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ABSTRACT
The memorability of a video is defined as an intrinsic property of
its visual features that dictates the fraction of people who recall
having watched it on a second viewing within a memory game.
Still, unravelling what are the key features to predict memorability
remains an obscure matter. This challenge is addressed here by
fine-tuning text and image encoders using a cross-modal strategy
known as Contrastive Language-Image Pre-training (CLIP). The re-
sulting video-level data representations learned include semantics
and topic-descriptive information as observed from both modalities,
hence enhancing the predictive power of our algorithms. Our pro-
posal achieves in the text domain a significantly greater Spearman
Rank Correlation Coefficient (SRCC) than a default pre-trained text
encoder (0.575 ± 0.007 and 0.538 ± 0.007, respectively) over the Me-
mento10K dataset. A similar trend, although less pronounced, can
be noticed in the visual domain. We believe these findings signal the
potential benefits that cross-modal predictive systems can extract
from being fine-tuned to the specific issue of media memorability.
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1 INTRODUCTION
Identifying the features of a particular audiovisual communication
medium that make it memorable is becoming increasingly rele-
vant due to the expanding amount of available multimedia content.
Memorability is defined in the literature as an intrinsic property
of an image or a video associated with its easiness to be recalled
in subsequent viewings, and that is a function of its audiovisual
features [9]. Recent studies from psychology and neurosciences
seem to disagree with the idea that memory is an entirely sub-
jective appraisal, instead suggesting that there are indeed visual
elements that are more likely to be stored in memory for later re-
call [8, 15, 25]. Memorability is an observer-independent aspect
of the visual medium, greatly influenced by the semantics of the
scenes it represents [3], which motivates the use of alternative
sources to analyse it beyond the purely visual domain, for instance,
employing text-based captions that describe a scene [12].

We hypothesise that these two modalities can be fused together
in order to learn powerful content descriptors that take into con-
sideration features learned from both text and visual domains. In
turn, this would enhance their separate predictive capabilities when
adapted to the task of media memorability. Consequently, in this
paper we propose a method that jointly learns image and text-based
features important to predict video memorability from video frames
and video-level captions, fine-tuning Transformer-based encoders
using a cross-modal, contrastive learning approach.

The rest of this paper is structured as follows: Section 2 provides
an overview of related work; in Section 3, we present our proposal
for video memorability prediction using jointly learnt semantic
and visual features; Section 4 describes the experimental setup,
including theMemento10K dataset employed throughout this study;
afterwards, Section 5 introduces and discusses the results obtained;
finally, in Section 6, we draw the main conclusions of our work and
outline potential open avenues for future work.

2 RELATEDWORK
The Transformer architecture has marked an important milestone
towards pushing forward the state-of-the-art across several down-
stream tasks [24]. This family of models has shown a remarkable
ability to build robust, semantically-rich embedding features from
input sources of different domains, such as the Vision Transformer
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(ViT) for images [6] or BERT for text [5]. This makes them par-
ticularly appealing for blending modalities. One scheme that is
frequently used to jointly learn the aforementioned representa-
tions (merging image and text-based information), is Contrastive
Language-Image Pretraining (CLIP) [21]. This approach enables
the encoders of a larger predictive system to learn a joint vector
space that aligns visual and text-based representations attending
to their shared semantics. Using Transformer-based architectures
as the spinal cord of these encoders, and training them under a
CLIP-like strategy results in feature extractors from which to esti-
mate, for every video and its associated captions, embeddings from
both modalities that highlight the common semantics. This data
representation has proven useful in several text-image tasks, for
example in the case of text-conditioned image generation [7, 22]).

With regards to the prediction media memorability, recent ad-
vances have explored which areas of the brain are involved in the
process of deciding what content humans most easily remember
[10], as well as what are the intrinsic properties of the medium rele-
vant to the process (for instance, exploring the conceptual structure
of the input [13] or scene variability [14]). From the computer vision
standpoint, efforts have traditionally relied on both low-level visual
descriptors [9] and in the extraction of region-wise characteristics
from the image employing deep conceptual features. Lately, the
emphasis has been put on understanding the connection between
the global semantics of an image (its visual constituent elements)
and memorability. It has been shown that there exists a close corre-
lation between certain topics and average memorability scores [12].
Therefore, even if many factors contribute to the memorability of a
given sample, it seems that the main topic of a video (its semantic
unit), extracted from text-based sources like captions, may be used
as a proxy material to estimate its semantics and tackle the task of
predicting memorability.

