good but also fairly balanced, which contrasts favorably with recent research where
this differential was as high as 48%.

Probabilistic Classification of MCI: Advantages and Applications

One of the study’s distinguishing features is the use of a probabilistic method, which
enables the model to offer accurate and calibrated forecasts of the probability of
advancement as well as details on the time to progression for individuals with pro-
dromal MCI (P-MCI). Clinicians may categorize MCI patients based on their risk
of progression thanks to calibration analysis, which showed that the model’s prob-
abilistic predictions accurately represent the real risk of advancement. Although
not having been specifically trained for this goal, the study also discovered that
the model’s probabilistic predictions might contain some information on the P-MCI
patients’ time to progression. As a result, doctors may be able to stage MCI pa-
tients along the MCI-disease Alzheimer’s (AD) continuum by adapting the model
to explicitly forecast time to progression.

Significantly, the study demonstrated how the model’s probabilistic outputs might
be used as a gauge of prediction confidence to raise its accuracy. Without taking
into account information about prediction confidence, the model performed in non-
probabilistic mode and attained an accuracy of 79.9%, with 83.4% sensitivity and
76.4% specificity. According to the study, it is possible to divide MCI patients into
high-risk and low-risk groups using the probabilistic prognostic model that was cre-
ated, allowing for the enlargement of patient samples in clinical trials. The necessary
sample size to determine the impact of a possible treatment could decrease by up
to 57% as a result of this. The algorithm may potentially be used to more precisely
pinpoint MCI individuals at high risk for early disease-modifying drug treatment.
Clinicians may decide to request additional biomarker tests in situations when the
model is unable to make a strong prediction. By utilizing this prognostic model,
more costly, invasive, or uncommon tests, like PET-based amyloid imaging, could be
employed with greater caution, providing both patients and the healthcare industry
with major advantages.

Limitations and future directions

The dependence on clinical diagnoses as the ”ground truth” for AD, which may in-
ject uncertainty and noise into the model construction process, is one issue discussed
in the paper. Models created to forecast the progression from moderate cognitive
impairment (MCI) to clinically-diagnosed AD can only be as accurate as the clinical
diagnosis itself because the clinical diagnosis of probable AD has an accuracy of
70–90% relative to the pathological diagnosis. Furthermore, baseline clinical assess-
ments are frequently more predictive of progression than other types of biomarkers,
which may partially be explained by the use of clinical criteria to determine when
MCI-to-AD progression has place. Future studies should include data from patients
with proven pathological diagnoses as well as clinical diagnoses to increase the ac-
curacy of predictive models for AD. This might aid in lowering the unpredictability
and noise brought on by relying solely on clinical diagnosis. The study’s relatively
brief three-year follow-up period is another drawback. Although prognostic models
for long-term dementia prediction are necessary, high-risk MCI individuals can still
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be identified for clinical trials by using short-term dementia prediction. The major-
ity of MCI patients who go on to develop AD-type dementia do so within the first
few years of follow-up, it’s also crucial to remember.

Suggestions for future research directions are also made, such as combining pa-
tient data from both amnestic and non-amnestic MCI subtypes as well as single-
domain and multiple-domain MCI subtypes to increase the clinical applicability of
predictive models. In addition, the study only predicted the progression from MCI
to AD; nevertheless, there are many other kinds of dementia besides AD, and many
dementia cases have multiple etiologies. In light of this, the probabilistic pattern
classification method used in this study might be naturally extended for use in the
differential diagnosis of dementia, allowing for the creation of a multi-class classifier
that would assign probabilities to various forms of dementia. Including imaging
markers of brain connection, such as those based on diffusion tensor imaging and
resting-state functional MRI, could also help to improve the predictive models for
AD. The model’s capacity to recognize MCI patients who develop AD more than 18
months after baseline may be enhanced by the addition of PET-based amyloid imag-
ing. The study used cross-validation to assess the models’ prediction performance,
but the next step is to externally validate the models using a different dataset.

2.8 Estimating long-term multivariate progression from short-
term data (Donohue et. all 2014) [24]

2.8.1 Introduction

Various methods for estimating smooth progression or growth curves from serial
observations of individuals over a biologically common time span are discussed.
For example, generalized linear or nonlinear mixed effects models can be used to
describe height, weight, or pharmacokinetics over time following an event of interest.
However, when studying diseases that occur over long periods of time, such as
Alzheimer’s disease, epidemiologic studies may lack an obvious biological event that
can serve as a reference ”time zero.” Furthermore, short-term follow-up with few
observations may necessitate much simpler subject-level characteristics.

To address these challenges, a self-modeling regression (SEMOR) model with sim-
ple, linear subject-level effects is presented, while nonparametric monotone smooth-
ing is used to model long-term characteristics. The objective is to estimate pop-
ulation curves for Alzheimer’s disease progression over decades using a variety of
outcome indicators. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) has
followed volunteers with cognitively normal, early mild cognitive impairment, late
mild cognitive impairment, and probable mild Alzheimer’s disease for up to six years,
collecting data such as serial magnetic resonance imaging measurements of regional
brain volumes, positron emission tomography measurements of brain function and
amyloid accumulation, other biological markers, and clinical and neuropsychologi-
cal assessments. However, the subset of people who develop Alzheimer’s disease is
small, and the data set lacks novel biomarkers of primary interest in the early stages
of the disease.

To solve this restriction, long-term MMSE trajectories from the ”Personnes Agées
Quid” (PAQUID) research are recommended to fine-tune the findings of the algo-
rithm applied to ADNI data and convert time to indicate time until dementia on-
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set. The author expects that by doing so, he would be able to better estimate the
long-term biomarker progression of Alzheimer’s disease and so help in treatment
development and observational research.

2.8.2 Model and Algorithm

A model for individual outcomes that emerge over time is explored, with each out-
come influenced by a monotone function, Gaussian residual errors, and a subject-
specific temporal shift.

Yij(t) = gj (t+ γi) + α0ij + α1ijt+ εij(t)
The model implies that the subject-specific time shift is an unknown ”health age”

that can be shifted left or right relative to the actual age due to disease manifestation
at various ages. The observed covariate, t, reflects short-term observation time, while
t+ γi denotes long-term progression time, where γi is the unknown subject-specific
time shift.

The algorithm simplifies the highly dimensional and complex problem. Each of
the unknown parameters (gj, γi, and α) is estimated in turn using the existing
estimations of the other parameters. This procedure is repeated until the RSS
converges. The technique employs three distinct forms of partial residuals, denoted
Rg

ij(t);R
α
ij(t);R

γ
ij(t) (Table 1). If we assume that model (1) is valid, then each of

the partial residuals offers an unbiased estimate of one of the unknown parameters.
Conditional expectations of partial residuals are comparable, or nearly so, to target
parameters. We start the algorithm by initializing γi = 0 and iterating through the
following steps.

1. Given γi, estimate the monotone functions gi by setting a0ij = a1ij = 0 and
iterating the submethod below.

(a)Calculate gi using a monotone smooth of Rg
ij(t):

(b) Estimate αOij, α1ij by the linear mixed model of Rα
ij(t).Repeat steps a and b

until convergence of the RSS for the j th outcome: RSSj =
∑

it [Yij(t)−
gj (t+ γi)− α0ij − α1ijt]

2.
2. With current set of gj, set α0ij = α1ij = εij(t) = 0, and approximate each γi

with the average of Rγ
ij(t) over all j and t. Repeat steps 1 and 2 until convergence

of the total RRS equals Σijt [Yij(t)− gj (t+ γi)− α0ij − α1ijt]
2.

2.8.3 Results

The findings are based on an examination of data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), a long-term study of Alzheimer’s disease (AD)
and moderate cognitive impairment (MCI). Figure 2.10 shows longitudinal graphs
of significant variables gathered during the study, such as amyloid plaque buildup
in the brain, CSF and PET measurements, MRI data, cognitive evaluations, and
functional activities. The study’s major goal was to create a data-driven version of
the progression curves proposed by Jack and colleagues, which display the impor-
tant indicators of disease development on a common vertical scale from normal to
abnormal, with clinical disease stage on the horizontal axis.

Because the diagnostic groups were not evenly represented in the data, the au-
thors used a weighted percentile transformation to convert ADNI measures to a
percentile scale. The resulting scale goes from 0 (least severe observed value) to
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Figure 2.10: ADNI panel of biomarkers and assessments
[22]
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Table 2.15: Baseline diagnosis of counts of subjects and observations
[23]

100 (most severe observed value) and was generated using the empirical cumulative
distribution function, weighted by the inverse proportion of observations from each
diagnostic group (CN, EMCI, LMCI, and AD). Table 2.15 shows the number of
patients and observations by baseline diagnostic category.

A subset of 388 ADNI subjects was employed having evidence of aberrant amyloid
buildup in the brain, as assessed by CSF, PiB PET, and florbetapir PET measures,
to apply their approach. B-spline smooths were fitted with five equally spaced
knots and fifth-degree polynomial splines, and the algorithm was blind to diagnostic
categorizations. The predicted long-term trajectories among amyloid1 ADNI par-
ticipants are shown in Fig. 2.11A, with time altered so that time zero marks the
period when the mean Clinical Dementia Rating Scale Sum of Boxes (CDRSB) score
hits the 80th percentile. The obtained timeline can be viewed as the time required
to progress to the worst CDRSB 20th percentile.

The algorithm was also applied to a sample of 570 ADNI patients who had at
least one APOE4 allele. This subgroup includes numerous people who were amyloid-
and were unable to be diagnosed. Time was transformed using postprocessing pro-
cesses, with the PAQUID timeframe reflecting time to dementia onset and the ADNI
timescale calculating subject-specific times to reach the 20th percentile of CDRSB.
Overall, the study’s findings imply that the algorithm can be used to predict the
long-term trajectories of cognitive deterioration in people with AD or MCI. The
percentile-based normalization method compares disease progression across diag-
nostic categories, and the algorithm is applicable to both amyloid+ and APOE 4+
subgroups.

2.8.4 Discussion

The authors compare their technique to past studies on Alzheimer’s disease (AD)
in the discussion section of this paper and examine the method’s merits and draw-
backs. They begin by addressing a recent study by Bateman and colleagues that
created projected progression curves for autosomal dominant Alzheimer’s disease,
in which the age of onset of symptoms is expected to be near to the parent’s age
of onset. The authors of this article, on the other hand, are less certain about
determining the age of onset in sporadic AD. SEMOR, their solution, solves this
limitation by simultaneously estimating the age of onset and the progression curves
using a nonparametric monotone smoothing approach. They tested their method on
amyloid and APOE 4 subsets that were somewhat pathologically homogeneous. Ac-
cording to the authors’ calculations, their iterative technique can recover reasonable
predictions of long-term trajectories from short-term observations. They state that
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Figure 2.11: ADNI amyloid+ subjects
[21]

more simulation studies and analytical development of asymptotic convergence are
needed, and that convergence of estimates of time shifts will be influenced by the
number of outcomes. They also explain the approach’s drawbacks, such as the fact
that it does not require sigmoidal curves, but rather a very flexible class of monotone
curves. They discovered that mean CSF Ab follows a linear trajectory in amyloid
patients, whereas tau, p-tau, and PiB PET follow sigmoidal morphologies. Glucose
metabolism, hippocampus volume, ventricular volume, learning, and cognition all
follow near-linear paths. Function was the final domain to fail following a parabolic
trajectory.

The authors also discuss which markers become abnormal first and show graphs
of first derivatives of curves split by residual standard deviation. With the probable
exception of CSF indicators, hippocampal volume appears to dominate the other
metrics during the 15-year period in both analyses. The CSF markers show some
places with relatively high standardized slopes, however this could be due to in-
sufficient data and spurious acceleration around the observational boundaries. In
other circumstances, the CSF measurements are rather flat, which may result in
the erroneous acceleration shown by the bell shapes. Their method does not make
the assumption that the mean should be between zero and one, and without this
assumption, their algorithm exhibits significant pathological heterogeneity or mea-
surement variability, even in the selected amyloid subset. They propose that food,
lifestyle, education, occupation, or other factors associated to cognitive reserve, as
well as genetics or family history, may explain part of the variation. They intend to
test these theories further in the future by incorporating variables into the model,
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although more data on the disease’s early stages are required.
Finally, the comparison groups are discussed shown in their figures, pointing

out that they are difficult to interpret due to the small number of subjects with
known amyloid status. They recommend that future studies include data from
younger cohorts and that hierarchical random effects be employed to describe within-
study and within-subject association. Meta-analyses may also aid in addressing a
fundamental restriction of the ADNI data, which is that the age range of ADNI
participants at baseline is limited to 55 to 95 years.

2.9 Application of literature review

NIA-AA Research Framework: Toward a biological definition of Alzheimer’s
disease (Jack et. all 2018)

• Definition of Alzheimer’s Disease, biomarkers and cognitive stages

• AT(N) Classification

Duration of preclinical, prodromal, and dementia stages of Alzheimer’s
disease in relation to age, sex, and APOE genotype (Vermunt et. all
2019)

• Estimating Alzheimer’s Disease stages and comparing their view with mine.

• Comparing results of this paper with mine (Preclinical stage: 2-15 years, Pro-
dromal stage: 3-7 years)

CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and
predict clinical progression: A study of fully automated immunoassays in
BioFINDER and ADNI cohorts (Hannson et. all 2018)

• The research shows that in many cohorts, including BioFINDER and ADNI,
CSF biomarker ratios, notably CSF total tau/Aβ(1-42) and CSF phosphory-
lated tau/Aβ(1-42), display significant agreement with PET categorization.
This suggests that CSF biomarker tests have the potential to be trustworthy
alternatives to PET in the diagnosis of Alzheimer’s disease.

• In addition to being in good agreement with PET categorization, the CSF
biomarker statuses generated using specified cutoffs also accurately predict
more clinical deterioration in individuals with moderate cognitive impairment
over a 2-year period. These findings imply that CSF biomarkers may be useful
in predicting the course of the illness and may aid in the early recognition of
Alzheimer’s when therapies are most successful.

Categorical predictive and disease progression modeling in the early stage
of Alzheimer’s disease (Platero and Tobar 2022)

• The study presents a novel method for identifying subsets of markers that can
precisely classify cognitively unimpaired (CU) people who are likely to develop
mild cognitive impairment (MCI) or dementia using categorical predictive mod-
els based on survival analysis with longitudinal data. Using short-term clinical
data, this method enables the creation of disease progression models (DPMs)
that indicate long-term pathological pathways.
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• The findings show that the development from CU to MCI/dementia may be
accurately predicted using a limited fraction of conventional MRI-based data,
cerebrospinal fluid (CSF) markers, and cognitive assessments. The developed
DPMs demonstrate a significant association between anticipated conversion du-
rations and actual clinical results using growth models and mixed effects mod-
els. The study also reveals several indicators that show substantial changes
more than 20% as early as fifteen years before the start of cognitive deteriora-
tion, including temporal atrophy, clinical ratings, and the pTAU/Abeta ratio.

Longitudinal survival analysis and two-group comparison for predict-
ing the progression of mild cognitive impairment to Alzheimer’s disease
(Platero and Tobar 2020)

• The study examined two methods for building MRI and neuropsychological
measurements-based longitudinal prediction models for Alzheimer’s disease (AD).
Both methods generated predictive models with a manageable amount of char-
acteristics that accurately predicted AD conversion.

• In comparison to the two-group comparison technique, the survival-based pre-
diction models showed a superior balance between sensitivity and specificity,
demonstrating their efficacy in foretelling the development of AD.

Predicting the progression of mild cognitive impairment using machine
learning: A systematic, quantitative and critical review (Ansart et. all
2021)

• Including cognitive tests and certain imaging modalities enhanced predictive
accuracy, but excluding them had no appreciable impact, according to a com-
prehensive analysis of research on the prediction of the development from mild
cognitive impairment to Alzheimer’s disease dementia.

• The review also drew attention to methodological problems, namely the lack of
a test set and dubious clinical practice relevance. It stressed how crucial it is
to follow ethical standards when applying machine learning to clinical decision
assistance.

Estimating long-term multivariate progression from short-term data
(Donohue et. all 2014)

• The GRACE model is used for the demo, to obtain the best possible combina-
tion of markers

• A novel model and estimation approach is developed to assess the timing and
long-term progression of illnesses with slow progression. The technique deliv-
ers subject-specific prognostic estimations for Alzheimer’s disease onset and
successfully recovers disease trends.
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3.1 Python

Python is a popular programming language for creating many kinds of applications.
Guido van Rossum developed it in the late 1980s, and it has since grown to be one
of the most widely used programming languages worldwide. Python is renowned for
its straightforward and uncomplicated syntax, which makes it a great language for
new programmers. The enormous amount of libraries and frameworks it provides
also makes it incredibly adaptable, enabling programmers to build a wide range of
applications, from web apps to scientific computing to artificial intelligence.

Python is open source, which permits unrestricted use, distribution, and modifi-
cation. It’s accessible on a variety of operating systems, including Windows, macOS,
and Linux. Python is often used in a variety of fields, including scientific computing,
data science, machine learning, web development, and more. Its success is a result
of a big developer community that contributes to its growth and upkeep, as well as
the readability and use of the product. [9]

3.2 Jupyter Notebook

Users may create and share documents with live code, equations, visualizations, and
illustrative text using the web-based interactive computing environment known as

Figure 3.1: Python logo
[8]
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Figure 3.2: Jupyter Notebook logo
[4]

Jupyter Notebook. Originally created as an open-source project for the Python pro-
gramming language, it has now grown to cover a wide range of additional computer
languages. The three primary programming languages it supports—Julia, Python,
and R—are combined to form the moniker Jupyter. Additionally, it alludes to the
scientific custom of keeping notes and thoughts in a private notebook. Jupyter Note-
book is made up of a server application that manages code execution and output
rendering and a web application that runs on a web browser. Code and text cells
may be used to build documents known as notebooks. Users may see the effects of
their code as they type since code cells can be interactively executed. Equations
written in LaTeX or Markdown syntax can be placed in text cells as well as styled
text.

Due to its capability to combine code, data, and visualizations in a single docu-
ment, Jupyter Notebook has grown in popularity as a tool for data analysis, scientific
computing, and machine learning. Due to the fact that notebooks can be exported
in a number of formats, including HTML, PDF, and Markdown, it enables users
to quickly share their work with others. Additionally, Jupyter Notebook facilitates
the development of interactive widgets that let users alter data and parameters in
real-time. Overall, Jupyter Notebook is a robust and adaptable tool for scientific
computing and data analysis that has grown to be a crucial component of the arsenal
of the contemporary data scientist. It will continue to develop and advance in the
years to come thanks to its widespread use and vibrant development community. [3]

3.3 PyCharm

Jupyter Notebook can be used directly in a browser but for this work an IDE was
used, namely, PyCharm. PyCharm was created exclusively for Python program-
ming. It is created by JetBrains and offers a complete collection of tools and fea-
tures to simplify coding and increase developer productivity. Python code may be
efficiently written, debugged, and tested by developers using PyCharm. It provides
smart code completion, which makes it simpler to produce error-free code by sug-
gesting pertinent code snippets, functions, and variable names as you type. The IDE
also has strong navigational tools that let users easily go to certain classes, methods,
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Figure 3.3: PyCharm logo
[8]

or files inside their projects. An integrated debugger in PyCharm makes it easier to
find and correct coding problems. Developers may use it to set breakpoints, walk
through the code, check variables, and track the course of a program as it runs. [35]

3.4 MATLAB

The high-level programming language and interactive environment known as MAT-
LAB (short for ”MATrix LABoratory”) is used for numerical computing, visualiza-
tion, and programming. The MathWorks company created it, and it was published
in 1984. For data analysis, algorithm creation, modeling, simulation, and proto-
typing, MATLAB is widely used in engineering, physics, mathematics, finance, and
other scientific areas. For conducting numerical operations on arrays and matrices,
as well as for data visualization, image processing, signal processing, and control
systems analysis, MATLAB offers a robust collection of built-in functions and tools.
Additionally, it enables object-oriented programming, enabling the development of
sophisticated classes and data structures.

The effective handling of massive data sets and intricate algorithms is one of
MATLAB’s main advantages. It is renowned for being simple to use and interac-
tive, enabling users to play around with code and see data in real time. Additionally,
a variety of toolboxes, which are sets of tools and algorithms for certain applications
like statistics, optimization, and machine learning, are available in MATLAB. Both
academia and industry make extensive use of MATLAB, and a sizable user and de-
veloper community actively contributes to its growth and advancement. MATLAB
is a flexible tool for a variety of applications since it can be used to distribute code
to standalone programs, web applications, and embedded systems. [43]

3.5 R Language

The language and environment for statistical computation and graphics is called
R. The R Development Core Team presently maintains it after Ross Ihaka and
Robert Gentleman first created it in 1993. R is open-source software, which entails
that anybody may download, modify, and share it. Time-series analysis, clustering,
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Figure 3.4: MATLAB Logo
[7]

Figure 3.5: R Logo
[10]

classification, and linear and nonlinear modeling are just a few of the statistical
and graphical methods offered by R. Additionally, it includes a sizable library of
user-contributed packages that expand its capability to include things like biology,
finance, and social sciences.

R’s adaptability and simplicity in usage for data processing and analysis are
among its advantages. R has a robust collection of tools for data preparation,
transformation, and cleaning, making it simple to work with a variety of data kinds
and formats. In order to examine and present their data, users may construct a
variety of plots, charts, and graphs using the extensive collection of capabilities it
offers for data visualization. Particularly in areas like statistics, bioinformatics, and
data science, R is extensively utilized in academia, government, and business. It
features a sizable and active user base that aids in its growth and progress and
offers users resources and assistance. [11]

3.6 ADNI

The goal of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) is to employ
cutting-edge neuroimaging and other biomarkers to better understand Alzheimer’s
disease (AD). The National Institute on Aging (NIA), National Institutes of Health
(NIH), private pharmaceutical firms, and nonprofit groups joined together to launch
it in 2004. The ADNI study’s objective is to collect information on persons with
AD, moderate cognitive impairment (MCI), and normal cognition’s brain imaging,
genetics, clinical evaluations, and other biomarkers. The information gathered is
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Figure 3.6: ADNI Logo
[2]

subsequently made freely accessible to researchers all around the world. This in-
formation is intended to increase our knowledge of AD and pave the way for the
creation of brand-new therapies.