In light of this, it seems sensible to walk towards the leverage of
the aforementioned capacity of encoders trained under a CLIP scene
to learn features that align the semantics of text-based and visual
content [11]. However, we seek to learn a representation tailored
to the particularities of the problem of predicting media memo-
rability. We believe that by undergoing a CLIP-like fine-tuning,
encoders can better estimate features adapted to the idiosyncrasy
of memorability-related tasks, hence enabling us to develop models
with higher predictive power in this context.

3 PROPOSAL
Our proposed model can be split up into two steps, namely pre-
training and regression, as can be seen in Figure 1. In the pre-training
step, vision and text encoders are jointly trained under a CLIP
scheme. This way, a visual and a text-based encoder are trained
together in order to maximize the cosine similarity of the feature
embeddings computed separately for each modality, hence learning
to align the representation computed for every image-text pair in a
dataset. The Transformer-based models employed in the original
CLIP paper serve as our baseline, given they stand as models al-
ready trained on a large-scale, generalist dataset to correctly identify
image-text pairs [21]. We propose to adapt the representations that
are obtained using these encoders to the memorability prediction
problem by fine-tuning them on image-text pairs extracted from

Figure 1: Our pipeline includes a pre-training stage in which
baseline encoders are fine-tuned on thememorability dataset
following a CLIP scheme, and a regression stage, in which
encoders provide a feature representation independent for
each modality that is passed to a Bayesian Ridge Regression
model in charge of predicting memorability.

videos of a memorability-targeted dataset, namely Memento10K
[17]. The resulting fine-tuned CLIP (F-CLIP) models obtained ex-
hibit semantic knowledge related to the visual and textual language
that is meaningful to the task. In other words, we pre-train en-
coders to indirectly obtain vector representations useful to tackle
the prediction of video memorability from the understanding of
its semantics, seen at the same time from both frames and text
descriptions.

Once this pre-training step is completed, we decouple these en-
coders while freezing their learned weights, so they can be used
as feature extractors. Their outputs are then fed into a Bayesian
Ridge Regressor (BRR), which is the only part of the pipeline that
actually predicts memorability scores. Bayesian Ridge Regression
is a statistical model that combines the principles of Bayesian infer-
ence with Ridge regression, assuming a prior distribution over the
regression coefficients and incorporating regularization to mitigate
overfitting. It yields similar results as Ordinary Least Squares Linear
Regression whilst being more robust to ill-posed problems. The
default implementation offered by the sklearn library is chosen [20].
Making use of this simple yet robust model allows us to put focus
on the comparison between the different extracted features.

4 EXPERIMENTAL SETUP
4.1 The Memento10k Dataset
Memento10K [17] is a dataset of 10,000 short videos which focuses
on visual memory and was devised to model video memory decay
as a function of the interval between repetitions of a video during
a visual memory game. The videos were collected by scraping
the Internet, keeping only those regarded by the annotators as
"home videos". This incurs a relatively poorer overall image quality.
However, the content included in Memento10K places emphasis on
human actions and motion, resulting in sudden changes in images
and a higher degree of optical flow. Videos are short (around 3
seconds long on average), and thus represent a single semantic
unit. The authors observed that the success rate of the participants
recognizing a video decayed linearly as a function of the number of
projected videos between two repetitions. To account for this linear
decay, the raw memorability score of every video (the percentage of
people successfully recalling it in a subsequent viewing) was post-
processed, hence obtaining memorability labels as the likelihood of
a given video being remembered after an interval of 80 clips.
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The Memento10K dataset includes Closed Captions (CC), a set of
objective summaries written by human annotators. These natural
language-based texts barely present any emotional bias, and there-
fore condense the semantics of the video in a concise manner. There
are 5 captions associated with every video, and while they convey
similar information, each expresses it differently, making for a rich
source of knowledge about the semantics of a scene while enabling
a straight-forward association with its purely visual features.