The ADNI project aims to accomplish a number of objectives, including the dis-
covery of novel biomarkers for AD and MCI, the creation of techniques for the early
detection of AD progression, and the provision of a resource for the creation and
evaluation of novel AD therapies. In order to meet these objectives, ADNI gathers
a variety of information from individuals, including MRI and PET scans, genetic
data, cognitive tests, and clinical evaluations. We now understand a lot more about
AD and MCI thanks to ADNI. It has prompted the creation of fresh biomarkers and
diagnostic standards for various ailments. Numerous research studies have made use
of the ADNI data, and it has even sparked the creation of brand-new AD medica-
tions and clinical trials. The ADNI project is a multi-institutional, multi-researcher
collaboration that has been going on for approximately two decades. It has sup-
port from a number of institutions, including the NIA, NIH, private pharmaceutical
firms, and nonprofit associations. With the aim of enhancing the lives of individu-
als afflicted by AD and furthering our understanding of the illness, the initiative is
anticipated to last for many years to come. [1]

3.7 Margerit-3

Magerit, a computing system administered by the Centro de Supercomputación y
Visualización de Madrid (CeSViMa) at Universidad Politécnica de Madrid, provides
a platform for executing computationally intensive processes. This system comprises
68 Lenovo ThinkSystem SD530 nodes, each equipped with 2 Intel Xeon Gold 6230
processors featuring 20 cores per node. Moreover, Magerit is equipped with a diverse
range of software and operates on the CentOS operating system. [5]

The utilization of Magerit has proven essential for the current research, as it
involves time-consuming processes that would be impractical to execute on a reg-
ular computer. Thus, executing specific code on Magerit significantly reduced the
overall waiting time, this was necessary to obtain the best possible combination of
biomarkers for the prediction and progression model of Carlos Platero.
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Figure 3.7: Magerit-3
[6]
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Methods

In the methods section I will focus on how I obtain my results with a primary focus
on the coding aspect. As told in the materials section I will be using Python as
primary coding language.

4.1 Preparing the data

There are a couple of steps that are taken each time for every figure or table or ML
model and these are listed as below.

4.1.1 Importing the libraries

1 import numpy as np

2 import pandas as pd

3 from scipy import XXXXX

Listing 4.1: Importing the libraries in Python

Important Python libraries that are frequently used in the fields of scientific com-
puting and data analysis include:

1. Pandas

2. NumPy

3. SciPy

In order to handle, manipulate, and analyze massive datasets, these libraries offer
effective data structures and cutting-edge technologies, empowering researchers and
scientists to gain insightful knowledge from their data.

Pandas is a flexible data analysis and manipulation package that provides solid
data structures like DataFrames and Series. DataFrames are two-dimensional data
structures that resemble tables and have columns that can store different kinds of
data. In contrast, series are one-dimensional arrays that may store heterogeneous
data. Data cleaning, filtering, transformation, aggregation, and merging processes
are made easier by a comprehensive collection of functions and techniques offered by
Pandas. Researchers may effectively extract and alter particular subsets of data by
utilizing the potent indexing and slicing capabilities of Pandas, enabling exploratory
data analysis and preprocessing tasks. A smooth data sharing and interoperability
are also made possible by Pandas’ seamless integration with other scientific libraries.
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In scientific computing, NumPy, often known as Numerical Python, is crucial.
The multidimensional array object known as the ndarray, which effectively stores
and manipulates homogeneous data, is introduced. Compared to standard Python
lists, NumPy arrays offer a number of benefits, including improved memory economy
and mathematical operation optimization. When working with complex numerical
computations, this capability is especially crucial.

SciPy offers a wide array of techniques for resolving optimization issues, enabling
researchers to identify the best solutions for intricate systems. The numerical in-
tegration module simplifies operations involving single and double integration, the
solution of differential equations, and numerical integration methods. Researchers
may create new data points within the range of existing data using interpolation
techniques included in SciPy, which makes accurate analysis and modeling possible.
SciPy’s support for linear algebra includes fundamental operations such matrix ma-
nipulation, decomposition, and linear system solution. These features are crucial
for mathematical modeling and scientific simulations.

Tasks like noise reduction, feature extraction, and picture enhancement are made
easier by the signal and image processing modules in SciPy, which provide a wide
range of methods for analyzing, filtering, and manipulating signals and images. Re-
searchers have access to a variety of statistical functions, probability distributions,
and hypothesis testing tools thanks to SciPy’s statistics package. In scientific re-
search, these instruments are essential for statistical analysis, hypothesis validation,
and decision-making. Additionally, SciPy includes extra modules for dealing with
sparse matrices, geographic data structures, optimization with constraints, as well
as several other scientific computing applications.

Scientists and researchers may manage, analyze, and understand scientific data
more effectively by combining the strengths of Pandas, NumPy, and SciPy. These
libraries equip researchers with the tools necessary to manage intricate datasets,
carry out difficult mathematical operations, and conduct advanced statistical anal-
ysis, eventually enabling ground-breaking scientific achievements.

4.1.2 Loading the data

1 df = pd.read_excel("ADNIMERGE_R_220706.xlsx")

Listing 4.2: Importing the libraries in Python

The line of code reads the ’ADNIMERGE R 220706’ Excel file using the Pan-
das library and stores its information in a DataFrame called df. The Pandas li-
brary, which was imported previously in the code, is referred to as pd. An Excel
file may be read using the Pandas function read excel(). Read excel() is called
by the function read excel(’ADNIMERGE R 220706.xlsx’). You provide the name
of the Excel file you wish to read between parenthesis. The variable df is given
the read excel() response’s return value. By custom, the DataFrame object in
Pandas is commonly referred to by the abbreviation df. The method opens the
’ADNIMERGE R 220706.xlsx’ Excel file and reads its contents, storing them in a
DataFrame so that you may manipulate, analyze, and perform various operations
on the data using Pandas’ robust features.
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4.1.3 Filtering the DataFrame

Now that the ADNI DataFrame has been created, some filtering is needed.
Removing NaN’s and converting string to numeric

1 df[’ABETA.bl’] = df[’ABETA.bl’].str.replace("<","")

2 df[’ABETA.bl’] = df[’ABETA.bl’].str.replace(">","")

3 df[’ABETA.bl’] = pd.to_numeric(df[’ABETA.bl’])

Listing 4.3: Removing NaN’s and converting string to numeric

Filter only the amyloid pathology patients

1 filtered_df = df[(df["DX"] == dx_category) & (df["VISCODE"] == "bl") & (df["PTAU.bl

"]/df["ABETA.bl"] > 0.028)]

Listing 4.4: Filter only the amyloid pathology patients

The code essentially creates a subset of the original DataFrame df that includes
only the rows where the ”DX” column matches ”CN”, ”MCI” or ”Dementia”, the
”VISCODE” column corresponds to the ”baseline” time point, and the ratio of
”PTAU.bl” to ”ABETA.bl” is greater than 0.028. This filtering approach aims to
identify individuals with amyloid pathology, as indicated by the chosen threshold
value of 0.028 for the Pτ to Aβ ratio.

4.2 Processing the data

After the preparation of the data now comes the most important part which is to
process the data.

4.2.1 Categorical and numerical data

As data can be represented in two ways namely categorical and numerical, I will
also process the data in two ways with the first one being categorical and the second
one numerical.

Categorical data

Here is an example of how categorical data such as gender can be extracted from
the DataFrame for obtaining information about the different Alzheimer groups:

1 #FEMALE

2 female_subjects = filtered_df[filtered_df["PTGENDER"] == "Female"]["RID"]. nunique ()

3 female_percentage = f"{( female_subjects/unique_subjects)*100:.1f}%"

Listing 4.5: processing categorical data

filtered df[filtered df[”PTGENDER”] == ”Female”] filters the filtered df DataFrame
to include only rows whose value in the ”PTGENDER” column is ”Female”. This
condition selects rows corresponding to female subjects. [”RID”].nunique() executes
the nunique() function on the ”RID” column of the filtered data frame, which calcu-
lates the number of unique subject identifiers (”RID”) among the selected rows. This
yields the number of female subjects. The resulting number of female subjects is
assigned to the variable female subjects. (female subjects/unique subjects)*100 cal-
culates the percentage of female subjects by dividing the count of female subjects (fe-
male subjects) by the total number of unique subjects in the dataset (unique subjects).
This percentage is then multiplied by 100. f”(female subjects/unique subjects)*100:.1f%”
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formats the calculated percentage value as a string with one decimal followed by a
percent symbol (”%”). This ensures that the percentage is displayed with one deci-
mal place.

Numerical data

For the numerical data, the built in methods from NumPy is used to obtain infor-
mation such as mean, min, max, standard deviation and much more. In the code
listing below, it can be seen how these methods work to obtain information about
Age of a given group.

1 #AGE

2 age_mean = filtered_df["AGE"].mean()

3 age_std = filtered_df["AGE"].std()

4 age_min = filtered_df["AGE"].min()

5 age_max = filtered_df["AGE"].max()

6 age_stats = f"{age_mean :.1f} ({ age_std :.1f}, {age_min :.1f}, {age_max :.1f})"

Listing 4.6: processing numerical data

4.2.2 Statistical Analysis

Performing statistical analysis is crucial to get information between the groups and
about the groups themselves. One way ANOVA is performed with Turkey Post-Hoc
correction to analyse the significant differences between groups. In the code below
can be seen how a Python function is created with as input the three groups which
would be liked to analysed.

1 def one_way_anova_with_posthoc(group1 , group2 , group3):

2 f_value , p_value = f_oneway(group1 , group2 , group3)

3 print(p_value)

4 if p_value < 0.01:

5 data = np.concatenate ([group1 , group2 , group3 ])

6 labels = [’group1 ’] * len(group1) + [’group2 ’] * len(group2) + [’group3 ’] *

len(group3)

7 tukey_results = pairwise_tukeyhsd(data , labels , 0.01)

8 print(tukey_results)

Listing 4.7: Function for statistical analysis

The one-way ANOVA test is used by the code to first get the F-value and p-value.
The p-value was then printed. A post-hoc Tukey’s test is run by the code if the
p-value is less than 0.01. The data from all groups are pooled into a single array for
the Tukey’s test, and labels are made to distinguish the groups. To ascertain if there
are significant differences between groups, the pairwise Tukey’s test is used. The
outcomes are then reported, together with the pairwise comparisons and modified
p-values. In short, the code enables statistical analysis to assess group differences
using one-way ANOVA and post-hoc Tukey’s test, giving information about the
importance of the observed variances across various groups.

4.2.3 Longitudinal Data

To analyse the evolution of Alzheimer’s Disease of the patients it is also crucial to
perform longitudinal analysis. With the code below we get the maximum value for
the Pτ over Aβ value for each row, sorting the this column from large to small and
afterwards dropping all the duplicates at the ’RID’ column gives us the maximum
for each subject for this value and thus longitudinal data. The code does this for
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the CN group and also shows how the T+ and T- of the AT(N) classification gets
derived regarding the treshold value.

1 filtered_CN_Long = filtered_CNl.sort_values(’PTAUABETA ’, ascending=False).

drop_duplicates ([’RID’])

2 CN_Long_TMinus = filtered_CN_Long[filtered_CN_Long["PTAU"] <=27]["RID"]. nunique ()

3 CN_Long_TPlus = filtered_CN_Long[filtered_CN_Long["PTAU"]>27]["RID"]. nunique ()

Listing 4.8: Longitudinal Data

4.3 Machine Learning Models

Four Machine Learning models are created, two models each for the preclinical and
prodromal stage. Each stage has a model based on data from baseline and also
based on longitudinal data.

4.3.1 Preparing the Cox Model

Event

First the cox model gets prepared to perform a machine learning model. In the code
below it is shown for the prodromal stage but for the preclinical stage the exact
same thing happens.

1 progressed = MCI[MCI[’DX’].isin([’Dementia ’])]

2 # Filter out the subjects who have progressed to Dementia

3 help_df = MCI[MCI[’DX’].isin([’Dementia ’])][’RID’]

4 stable = MCI[~MCI[’RID’].isin(help_df)]

5 # Give all progressed subjects a 1 for ’progressed ’ column and 0 for the stable

subjects

6 stable["event"]=0

7 progressed["event"]=1

Listing 4.9: Preparing the Cox Model: Event column

Line 1 of the code filters out participants who have advanced to dementia from
the MCI DataFrame. It then generates a new DataFrame named ”progressed”
that only contains people whose ”DX” column has the value ”Dementia.”. New
DataFrame ’help df’ is created on line 2. It records the ’RID’ (subject ID) values
of the subjects who have advanced to dementia precisely. The ’RID’ column is
taken out of the ’progressed’ DataFrame. The new DataFrame’stable’ is established
on line 3. It contains all of the MCI DataFrame individuals who have not yet
developed dementia. The participants whose ’RID’ values are absent in ’help df’,
suggesting that they have not advanced to dementia, are excluded using the ’help df’
DataFrame. The’stable’ DataFrame has a new column named ’event’ inserted on line
5. This column has a value of 0 for each row. This column serves to demonstrate that
the participants are stable and have not developed dementia. The ’event’ column is
lastly added to the ’progressed’ DataFrame at line 6. Similar to the preceding line,
a value of 1 is assigned to each row in this column. Now, the ’event’ column shows
that these people have advanced to dementia.

Duration

1 stable.sort_values(’Month.bl’, inplace=True)

2 # Drop duplicates based on ’RID’ column , keeping the last (latest) observation:

Stable keeping only the highest value for censoring time
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3 stable.drop_duplicates(subset=’RID’, keep=’last’, inplace=True)

4 stable[’duration ’] = stable[’Month.bl’]

5

6 #Progressed calculating conversion time , first time MCI becomes Dementia

7 baseline_month = progressed.loc[progressed[’DX’] == ’Dementia ’, ’Month.bl’].min()

8 progressed[’duration ’] = progressed[’Month.bl’]

9 progressed.drop_duplicates(subset="RID", inplace=True)

10 #Merge the two DataFrames into one for Cox Model

11 MCI_merged = pd.concat ([ progressed , stable ])

Listing 4.10: Preparing the Cox Model: Duration column

The values in the ’Month.bl’ column are used to sort the’stable’ DataFrame in
ascending order on line 1. This sorting process is in-place, which means that it
changes the’stable’ DataFrame right away. Line 3 of the code removes duplicate
entries from the ”stable” DataFrame based on the ”RID” column. For each distinct
”RID” value, only the most recent observation is retained; all prior duplicate rows
are discarded. This procedure immediately alters the ”stable” DataFrame thanks
to the ’inplace=True’ argument.

The values for the new column ”duration,” which is added to the ”stable” DataFrame
in line 4, are taken from the ”Month.bl” column. The month values from the
”Month.bl” column in the ”stable” DataFrame are captured in a new column called
”duration” that is created in this phase. This ultimately leads to the censoring time
of the stable patients. Line 7 of the code is where the baseline month for the ”pro-
gressed” DataFrame is determined. It pulls the lowest value from the ”Month.bl”
column and chooses rows from the ”progressed” DataFrame where the ”DX” (diag-
nostic) column is ”Dementia.” The MCI (Mild Cognitive Impairment) individuals’
first month of dementia progression is represented by this baseline month. This
ultimately leads to the conversion time of the progressed patients, because the code
filters only the rows where the MCI patients become Dementia patients for the first
time, hence conversion time. The values for the new ”duration” column, which is
added to the ”progressed” DataFrame in line 8, are taken from the ”Month.bl” col-
umn. In the ’progressed’ DataFrame, a new column called ’duration’ is now created,
just as it was in the ’stable’ DataFrame. Line 9 of the code removes duplicate rows
from the ”progressed” DataFrame based on the ”RID” column, only maintaining
the first instance of each distinct ”RID” value.

Finally, in line 11, the ’progressed’ and ’stable’ DataFrames are concatenated
using the ’pd.concat’ function. This operation merges the two DataFrames into
one, creating a new DataFrame called ’MCI merged’. The resulting DataFrame
contains both the ’progressed’ and ’stable’ subjects, allowing for further analysis,
such as applying a Cox Model.

Standardising the values of the combination vector

1 stable.sort_values(’Month.bl’, inplace=True)

2 from scipy.stats import zscore

3 MCI_merged.dropna(subset =["ADAS13.bl"], inplace=True)

4 covariates = [’RAVLT.learning.bl’, ’RAVLT.perc.forgetting.bl’, ’ADAS13.bl’, ’CDRSB.

bl’, ’LDELTOTAL.bl’]

5

6 # Create a new DataFrame with standardized values

7 MCI_standardized = MCI_merged.copy()

8

9 MCI_standardized[covariates] = MCI_standardized[covariates ]. transform(zscore)

10 # Only taking the relevant columns for the cox modeling
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11 cox_column = [’event’, ’duration ’, ’RAVLT.learning.bl’, ’RAVLT.perc.forgetting.bl’,

’ADAS13.bl’, ’CDRSB.bl’, ’LDELTOTAL.bl’]

12

13 MCI_finalised = MCI_standardized[cox_column]

14 # Getting rid of the 0 duration rows as this could harm the modeling of the cox

model

15 MCI_finalised = MCI_finalised[MCI_finalised["duration"] != 0]

Listing 4.11: Preparing the Cox Model: Standardising the used covariates columns

The best combination of biomarkers is selected, according to studies by the super-
visor, prof. Carlos Platero. For Preclinical:

RAV LTLearning, FAQ,ADAS13, CDRSB,MMSE,AGE

For Prodromal:
ADAS13, FAQ,MMSE,CDRSB.bl

In the ’MCI merged’ DataFrame, missing values are first addressed by removing
rows where the ’ADAS13.bl’ column contains NaN values. This makes that the
dataset is still comprehensive and prepared for additional research. After that, a list
named ”covariates” is made with the names of the columns that will be standardized.
These columns are chosen depending on how well they apply to the next modeling
job. The ’MCI merged’ DataFrame is copied into a new DataFrame with the name
’MCI standardized’. This process enables us to maintain the original data while
working with standardized numbers. The z-score transformation is then used to
normalize the chosen columns in the ’covariates’ list.

With the help of this procedure, it is guaranteed that the values in these columns
are scaled to have a mean of 0 and a standard deviation of 1. When multiple fea-
tures have distinct scales, standardization is advantageous because it harmonizes
the scales and prevents any one aspect from predominating the analysis. A list
named ”cox column” is made with the essential columns, such as ”event,” ”dura-
tion,” and other pertinent factors, to prepare the data particularly for Cox modeling.
By choosing the appropriate columns from the ”MCI standardized” DataFrame, a
new DataFrame called ”MCI finalised” is produced using the ”cox column” list. By
keeping only the columns that are important for the Cox modeling analysis, this
phase streamlines the dataset. The ’MCI finalised’ DataFrame is then filtered to
remove any entries where the ’duration’ column equals 0. This guarantees that the
final dataset only contains subjects with a non-zero duration, which is necessary for
accurate modeling.

The algorithm prepares the data for later analysis, such as Cox modeling, by
executing these data pretreatment and feature selection stages, making sure that
missing values are handled, pertinent columns are standardized, and the dataset is
suitably prepared for additional research.

Longitudinal data

For longitudinal data we take the DataFrame as extracted in the same way like
previous section and we also perform the LME Model to prepare the COX model.
This code uses a linear mixed-effects (LME) methodology to estimate the course of
prodromal Alzheimer’s disease. To get longitudinal data ready for Cox modeling.

Duration is the dependent variable in the LME model, while the independent
variables ADAS13, FAQ, MMSE, and CDRSB are measurements or evaluations of
the progression of Alzheimer’s disease.
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1 # Specify the LME formula

2 lme_formula = ’duration ~ ADAS13 + FAQ + MMSE + CDRSB ’

3 # Fit the LME model

4 lme_model = smf.mixedlm(lme_formula , data= data , groups=data[’RID’])

5 lme_result = lme_model.fit()

6 random_residuals=lme_result.resid

7 data[’random_residuals ’]= random_residuals

Listing 4.12: LME Model

4.3.2 Cross-validation with k-fold

Cross-validation and the Cox proportional hazards (CoxPH) model for survival anal-
ysis are implemented in the given code section. Using this method, we can analyze
the model’s performance on hypothetical data and determine its propensity to fore-
cast survival outcomes.

1 from sklearn.model_selection import KFold

2 from lifelines import CoxPHFitter

3 # Split into test set and model data set

4 model_data , test_data = train_test_split(MCI_finalised , test_size =0.1, random_state

=42)

5 # Perform 10-fold cross -validation

6 kfold = KFold(n_splits =10, shuffle=False)

7 # Initialize an empty list to store performance metrics

8 performance_metrics = []

9 for train_index , eval_index in kfold.split(model_data):

10 # Split data into train and evaluation sets for the current fold

11 train_data = model_data.iloc[train_index]

12 eval_data = model_data.iloc[eval_index]

13 # Initialize a new Cox model

14 cox_model = CoxPHFitter ()

15 # Fit the Cox model on the train data

16 cox_model.fit(train_data , duration_col=’duration ’, event_col=’event’)

17 # Evaluate the performance of the model on the evaluation data

18 c_index = cox_model.score(eval_data , scoring_method="concordance_index")

19 # Store the performance metric for this fold

20 performance_metrics.append(c_index)

21 # Calculate the average performance across all folds

22 average_performance = sum(performance_metrics) / len(performance_metrics)

23

24 # Print the average performance

25 print("Average C-index: ", average_performance)

26 # Fit the Cox model on the entire training dataset

27 cox_model.fit(model_data , duration_col=’duration ’, event_col=’event’)

28 # Predict on the test dataset

29 predictions = cox_model.predict_median(test_data)

30 # Evaluate the model’s performance on the test dataset

31 c_index_test = cox_model.score(test_data , scoring_method="concordance_index")

32 print(c_index_test)

Listing 4.13: Progression model with cross-validation

The necessary libraries are first imported, including CoxPHFitter from the lifelines
package and KFold from the sklearn.model selection module. The train test split
function is then used to divide the dataset into a model dataset and a test dataset.
The test dataset will be utilized for the final performance evaluation, whereas the
model dataset will be used for training and evaluation. A 10-fold strategy is built
up using KFold with 10 splits to do cross-validation. The procedure does not involve
shuffling the data.

To keep the performance metrics collected during cross-validation for each fold,
a blank list called ”performance metrics” is made. Using the indices received by
kfold.split(), the model dataset is further split into training and evaluation sets for
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the current fold throughout the cross-validation cycle. CoxPHFitter() is used to
set up a fresh instance of the CoxPH model. Utilizing the fit technique and the
duration and event columns, the Cox model is fitted (trained) on the training data.
The concordance index (c index) is used as the performance indicator to assess the
performance of the Cox model using the evaluation data. Utilizing the Cox model’s
scoring technique, this is accomplished.

The ’performance metrics’ list is supplemented with the acquired performance
metric (c index) for the current fold. The average performance across all folds
is determined when the cross-validation cycle has been completed by adding the
performance measurements and dividing by the number of folds. The average con-
cordance index attained by the Cox model during cross-validation is represented by
the printed value of average performance (average performance). In order to use all
available data for training, the Cox model is then fitted on the whole model dataset
using the fit technique. The predict median technique of the Cox model is used to
create predictions on the test dataset. The concordance index (c index test) is used
as a performance statistic to assess the model’s performance on the test dataset.
The concordance index for the test dataset is then reported, giving information on
how well the model performs on unobserved data.