4.2 Two-stage predictive pipeline
In order to test our proposed models on the memorability task,
two different approaches were adopted. Firstly, we aimed to pre-
dict the memorability score of individual frames or captions of a
video, which we refer to as the frame/caption-level task. In this
task, the label of the entire video was assigned to each of its ex-
tracted frames and for every caption describing it. This is akin to
an image memorability problem, in which the input comprises still
images without any motion or temporal information. Secondly, we
tried to predict the memorability score assigned to the entire video
(video-level task). However, since the input to the visual or textual
encoders remained a single image or caption, we compared two
pooling methods that produced a single predicted score for the
entire video: early and late average. The former computes the mean
embedding of all inputs (visual - first, middle and last frames, or
textual - the five captions in the set) belonging to a given video,
using it to obtain a single output from the BRR. The latter computes
a score prediction for every input of a given video and averages the
scores to obtain a final prediction. In the following paragraphs we
specify the details of each of the steps that comprise the model.

Regarding the pre-training step, the 2021 MediaEval Workshop
partition of the dataset was used for experimentation, leaving a
set of 7,000 videos for training and 1,500 videos for validation. The
remaining test 1,500 videos were not used for training as their labels
were not available, resulting in a final corpus size of 8500 videos.
We extract the first, middle and last frames of each video (roughly
equivalent to 1FPS subsampling), obtaining a total of 25,500 im-
ages. Each frame is paired with each of the 5 captions that describe
the video, resulting in a total of 127,500 image-caption pairs. Both
frames and captions are preprocessed using the default CLIP pro-
cessor. We use the AdamW optimizer with a learning rate of 1𝑒−4
and a batch size of 32 samples. An early-stopping criterion was
used to terminate training after 5 epochs without improvement.

In the regression step, the weights of the encoders are frozen
so they serve as feature extractors. We train and evaluate the BRR
following a 5-Fold Cross Validation scheme, reporting on global
performance as the mean SRCC for all the folds. Folds are consistent
with videos, hence ensuring that all the material associated with a
given video (both descriptions and visual frames) is kept together
within the same fold.

5 RESULTS AND DISCUSSION
5.1 Pre-training step
As explained in section 3, a CLIP-like strategy was used to train
encoders on visual and textual inputs, resulting in an aligned em-
bedding space for both modalities. To assess this alignment after
fine-tuning on Memento10k, we extracted embeddings for each

Figure 2: CLIP models learn general descriptions of images
and their accompanying text. Green text signifies correct
predictions from the CC set, while orange indicates concep-
tually accurate descriptions that lay outside the CC set. Red
captions are neither in the CC nor conceptually accurate.

image and caption in the original test set of the corpus, which can
be used here for evaluation as no memorability labels are needed.
We computed the fraction of times that an image vector, extracted
from a frame of a video, had its closest textual vector (based on
cosine distance) belonging to a caption in the same video, resulting
in a comparable performance between the baseline and fine-tuned
models (49.7% ± 1.5% and 49.4% ± 1.5% respectively).

Figure 2 displays examples considered by this evaluation strategy
as errors but providing valuable insights. In Example A the selected
caption was not part of the original set, however, the text accurately
described the elements and actions in the image, belonging to a
similar-themed video in the dataset. In example B, F-CLIP correctly
selected the caption while CLIP failed due to image characteristics.
The defining element (e.g., “bread” or “dough”) was barely visible,
limiting visual information. Nevertheless, scene composition and
general elements were accurately captured. Example C showed
CLIP selecting the correct caption, while F-CLIP accurately captured
image colors (“black” and “white”), but struggled with objects of
similar shape (e.g., “dog” and “toy car”). These examples suggest
that both CLIP and its fine-tuned version can distinguish complex
visual elements and understand scene semantics.