4.3.3 Performance Evaluations and determining the duration of the pre-
clinical and prodromal stages

1 # Calculate the average performance across all folds

2 average_performance = sum(performance_metrics) / len(performance_metrics)

3 # Calculate the standard deviation of the performance metrics

4 std_dev = np.std(performance_metrics)

5 # Calculate the confidence interval (95% confidence level)

6 confidence_interval = stats.t.interval (0.95, len(performance_metrics) - 1, loc=

average_performance , scale=std_dev / np.sqrt(len(performance_metrics)))

7 # Print the performance

8 print("Average C-index: ", average_performance)

9 print("Confidence Interval: ", confidence_interval)

10 # Concatenate all fold predictions

11 all_predictions = pd.concat(fold_predictions)

12 # Calculate the average survival lifetime with confidence intervals

13 median_survival_lifetime = all_predictions.median ()

14 lower_ci = all_predictions.quantile (0.05)

15 upper_ci = all_predictions.quantile (0.95)

16 # Print the average survival lifetime and confidence intervals

17 print("Median Survival Lifetime: ", median_survival_lifetime /12)

18 print("Survival Time Confidence Intervals: ({}, {})".format(lower_ci /12, upper_ci

/12))

19 # Fit the Cox model on the entire training dataset

20 cox_model.fit(model_data , duration_col=’duration ’, event_col=’event’)

21 # Predict on the test dataset

22 predictions = cox_model.predict_median(test_data)

23 # Evaluate the model’s performance on the test dataset

24 c_index_test = cox_model.score(test_data , scoring_method="concordance_index")

25 print("Concordance Index when testing the model on test data:", c_index_test)

Listing 4.14: Performance Evaluation

The average performance across all folds is determined in the first section of the code.
The average is determined by adding together all the performance metrics in a list
and dividing the total by the number of metrics. This list is saved in the variable
performance metrics. The performance metrics’ standard deviation must then be
determined. This is accomplished by measuring the spread or variability of the
performance metrics around the average using the np.std() function from the NumPy
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library. The algorithm then determines a confidence interval with a 95% degree of
assurance. It makes use of the SciPy library’s stats.t.interval() function, which
takes into consideration average performance, standard deviation, and a variety of
performance indicators.

The average C-index and the confidence interval are then printed by the code.
The pd.concat() method from the pandas library is then used to concatenate ev-
ery fold prediction that is stored in the fold predictions variable. The variable
all predictions is given the concatenated predictions. The median survival lifespan
is then calculated using the all predictions dataframe in the next step. The lower
and higher confidence intervals for the survival time are then determined by the
code. The 5th and 95th percentiles are obtained by using the quantile() function
on all predictions with the inputs 0.05 and 0.95, respectively. Lower ci stands for
the lower confidence interval, and upper ci for the higher confidence interval. The
code, after fitting the model, uses the trained cox model and the predict median()
function to forecast the median survival time for the test dataset. The predictions
variable is used to store the outcomes as predictions. The concordance index (c-
index), which is determined using the score() function on cox model, is the last
step in the code’s evaluation of the model’s performance on the test dataset. The
scoring method option is set to ”concordance index” and the test data are given
as input. The c index test variable holds the outputted c-index, which is subse-
quently printed. For the test dataset, predictions are made using the Cox model’s
predict median function. The median survival time for each person in the dataset is
predicted by this approach. The variable predictions contains the forecasts. The me-
dian expected survival time is computed by locating the projections’ median value
in order to understand the findings. Assuming the survival time is expressed in
months, the estimatingated median survival time is divided by 12 to translate it to
years. The median survival time is then produced, giving an estimate of how long
it will likely be until the event happens for the people in the test dataset. Similarly,
by determining the mean value of the forecasts, the mean expected survival time is
determined. To convert the mean survival time from months to years, divide it by
12. The average time until an event happens for the people in the test dataset is
then estimated using the mean survival time, which is printed. These calculations
shed light on the model’s expectations for the duration of predicted survival for each
person in the test dataset.

4.3.4 Kaplan-Meier

In survival analysis, the Kaplan-Meier estimator is a statistical technique used to
calculate the survival function of a population that has experienced an interesting
event over time. [37] To evaluate and show survival data, it is frequently used in
medical research, notably in the field of cancer. The survival function, sometimes
referred to as the survival probability or survivor function, calculates the likelihood
that a person or a group will live through a specific point in time. In other words,
it determines the percentage of those who have not gone through the event (such as
death or the growth of a disease) by a certain period. When working with censored
data, which is when the event of interest has not happened for any people during
the study period, the Kaplan-Meier estimator is especially helpful. In this case for
the preclinical and prodromal stage the event is the fact that a subject converts or
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not to respectfully MCI and AD. Censoring can occur for a number of reasons, for
as when participants are lost to follow-up or when the research is over before the
event occurs for everyone involved. The estimator gives a non-parametric prediction
of the survival function while taking into consideration these censored observations.
The Kaplan-Meier estimator uses all available data points until an event occurs or
censoring occurs, which is one of its main benefits. It can also accommodate partial
or unequal follow-up intervals. It offers estimates of survival probability at various
time points and enables the examination of time-to-event data in the context of
censoring. The estimator also makes it possible to compare survival curves between
various groups or subpopulations. This enables scientists to determine if various
elements, such available treatments or patient characteristics, have an effect on
survival rates. The Kaplan-Meier estimator also offers Kaplan-Meier plots as a
means of visualizing the survival curves. These charts show the predicted survival
probabilities with time, making it simple to understand and evaluate survival trends.
In conclusion, the Kaplan-Meier estimator is an effective tool for calculating the
survival function and examining time-to-event data in survival analysis. It is useful
in clinical investigations and medical research since it accepts censored observations
and makes it easier to compare survival curves between various groups. [36]. Below
you can see the implemented code for performing Kaplan-Meier analysis.

1 from lifelines import CoxPHFitter , KaplanMeierFitter

2 # Fit the Kaplan -Meier model on the test data

3 kmf = KaplanMeierFitter ()

4 kmf.fit(test_data[’duration ’], test_data[’event’])

5

6 # Plot the Kaplan -Meier survival curve for the test dataset

7 kmf.plot()

8 plt.title(’Kaplan -Meier Survival Curve (Test Data)’)

9 plt.xlabel(’Time (months)’)

10 plt.ylabel(’Survival Probability ’)

11 plt.show()

Listing 4.15: Performing Kaplan-Meier
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Chapter 5

Results

The results of the research undertaken in this thesis are presented in this part. The
goal of this study was to use Artificial Intelligence techniques to assess the temporal
length of the preclinical and prodromal phases of Alzheimer’s disease in individuals
with amyloid pathology. The acquired data was examined using a combination of
statistical and machine learning techniques. The study’s findings will be detailed
in the subsections that follow, including an analysis of the evolution of Alzheimer’s
disease in patients, the tau pathology and neuro-degeneration profiles of the study
subjects, the biomarker predictors with the greatest power to estimate the evolution
of Alzheimer’s disease, and an estimation of the duration of the preclinical and
prodromal stages of the disease.

Each subsection will begin with a description of the findings, followed by an
in-depth assessment of their importance, relevance to the current literature, and
resolution of any limits or discrepancies. Furthermore, the ramifications of the
findings will be examined in terms of their theoretical and practical contributions,
and prospective future study directions will be suggested. Overall, the purpose of
this part is to give a thorough analysis of the data obtained as well as insights into
the research issues addressed in this thesis.

5.1 Table 1: Baseline demographic and clinical characteris-
tics of the subjects.

The subjects’ baseline demographic and clinical characteristics. Data are expressed
as mean (SD) (minimum, maximum) or n(%). For baseline age, education, neu-
ropsychological score, and AD CSF biomarkers, ANOVA with Turkey post hoc test
is used, except for gender and APOE4 convert, where the chi-square test is used.
A p-value of less or equal than 0.01 is considered statistically significant. In the
Post-Hoc column the a, b and c mean respectively significance detected between
CU and MCI, CU and AD and between MCI and AD. See table 5.1.

Gender and APOE4 The percentage of females in the CN group was signifi-
cantly greater (56.3%) than in the MCI (39.1%) and AD (43.6%) groups (p¡0.01).
Furthermore, the APOE4 genotype was substantially more common in the MCI
(70.9%) and AD (74.0%) groups than in the CN (55.2%) group. There were no
significant differences between the MCI and AD groups.

Age and Education The individuals’ mean age did not differ substantially
between the MCI and AD groups, however both were considerably younger than
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Table 5.1: The subjects’ baseline demographic and clinical characteristics

the CN group. The mean education level of the CN and MCI groups did not differ
substantially, however both groups had considerably higher education levels than
the AD group.

Neuropsychological scores The table shows the mean scores for a variety of
neuropsychological exams. The Mini-Mental State Examination (MMSE) scores
in the MCI and AD groups were substantially lower than in the CN group. The
Clinical Dementia Rating Scale-Sum of Boxes (CDRSB) scores in the MCI and AD
groups were substantially higher than in the CN group. The Alzheimer’s Disease
Assessment Scale-Cognitive Subscale 13 items (ADAS13) scores in the MCI and AD
groups were substantially higher than in the CN group. The MCI and AD groups
scored considerably higher on the Functional Activities Questionnaire (FAQ) than
the CN group.

AD CSF Biomarkers The mean levels of cerebrospinal fluid (CSF) biomark-
ers for Alzheimer’s disease (ABeta, TAU, phosphorylated TAU (pTAU), and the
pTAU/A ratio are also showed. The A levels in the AD group were considerably
lower than in the CN and MCI groups. TAU and pTAU levels were substantially
greater in the AD group than in the CN and MCI groups. The pTAU/A ratio in
the AD group was substantially greater than in the CN and MCI groups.

FDG The average results of the three groups’ fluorodeoxyglucose (FDG) positron
emission tomography (PET) scans are listed in table 1. In comparison to the CN
group and the MCI group, the FDG levels in the AD group were respectively con-
siderably lower and higher.

Conclusion Important demographic and clinical data from the participants in
the CN, MCI, and AD groups are summarized in the table. The findings reveal
substantial differences between the groups in terms of gender, APOE4, age, ed-
ucation, neuropsychological outcomes, AD CSF biomarkers, and FDG PET scan
results. These findings may have an impact on clinical diagnosis and treatment and
are important for comprehending the variability of cognitive impairment.
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Table 5.2: Baseline demographic and clinical characteristics of the subjects.

5.2 Table 2: Baseline demographic and clinical characteris-
tics of the subjects

The baseline demographic and clinical features of the four groups—sCU, pCU, sMCI,
and pMCI—are shown in the table. Following is a breakdown of the participants
by group: sCU (n=55), pCU (n=32), sMCI (n=135), and pMCI (n=185). The
distribution of gender differs between the groups. In comparison to pCU (37.5%)
and pMCI (41.1%), the proportion of female individuals in sCU (67.3%) and sMCI
(67.3%) is higher. The distribution of APOE4 genotypes varies between the groups
as well. A larger proportion of patients in the pCU (68.8%), sMCI (69.6%), and
pMCI (71.9%) groups than in the sCU group (47.3%) contain the APOE4 allele.
The groups with the highest mean ages are sCU (74.9 years) and pCU (77.2 years),
whereas the groups with the lowest ages are sMCI (73.7 years) and pMCI (72.6
years).

The mean ages of the educational levels groups range from 15.6 to 15.9 years
and are similar. Neuropsychological test mean scores indicate a pattern of declining
scores from the sCU group to the pMCI group. For instance, sCU has the greatest
MMSE score (29.2) and the lowest MMSE score (26.8) is from pMCI, although pMCI
has the highest CDRSB and ADAS13 scores (1.94 and 21.3, respectively) and sCU
has the lowest (0.05 and 8.9). The CSF biomarkers (A, TAU, pTAU, and pTAU/A)
do not exhibit a consistent pattern amongst the groups. However, the pMCI group
had the greatest mean values for TAU (368.8), pTAU (37.5), and pTAU/A (0.063)
and the highest mean value for A (630.4).

FDG data are available for a subset of subjects (n=45, 26, 116, and 142 for sCU,
pCU, sMCI, and pMCI, respectively). The mean FDG values show no clear trend
across the groups.
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5.3 Table 3: Percentages of the AT(N) profiles in the CU,
MCI, and AD subjects at baseline using AD CSF biomark-
ers and FDG-PET.

The table shows the percentages of AT(N) profiles utilizing AD CSF biomarkers
and FDG-PET in the CU, MCI, and AD individuals at baseline. The number of
participants in each group and the proportion of people in each group who had a
positive FDG-PET scan are also included in the table. See table 6.1.

CU At baseline and at long-term follow-up, there were 87 individuals in the CU
group. 42.5% of subjects had an A+T- baseline, whereas 57.5% had an A+T+
baseline. 35.6% of individuals in the long-term follow-up scored A+T-, whereas
64.4% scored A+T+. 71% of those who had FDG-PET scans were A+T+. The
baseline group included 45.9% of the A+T+ people with neurodegeneration negative
status, meanwhile the long-term follow-up group included 28.3% of them. On the
other hand, 12.8% of the A+T+ people with neurodegeneration-positive status and
13.3% of those with baseline status were in the group receiving long-term follow-up.

MCI At baseline and at long-term follow-up, 320 people were included in the MCI
group. At the start of the study, 26.2% of subjects had an A+T-, whereas 73.8% had
an A+T+. 23.4% of patients in the long-term follow-up were A+T-, whereas 76.6%
were A+T+. 80.3% of those who had FDG-PET scans were A+T+. A+T+ people
with a neurodegeneration-negative status made up 36.1% of the baseline participants
and 28.5% of the long-term follow-up subjects. In comparison, 35.4% of the A+T+
people who had neurodegeneration-positive status were in the long-term follow-up
group whereas 37.2% were in the baseline group.

AD At baseline and at long-term follow-up, 204 individuals were in the AD
group. At the outset, 23.5% of participants had an A+T-, whereas 76.5 percent
had an A+T+. 22.1% of patients in the long-term follow-up were A+T-, whereas
77.9% were A+T+. 74.5 percent of patients who had FDG-PET scans were A+T+.
8.0% and 7.2%, respectively, of the A+T+ patients with neurodegeneration negative
status were included in the baseline and long-term follow-up groups. In comparison,
69.3% of the A+T+ people who had neurodegeneration-positive status were in the
long-term follow-up group whereas 67.8% were in the baseline group.

Conlusion Important details about the AT(N) profiles of Alzheimer’s disease at
various phases, including CU, MCI, and AD, are shown in the table. The information
on the amounts of beta-amyloid, tau, and neurodegenerative biomarkers in each
group may be used to determine if Alzheimer’s disease is present and how far along
it is. Researchers and clinicians may find the data in the table helpful in creating
and assessing Alzheimer’s disease therapies.

5.4 Table 4: Comparison of some risk factors between sCU
and pCU subjects in the study population.

The table compares some risk variables between study participants with sCU (slow
cognitive decline) and pCU (preclinical cognitive decline). The research uses binary
category and quantitative data to shed light on probable dividing characteristics
between these two groups.

Subjects and age The sCU group had a little older mean age (74.9 years) than
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Table 5.3: Percentages of the AT(N) profiles in the CU, MCI, and AD subjects at baseline using
AD CSF biomarkers and FDG-PET

Table 5.4: Comparison of some risk factors between sCU and pCU subjects in the study population.

the pCU group (77.2 years). The mean age of the fast pCU group (78.4 years) was
greater than the slow pCU group (75.1 years), though, when the pCU group was
further separated into fast and slow groups. The age distribution was quite narrow,
as evidenced by the fact that the standard deviation for age was often low. This
evidence implies that age may affect how quickly cognitive loss occurs, with older
people perhaps experiencing a quicker decrease.

Female and APOE4 In terms of binary categorical factors, the sCU group
had a greater percentage of females (67.3%) than the pCU group (37.5%). The
percentage of females in the pCU group stayed consistent at 40.0% for both the fast
and slow groups, which is an interesting finding. This implies that gender might not
be a defining characteristic of fast and slow pCU. Additionally, the sCU group had
a lower number of APOE4 carriers (47.3%) compared to the pCU group (68.8%).
The percentage of APOE4 carriers remained lower in the fast pCU group (65.0%)
than in the slow pCU group (70.0%) when the pCU group was split into fast and
slow groups. This raises the possibility that APOE4 carrier status is linked to a
quicker onset of cognitive deterioration in the preclinical phases.

Conlusion This table offers important details on a few risk variables linked to
cognitive decline in its early and preclinical phases. The pace of cognitive decline
may depend on factors such as age, gender, and APOE4 status, with older people
and those who have the gene perhaps experiencing a quicker decline. To ascertain
the direction and causation of these connections, more investigation is necessary.
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Figure 5.1: Convert and Censuring time (all subjects)

Figure 5.2: Convert and censuring time (all subjects)

5.5 Conversion rates of CU subjects towards MCI/demen-
tia

Based on their conversion and censure time, Figure 6.1 shows the distribution of
individuals into the pCU and sCU groups. Approximately 66.7% (n = 20/30) of all
pCU-A+ patients, or about 22.9% (n = 20/87) of the CU-A+ population, converted
within the first four years. Individuals who converted in the first four years make
up around 12% of the total CU population of ADNI and about 45% of all pCU
participants.

5.6 Conversion rates of MCI subjects towards dementia

The allocation of individuals into the two groups, pMCI and sMCI, according to
their conversion or censuring time is shown in Figure 6.1. Within the first four
years, around 50.6% (n = 162/320) of the MCI-A+ group, or nearly 89.0% (n =
162/182) of all pMCI cases, transitioned to dementia. Around 30% of MCI patients
in the general ADNI sample transitioned to MCI during the first four years, while
80% of pMCI subjects converted to dementia within the same time period.

5.7 Percentages of the AT profiles in the CU, MCI and de-
mentia subjects

A pTau/A ratio larger than 0.028 was utilized to fulfill the A+ requirement, while a
pTau value greater than 27 pg/ml was used to establish T+. The baseline values are
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Figure 5.3: Percentages of the AT profiles in the CU, MCI and dementia subjects. Above is at
baseline while the graphs below represent longitudinal analysis.

shown in the first column, and the longitudinal analysis’ findings are shown in the
second column. To show the measure cut-off positions, dashed lines were created.
See Figure 5.7. The same conclusions are found as in table 6.1.

5.8 Correlation among AT(N) biomarkers at baseline

Figure 5.8 demonstrates a high linear correlation (R value more than 0.97) between
Tau and pTau across all three clinical groups studied. This indicates that a T+
(pTau ¿ 27pg/ml) diagnostic would also suggest a N+ (Tau ¿ 290pg/ml) diagnosis.
FDG PET and Tau in CSF are both diagnostic of neurodegeneration, with Tau
in CSF showing the degree of neuronal damage at a certain moment and FDG
representing cumulative neuropil loss and neuronal functional impairment. Although
there is no significant association between Tau and FDG (with R values ranging
from -0.06 to 0.08), there is considerable agreement when it comes to classifying
neurodegenerative processes as positive (N+) or negative (N-). Approximately 70%
of participants who tested positive for Tau also tested positive for FDG in the three
clinical categories studied, but agreement for negative findings (N-) was poorer,
falling below 40% for MCI and dementia cases and approximately 50% for CU
subjects.

5.9 Machine Learning Models

After performing the code from the methods section, following results are obtained.
Preclinical Stage
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Figure 5.4: Percentages of the AT profiles in the CU, MCI and dementia subjects.

1. Baseline

The average C-index calculated was 0.7133 (95% CI: 0.6937-0.7329), demon-
strating a modest ability of the model to discriminate between the course of
illness. This shows that the model may predict the chance of progression from
the preclinical stage to a subsequent stage with some degree of accuracy. Indi-
viduals in the preclinical stage at baseline had an estimated median surviving
lifespan of 7.98 years. This suggests that, on average, half of the people ad-
vanced to a new stage after around 8 years. The range of the median survival
lifetime’s 95% confidence interval, from 2.49 to 9.28 years, represents the likely
range of the actual median surviving lifespan. When tested on test data, the
model’s concordance index was 0.64. This demonstrates that the model may
classify individuals based on their likelihood of contracting a disease, albeit
room for improvement still exists. In figure 5.9 you can see the Kaplan-Meier
graph for preclinical stage.

2. Longitudinal The model’s average C-index was 0.96, showing an excellent ca-
pacity for illness progression prediction which is close to perfection. With a 95%
confidence range spanning 1.01 to 8.02 years, the projected median surviving
lifespan for individuals was 4.07 years. The model’s high concordance score of
0.89, which indicates good prediction accuracy in classifying people according
to their likelihood of illness development, was evaluated using unknown data.

However while these results (especially longitudinal) seem very promising and
very high scoring, it is curcially important to note that this is only on one
small dataset and further investigation is crucial. A possibility is also that
some overfitting has happened.

Prodromal Stage

1. Baseline

The results for the prodromal stage are a little better. The average C-index,
which was 0.7582, showed that the model had a respectable capacity for dis-
criminating. The range of the average C-index’s 95% confidence interval, from
0.6887 to 0.8277, indicates where the real average C-index value is most likely
to fall. Patients with MCI were found to have an estimated median surviving
lifespan of 3.30 years. This is around the point at which half of the MCI pa-
tients are anticipated to advance to a new stage. The range of the 95 percent
confidence interval for the median survival lifetime, which represents the likely
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Figure 5.5: Kaplan-Meier graph for Preclinical stage

Figure 5.6: Kaplan-Meier graph for Prodromal stage

range of the actual median survival lifetime, was 0.88 to 9.99 years. The con-
cordance index obtained while testing the model on the test data was 0.7322.
This rating, which assesses the model’s total predictive performance, shows
a very feasible degree of prediction accuracy. In figure 5.9 you can see the
Kaplan-Meier graph.

2. Longitudinal

The longitudinal data model used for the prodromal period showed a strong
capacity for prediction. The model’s average C-index was 0.74053 (95% CI:
0.7168-0.7610), demonstrating a significant capacity for discrimination in de-
termining the rate of illness development. This shows that the model is capable
of efficiently differentiating between people who are most likely to advance to
a later stage and those who could still be in the prodromal stage. In the pro-
dromal stage, the projected median survivor lifespan was 3.30 years, indicating
that, on average, half of the people advanced to a different stage during this
time. The range of the median survival lifetime’s 95% confidence interval, from
1.04 to 7.06 years, represents the likely range of the actual median survival
lifespan. The model’s concordance index was 0.70 when it was evaluated on
hypothetical data. This index measures the model’s overall prediction accu-
racy and shows how well it can rank people according to their probability of
developing a disease.
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Chapter 6

Discussion

6.1 Processing the data and feature engineering

The results section offers important details on the demographic and clinical baseline
traits of the research subjects. For the development of progression ML models in-
tended to determine the length of the prodromal and preclinical stages of Alzheimer’s
disease, the data supplied in this section are essential.