We study the effect of transforming the embedding space by
projecting the 512-dimensional visual and text-based embeddings
into a plane using UMAP [16]. This method is commonly used for
dimensionality reduction as it performs a non-linear transformation
that keeps most of the spatial information of the original space
using manageable computing resources and time. A qualitative
analysis shows that, for the text-based branch, this process may
help in separating them into roughly heterogeneus regions sharing
a similar range of memorability scores (Fig. 3a). The same is not
so evident for visual embeddings (Fig. 3b), still, visual inspection
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(a) Textual Embeddings

(b) Visual Embeddings

Figure 3: Comparison of CLIP and F-CLIP embeddings pro-
jected using UMAP. (a) Fine-tuned text-based embeddings
show greater dispersion and exhibit separations between
clusters associatedwithmemorability (e.g., dark-colored clus-
ters in upper-left). (b) Visual embeddings display less evi-
dent transformation of space, making it harder to identify
memorability-related clusters.

leads us to think that there are differences between high and low
memorability regions that a linear method can learn. To assess
it, we evaluate the fitness of the computed text-based and visual
embeddings to enhance the predictive capacities of a relatively
simple BRR in the specific scenario of memorability.

5.2 Regression results
In table 1 we compare the results of our F-CLIP embeddings with the
representation obtained by the original default CLIP as loaded from
the checkpoint (baseline encoders) 1. Although as a rule, greater
SRCC ratios can be noticed when we employ F-CLIP, whereas the
text-based branch does experience a significant difference, the same
does not hold in the case of visual data. A possible explanationmight
come from the fact that text is potentially easier to understand from
the point of view of a CLIP pre-training scheme. As a matter of fact,
we are matching images and their descriptions, but sentences, even
if they consist of mere objective descriptions, exhibit more variabil-
ity than individual frames. This can be understood as text being a
more accessible source of information about a sample. Opposed to
it, visual information, particularly in Memento10K, whose videos
generally display low image quality, offers little variance and hence
visual branch struggles to find relevant patterns for that modality.

Experiments on a video-level demonstrate a similar trend of
improvement when using F-CLIP, yet not as evident as in the
frame/caption-level case. This shows that the benefit of fine-tuning
the encoders is lost when pooling is performed, meaning that the

1Downloaded from https://huggingface.co/openai/clip-vit-base-patch32

Table 1: SRCCusing as feature extractors either baselineCLIP
encoders or those fine-tuned by our F-CLIP proposal for each
modality. The boldface indicates a significant improvement
upon baseline.

Task Pooling Model Text Vision

Frame/Caption-level - CLIP 0.538 ±0.007 0.639 ±0.008
F-CLIP 0.575 ±0.007 0.648 ±0.008

Video-level
Early AVG CLIP 0.615 ±0.021 0.671 ±0.021

F-CLIP 0.635 ±0.021 0.676 ±0.021

Late AVG CLIP 0.602 ±0.021 0.671 ±0.021
F-CLIP 0.626 ±0.021 0.671 ±0.021

decision to average either multiple representations or predicted
scores can result in a loss of detail that degrades performance. More-
over, there is no significant performance pattern to choose between
pooling methods.

6 CONCLUSIONS AND FUTUREWORK
In this work, we have proposed and validated the use of a fine-
tuning step of text-based and visual encoders using CLIP as an
effective method for extracting informative features from videos
and their textual descriptions to predict video memorability, which
we have called fine-tuned CLIP (F-CLIP). CLIP allows the encoders
to learn an aligned representation of the semantics contained in
images and texts, thus enabling them to perform well in subsequent
tasks with little or no further training. Nonetheless, our study
has also shown that an additional cross-modal fine-tuning step
has an important impact on the prediction of video memorability,
leading to more accurate estimations compared to using the general,
zero-shot model. These findings suggest that CLIP-like schemes
specifically tailored to the target task can be a valuable tool for
improving our understanding of what makes certain videos more
memorable than others.

However, probably our biggest limitation comes from using indi-
vidual frames as input omits motion aspects, losing related semantic
information. This might be addressed by incorporating motion de-
scriptors [19] or Video Transformers that instead work directly with
image sequences [1, 2]. Furthermore, text-based encoders would
benefit from some of the capabilities shown by Large Language
Models (LLMs) such as PaLM, GPT-4 or LLaMA [4, 18, 23].

Future research would need to explore the ability of contrastive
learning methods to represent memorable media, perhaps includ-
ing explicit information about the task during the pre-training
phase. Also, incorporating low-level, pixel-driven statistical de-
scriptors, and mapping them to high-level, semantic information
(which we know correlates with memorability) would help us to
build a bottom-up knowledge of the phenomenon and broaden the
range of applications of this technology.
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