The baseline demographic and clinical features of the individuals are included in
the analysis’s first section. The distributions of APOE4 genotype and gender differ
considerably amongst the groups. In comparison to the MCI and AD groups, the
CN group had a larger proportion of females. Additionally, compared to the CN
group, the MCI and AD groups have a higher prevalence of the APOE4 genotype.
There are clear trends between the categories in terms of age and educational at-
tainment. Although the mean ages of the MCI and AD groups are comparable,
neither group is older than the CN group. The CN and MCI groups also have
greater levels of education than the AD group. Scores on neuropsychological tests
show significant disparities between the groups. In comparison to the CN group,
the MCI and AD groups have lower MMSE scores and higher scores on the Clinical
Dementia Rating Scale-Sum of Boxes (CDRSB) and the Alzheimer’s Disease Assess-
ment Scale-Cognitive Subscale 13 items (ADAS13). On the Functional Activities
Questionnaire (FAQ), the MCI and AD groups perform better than the CN group.
Aβ, TAU, phosphorylated TAU (pTAU), and the pTAU/Aβ ratio are only a few of
the cerebrospinal fluid (CSF) indicators for Alzheimer’s disease that are included
in the study. In comparison to the CN and MCI groups, the AD group exhibits
lower A levels and greater TAU and pTAU levels. Additionally, the AD group has a
greater pTAU/Aβ ratio than the CN and MCI groups do. Additionally, the typical
outcomes of positron emission tomography (PET) scans using fluorodeoxyglucose
(FDG) are reviewed. In comparison to the CN group, the FDG levels in the AD
group are noticeably lower, whereas those in the MCI group are greater. Under-
standing the neurodegenerative mechanisms linked to Alzheimer’s disease is made
easier by these results.

The percentages of AT(N) profiles in the CU, MCI, and AD participants at base-
line utilizing AD CSF biomarkers and FDG-PET are also shown in the findings
section. See table 6.1. The presence and development of Alzheimer’s disease are as-
sessed using these characteristics. The findings demonstrate changes in the AT(N)
profiles between the groups, indicating various illness phases. Comparisons between
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Table 6.1: Percentages of the AT(N) profiles in the CU, MCI, and AD subjects at baseline using
AD CSF biomarkers and FDG-PET

subjects in prodromal cognitive aging and those with preclinical cognitive aging pro-
vide crucial insights into risk variables. The sCU group is marginally older than the
pCU group and has a greater proportion of females, indicating differences in age
and gender distribution across the groups. The proportion of APOE4 carriers varies
depending on the group, with a smaller percentage in the sCU group than the pCU
group. These results imply that the pace of cognitive deterioration in the preclinical
stages of Alzheimer’s disease may be influenced by age, gender, and APOE4 status.
The conversion rates of CU participants to MCI/dementia and MCI subjects to
dementia are next discussed. The information shows the proportion of people who
converted within particular timeframes. These conversion rates offer important new
information on the development of Alzheimer’s disease from the preclinical to the
clinical phases. Also the baseline correlations between the AT(N) biomarkers are
investigated. According to the research, there is a strong linear correlation between
Tau and pTAU, suggesting that a diagnosis of N+ is also suggested by a T+ diagnos-
tic. Although Tau and FDG do not significantly correlate, there is wide agreement
on whether neurodegenerative processes are positive (N+) or negative (-).

A very important result from the data preparation and data engineering part
was the convert and censuring times of all subjects. This information is crucial
to use to further analyse and comprehend the machine learning models such as
which markers to use, what duration will be likely for both phases. For example
if from these data we get a max duration of 10 years and the machine learning
model predicts anything above this number we know there exists some trouble with
the model and adjustment is needed and further investigation. The distribution of
individuals into different groups based on conversion or censoring time is depicted
in Figure 6.1. It reveals that within the first four years, approximately 66.7% (n
= 20/30) of pCU-A+ patients, corresponding to about 22.9% (n = 20/87) of the
entire CU-A+ population, underwent conversion. In the broader CU population of
the ADNI study, these early conversions comprised approximately 12% of the total.
Additionally, around 45% of all pCU participants experienced conversion within the
first four years.

Figure 6.1 demonstrates the allocation of individuals into the pMCI and sMCI
groups based on conversion or censoring time. Within the first four years, about
50.6% (n = 162/320) of the MCI-A+ group, or nearly 89.0% (n = 162/182) of all
pMCI cases, transitioned to dementia. In comparison, around 30% of MCI patients
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Figure 6.1: Convert and Censuring time (all subjects)

Figure 6.2: Convert and censuring time (all subjects)

in the general ADNI sample converted to MCI within the same timeframe, while 80%
of pMCI subjects progressed to dementia. These findings emphasize the higher con-
version rates and faster disease progression observed in the presymptomatic groups
(pCU and pMCI) compared to the symptomatic groups (sCU and sMCI). The data
provide insights into the timing and likelihood of conversion, contributing to our
understanding of disease progression and its implications for management and in-
tervention.

6.2 Machine Learning Models

In the discussion section the focus lies on understanding the results from the previous
chapter.

Two models were divided into two categories: baseline and longitudinal, for each
stage. The results provide insights into the predictive capacity of the models and
their ability to discriminate between different stages of the disease. Both the base-
line and longitudinal models showed some degree of accuracy in predicting the de-
velopment to a future stage in the preclinical stage. The average C-index of 0.71
revealed that the baseline model had a good capacity to distinguish between disease
progression. This shows that the model could be able to estimate the likelihood
of advancement rather accurately. At baseline, the estimated median remaining
lifetime of those in the preclinical stage was 7.98 years, meaning that, on average,
half of the population moved on to a new stage after around 8 years. The model’s
concordance index on test data, which was 0.64, indicates that there is space for
improvement in the model’s categorization capabilities. With an average C-index
of 0.96, the longitudinal model for the preclinical period demonstrated an excellent
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ability to predict the course of the illness. Individuals were expected a survival time
of 4.07 years, with a 90% confidence interval of 1.01 to 8.01 years. The model’s strong
concordance score of 0.89 on unidentified data shows great prediction accuracy in
grouping individuals according to their propensity to get the disease. However it is
once again very crucial to note that this is only for this particular dataset and maybe
not applicable to the whole population, further investigation is crucial because over-
fitting could have been possible and the reason why the C-index for longitudinal is
this high.

Data Average C-index Survival Lifetime (90% CI) C-index on test data
Baseline 0.71 7.98 (4.03, 9.28) 0.64
Longitudinal 0.96 4.07 (1.01, 8.02) 0.89

Table 6.2: Preclinical Model Performance Metrics

Compared to the preclinical stage, the models’ prodromal stage prediction abil-
ities were not particulary higher but more reliable because of the larger dataset.
While a population of 87 for preclinical is a high enough number it is important to
mention that in the splitting of data this becomes a smaller number. The prodromal
phase longitudinal model showed a strong ability to distinguish between people likely
to go on to a later stage and those remained in the prodromal stage. The model’s
average C-index, which measures how well it predicts the progression of sickness,
was 0.7389. In the prodromal stage, the estimated median survival time was 3.30
years, with a corresponding confidence range of 1.04 to 7.06 years. The model’s
concordance index of 0.70 further supported its capacity to classify people accord-
ing to their likelihood of contracting the illness. Both the baseline and longitudinal
models showed decent capabilities for differentiating across stages when compared to
the models for the prodromal stage. The baseline model’s average C-index of 0.7582
indicated a respectable capacity for discrimination, and the longitudinal model’s
average C-index of 0.7389 was comparable. In the prodromal stage of mild cognitive
impairment, the predicted median surviving lifetime was 3.30 years, meaning that
about half of the patients would go on to the next stage during this period. The
baseline model’s concordance value of 0.7322 showed a respectable level of prediction
accuracy. Overall, the findings imply that the created disease progression models
have the capacity to forecast the change from one stage of the disease to another.
It is crucial to remember that these results are unique to the models and dataset
utilized in the study. The generalizability and robustness of the models would need
to be confirmed by additional analysis and validation on bigger and more varied
datasets. The model’s accuracy and performance should also be improved, notably
in the preclinical stage where potential for improvement was found. A reason for
the preclinical stage (N=87) being a little less reliable could be due to the fact that
the population is smaller than prodromal stage (N=320). Thus gathering more data
for both stages, or using a different dataset instead of ADNI with more information
could result in even more precise progression models. Further investigation could

Model Average C-index Survival Lifetime (95% CI) C-index on test data
Baseline 0.76 3.30 (1.01, 9.99) 0.73
Longitudinal 0.74 3.30 (1.04, 7.06) 0.70

Table 6.3: Prodromal Model Performance Metrics
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also be possible by using other performance metrics such as AUC (Area under the
curve) or look into the python libraries and find more such metrics. This could give
even more information.
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Chapter 7

Conclusions

This chapter gives the final conclusion after having done the research and also the
possible future work which could further improve this thesis.

7.1 Conclusion

In order to better the lives of patients and their families, this thesis research has
studied the devastating nature of Alzheimer’s disease and the critical need for early
detection and intervention. The assessment of preclinical and prodromal stages in
patients with amyloid pathology was the main focus of this work, which significantly
improved our comprehension of the course of the illness. This research has given
important insights into the change from healthy cognition to cognitive impairment
and dementia through the use of Artificial Intelligence techniques and the analysis
of longitudinal data from the ADNI cohort. A more thorough comprehension of
the root causes of Alzheimer’s disease has been attained by developing biomarker
predictors with high potential for forecasting disease progression and by looking at
tau pathology and neuro-degeneration profiles. My understanding of Alzheimer’s
disease has increased because to the incorporation of numerous data sources and
the use of cutting-edge analytical methods, which have also made it possible to
create disease progression and prediction models. These discoveries may improve
early detection and intervention tactics, enabling medical professionals to step in at
a critical time and maybe halt the progression of the illness. Additionally, my thesis
project has given me a priceless chance to advance my knowledge in data science
and engineering, particularly in the context of machine learning. My awareness of
the practical consequences of data-driven research in the healthcare field has grown
as a result of applying these abilities to the study of intricate datasets related to
Alzheimer’s disease. My technical knowledge has increased as a result of this experi-
ence, but it has also strengthened my understanding of the value of multidisciplinary
cooperation in addressing difficult medical problems. Additionally, this study path
has given me a great awareness of how Alzheimer’s disease affects people individu-
ally and families as a whole. My dedication to advancing Alzheimer’s research and
improving the lives of those afflicted has been strengthened by having direct expe-
rience with the disease’s terrible impacts. In conclusion, the results of this thesis
study have important implications for early detection and intervention efforts in ad-
dition to advancing our understanding of Alzheimer’s disease. My skill set has been
broadened and my comprehension of this crippling disease has been deepened by the
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integration of data engineering, data science, and machine learning methodologies.
I am appreciative of the chance to develop my expertise in these areas and to have
made a contribution to the global fight against Alzheimer’s disease.

7.2 Future work

7.2.1 Validation and Replication

The generalizability and robustness of the proposed models and biomarker predic-
tors must be ensured through the validation and replication of the results in larger
and more varied populations. The pooling of data from various sources would be
facilitated by collaborative efforts with other research institutes and data sharing
programs, allowing the assessment of the found biomarkers and prediction models
across a larger variety of populations. Researchers may evaluate the consistency
and reliability of the findings by incorporating datasets from several cohorts, such
as AIBL or BioFinder, and analyzing their performance and prediction potential in
various demographic and clinical scenarios. Additionally, having access to a variety
of datasets would make it possible to investigate potential sources of heterogene-
ity, such as genetic variants or environmental influences, and how these can affect
the development of diseases. Additionally, validation studies can examine the re-
peatability of the models and biomarkers in separate cohorts while using exacting
statistical techniques to guarantee the accuracy of the findings. Overall, carrying
out thorough validation and replication studies would expand the relevance of the
findings to many groups, boost trust in them, and advance our understanding of the
intricate dynamics of Alzheimer’s disease.

7.2.2 Exploring Advanced Machine Learning Techniques

Exploring cutting-edge machine learning methods offers a fascinating chance to im-
prove the precision and prognostication of the models created for this thesis. Al-
though the COX model has been successful in capturing the dynamics of progression
and survival analyses, additional research into different modeling strategies is neces-
sary. This paper might get new insights and improve the performance in diagnosing
illness development by using cutting-edge machine learning techniques like deep
learning architectures and ensemble approaches. The models may automatically
derive hierarchical representations from complicated and high-dimensional data by
using deep learning algorithms, for example, which may be able to detect subtle
patterns and relationships that conventional methods could have missed. Incorpo-
rating sophisticated optimization strategies and regularization approaches can also
reduce overfitting and increase the generalizability of the model. Additionally, inves-
tigating other Python libraries and machine learning frameworks, like TensorFlow
or PyTorch can give a wealth of tools and resources to successfully construct and
enhance the models. The functionality of the models may be enhanced, improve
prediction accuracy, and contribute to the most cutting-edge research in the area by
adopting new breakthroughs in machine learning.
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7.2.3 Expansion to Other Illnesses

Although the majority of this thesis has been devoted to the study of Alzheimer’s
disease, it is possible to gain important knowledge about the development and un-
derlying processes of other neurodegenerative illnesses and associated disorders by
broadening the scope of the research. For instance, including Parkinson’s disease
as research goals would make it possible to identify common biomarkers and create
more thorough prediction models. Researchers might potentially detect overlaps
in the pathophysiological mechanisms underlying these diseases and identify dis-
tinctive characteristics particular to each condition by examining the similarities
and contrasts between these conditions. This larger viewpoint can help with the
creation of individualized strategies for early detection, prognosis, and intervention
while also enabling a more thorough knowledge of neurodegenerative disorders as a
whole. Research on shared treatment targets or preventative measures can also be
facilitated by the discovery of similar risk factors or comorbidities that contribute
to the course of numerous illnesses. In the end, broadening the study’s focus to
incorporate more neurodegenerative conditions advances our understanding of these
complicated diseases from a more comprehensive perspective and has the potential
to have an impact on a wider spectrum of patients and their families.
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Appendix

In this chapter we explore used theories.

A.1 Anova and Multicomparison

A.1.1 Introduction

ANOVA and multicomparison are crucial methods in the field of statistics. They
assist in evaluating the differences in averages between multiple groups and draw
inferences about the population as a whole.

A.1.2 Anova

To analyse the statistical differences between populations, it is mandatory to calcu-
late the means of each group. If the means are not equivalent, a conclusion can be
made that the groups differ from each other statistically. When there are just two
groups, the t-test is widely used. When there are three or more groups this t-test
cannot be used anymore and we have to switch to ANOVA (ANalysis Of VAriance),
which is a method used to determine if there is a significant difference between three
or more groups (by their means).

The principle of ANOVA as a test is relatively straightforward. Consider there
are three groups namely Spanish (S), Belgian (B), and French (F), also assume that
the height of 100 individuals has been measured in each group. Each individual is
indicated by y(i), with y(iS) denoting a Spanish person, y(iB) a Belgian, and y(iF )
a French individual. A general average can be calculated from all the measured
values, which is represented by µ. This average is the mean of all 300 individuals.
A mean can be calculated for each group: y(j). Thus, there is an average for the
height of the Spanish (yS), the Belgians (yB), and the French (yF ). [12]

From the data the following three variances can be obtained:

1. the variance between the groups The variance arising from the difference
between the group means and the general mean (y(j) compared to µ)

2. The variance within the groups The variance of each research unit relative
to the group mean (all individuals in a group compared to the group mean, i.e.,
y(iS) compared to y(S), y(iB) compared to y(B), and y(iF) compared to y(F)).

85



APPENDIX A. APPENDIX

3. The total variance The variance of each research unit compared to the general
mean (all individuals compared to the general mean, i.e., y(i) compared to µ).

The complete variance (3) consists of two parts: the variance between groups (1)
and the variance of individuals compared to the group mean (2). After calculating
the percentage of the group variance accounts for the overall variance (= 1/3) and the
percentage of the individual variance within groups accounts for the total variance
(= 2/3), it is possible to determine how much of the total variance is caused by the
differences in groups. Those that cannot be explained by group differences is called
residual variance, unexplained variance or error.

The goal of ANOVA is to analyse if there are significant differences between given
groups (like in the previous example of the height of the Spanish, Belgian and French
subjects). If the differences between the groups are not significant, the respective
means do not differ a lot. In the same way when there is in fact significant differences
between the groups, a conclusion is made that there are dissimilarities between
the groups.To verify whether the differences between these groups are meaningful,
ANOVA is used. Nonetheless, The comparison is biased because of the fact that
the dissimilarities between groups rely on a small number of groups, whilst the
differences within the groups rely on many individuals. Thus, the variances should
be categorized by the degrees of freedom first. Afterward, an F-value is computed
and compared to an F-value in a reference table [13]. If the computed F-value is
higher than the critical value in the table, it is considered that there is a statistically
significant difference (according to Fisher’s test theorem).

ANOVA using Python (Scipy)

Using the example of the heights from the three different nationalities. You put in
all the measurements in an array, e.g. heightSpanish. And as the null hypothesis we
assume that there is no statistical difference between the groups. With the following
code you can perform one way ANOVA in python:

1 1. f_oneway(heightSpanish , heightBelgian , heightFrench)

After compiling this one line of code, an output is generated with an F score and
a p-value. If the p-value is less than 0.05 it is concluded that there is a significant
difference between the three groups and that the null hypothesis can be rejected.
[26]

A.1.3 Multicomparison

Statistical inference is the process of generalizing about a population based on a
sample. A common technique for statistical inference is hypothesis testing, where
a null hypothesis is compared to an alternative hypothesis. The null hypothesis
is considered to be true unless there is substantial evidence against it, while the
alternative hypothesis is the reverse. The p-value is a metric that measures the
evidence against the null hypothesis. It is the probability of observing a test statistic
that is as extreme or more extreme than the one observed, assuming that the null
hypothesis is not false. The p-value is then used to assess if the evidence against the
null hypothesis is strong enough to reject it. A commonly accepted significance level
is 0.05, meaning that if the p-value is less than 0.05, the null hypothesis is rejected
and replaced by the alternative hypothesis. [31]
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A.1.4 Statistical interference (p-value, null hypothesis)

Statistical inference is a way of drawing conclusions about a population based on
a sample of data. By analyzing the data, you can figure out what the average or
typical value is for that group of people, and how likely it is that different values fall
within that range. The p-value is a measure of how likely it is that the results of a
test statistic would have occurred by chance. If the p-value is small (less than 0.05),
it means that there is a lot of evidence against the assumption that the results of
the test statistic were due to chance. This suggests that the observed effect may be
real and should be considered when making decisions about the null hypothesis.

The null hypothesis is a statement about the mean or average values of a group
of people. It’s always assumed until there’s strong evidence to the contrary that
the null hypothesis is true - in other words, that the population mean is equal to
the given value. The alternative hypothesis is the opposite of the null hypothesis,
and represents the idea that the population mean may be different from the given
value. Statistical inference is used to test hypotheses about population parameters.
Researchers use sample data to try to figure out what might be true about the
population, and they use this information to decide if the data support or contradict
the null hypothesis. [20]

Bonferroni Correction

When examining various groups, one-way ANOVA gives more information about the
significant difference between these groups as said in previous sections. However it
is not able to give insight about which parties are responsible for the difference. Ad-
ditionally, there’s more chance for false positives when multiple hypothesis test are
conducted simultaneously. This is called a family-wise error rate which gauges the
likelihood of commiting a false positive in any given hypothesis test. The Bonferroni
correction improves and adjusts the significance level of multiple hypothesis tests
to control the family-wise error rate (FWER). The FWER is the probability of a
false positive among all the test. As more test are being undergone, this probability
increases. The Bonferroni correction is used to counter this.

Suppose the means of k groups are being compared with a one-way ANOVA and
then multiple pairwise comparisons are made between the groups. If a significance
level of α for each test is used, the FWER will be greater than α. When the
Bonferroni correction is being used the significance level (α) is divided by the number
of comparisons being made (m). The significance level is now α

m
for each test.

E.g. when comparing the means of four groups while performing six pairwaise
comparisons and using a significance level of 0.05, the correction would be 0.05

6
=

0.0083 for each test. If the p-value for a test is less than 0.0083, we reject the null
hypothesis and conclude there is a significant difference. The Bonferroni correction
is a conservative method, this means that it can increase the risk of false negatives
because of the lowered significance level for each test making it harder to reject the
null hypothesis. Despite this the correction is very useful when the number of test
is small or when the conductor of a test wants it to be more conservative. [45]
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Turkey Method

After performing an analysis of variance (ANOVA), Turkey’s post hoc correction,
also referred to as the Turkey-Kramer post hoc test or the Tukey’s Honestly Sig-
nificant Difference (HSD) test, is a statistical technique used in data analysis to
identify significant differences between multiple groups or treatments. When doing
several pairwise comparisons, this adjustment helps prevent an exaggerated Type
I error rate. Researchers frequently compare the means of different groups while
doing an ANOVA to see whether there are any statistically significant differences
between them. A higher risk of making a Type I error—the rejection of a valid null
hypothesis—can arise from doing many pairwise comparisons without any form of
correction.

This problem is addressed by the Turkey-Kramer post hoc adjustment, which
modifies the significance threshold for each pairwise comparison. Based on the total
alpha level (often set at 0.05) and the number of groups or treatments being com-
pared, the test determines a critical value. To ascertain if the observed differences
between groups are statistically significant, the sample size and data variability are
taken into consideration. When the null hypothesis in an ANOVA is rejected, sug-
gesting that there are substantial differences between the groups, the Turkey’s post
hoc adjustment is frequently applied. It assists in determining which particular
groups differ greatly from one another. The test assesses if the observed differences
are statistically significant by comparing the difference between the means of each
pair of groups with the critical value. For each pair of group means, the correction
technique entails computing a studentized range statistic, also referred to as the q
statistic. When standard error and sample size are taken into account, this statistic
calculates the actual difference between the means. The crucial value produced from
the distribution of the range statistic is then used to compare the q statistic against.

The difference between the means of the two groups is statistically significant at
the given alpha level if the absolute value of the q statistic exceeds the critical value.
The test compares the difference between the means of each pair of groups with the
critical value to determine if the observed differences are statistically significant.
The correction method involves calculating a studentized range statistic, commonly
known as the q statistic, for each pair of group means. This statistic determines the
true difference between the means after accounting for standard error and sample
size. The q statistic is then measured against the critical value derived from the range
statistic’s distribution. [42] If the absolute value of the q statistic is greater than the
threshold value, the difference between the means of the two groups is statistically
significant at the specified alpha level. It is crucial to remember that the Turkey-
Kramer test makes the assumptions that the data have a normal distribution and
that the variances between the groups are equal. The validity of the test findings
may be impacted if certain assumptions are broken. Larger samples are more likely
to produce statistically significant findings since the test is also size sensitive. In
conclusion, the Turkey’s post hoc correction, a useful statistical technique that aids
in the discovery of significant differences between several groups after an ANOVA, is
used by researchers. It allows researchers to perform trustworthy comparisons and
derive insightful inferences from their data by limiting the Type I error rate. [56]
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Maxime Louis, Elina Thibeau-Sutre, Junhao Wen, Adam Wild, Ninon Burgos,
Didier Dormont, Olivier Colliot, and Stanley Durrleman. Recent trends (2),
2021.
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Maxime Louis, Elina Thibeau-Sutre, Junhao Wen, Adam Wild, Ninon Burgos,
Didier Dormont, Olivier Colliot, and Stanley Durrleman. Relationship between
the auc (area under the roc curve) and the number of indi- viduals., 2021.

[20] George Casella and Roger L. Berger. Statistical Inference. Duxbury Press,
Belmont, CA, 2nd edition, 2002.

[21] Michael C Donohue, Hélène Jacqmin-Gadda, Mélanie Le Goff, Ronald G
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