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Abstract8

In this work, we show a method to e�ciently solve the multiphase flow9

through a porous media in the near wellbore region. The numerical dis-10

cretisation is based on the IMplicit Pressure Explicit Saturation (IMPES)11

approach.12

While most of the works in the literature rely on Fully Implicit Methods13

(FIM) to simulate the reservoir, this is not suited for the near wellbore re-14

gion, where smaller computational and physical times are required, therefore15

parametric models with history matching are used in this zone. However,16

parametric models present several uncertainties that can a↵ect the estima-17

tion of the pressure drop. An accurate and fast simulation of that region is18

therefore required.19

Here, we propose a new and robust implementation of the IMPES scheme,20

aiming to reduce the large computational cost of the (implicit) pressure sys-21

tem of equations and increase the robustness and reliability of the scheme.22

The method takes advantage of the short physical time steps between it-23

erations, observed in the near wellbore region, to produce a new pressure24

1carlos.redondo@upm.es
2g.rubio@upm.es
3eusebio.valero@upm.es

Preprint submitted to Journal of Petroleum Science and Engineering January 15, 2018

*Revised manuscript with no changes marked



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

field at the cost of a numerical explicit scheme. Two and three dimensional25

numerical experiments are carried out to show the validity of the proposed26

discretisation. We show that the cost of the method is reduced in a factor of27

7 to 19 when compared to the classical IMPES.28

Keywords: IMPES, near wellbore simulation, multiphase flow, porous29

media30

1. Introduction31

Simulation of multiphase fluid flow in porous media is currently a topic of32

interest in many areas such as hydrology and groundwater flow, oil and gas33

reservoir simulation or waste management. Numerical reservoir simulators34

are tools widely used by the oil industry and had become the main instrument35

for evaluating recovery e�ciency and economical viability of new oil-drilling.36

While far-field reservoir areas are well-understood and fairly resolved with37

current simulation tools, near wellbore regions are normally under-resolved38

and become a source of inaccuracy in the resolution of the fluid physics in39

this zone [1, 2]. The under-resolved physics is modelled by including several40

empirical parameters, such as the well skin factor or the productivity index41

[2]. However, the logarithmic pressure drop in the surrounding wellbore re-42

gion, as well as the complex thermodynamic behaviour of oil often leads to43

sudden variations in flow properties. These changes modify the production44

rates in a determinant way and can be hardly predicted by parametric well-45

bore models. Moreover, new techniques in oil drilling, including crosswise,46

horizontal wellbores and enhanced oil recovery techniques, increase the un-47

certainties associated to these models [3] making very di�cult to accurately48
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predict the recovery e�ciencies in the mid and long terms. In order to reduce49

these uncertainties, it is therefore crucial to accurately simulate this region50

in the most e�cient way.51

In terms of numerical simulation, the Fully Implicit Method (FIM) [4,52

5, 6, 7, 8, 9, 10] and the IMplicit Pressure Explicit Saturation (IMPES)53

method [11, 12, 13, 14, 15, 16, 17, 18] are the main strategies to solve the54

system of partial di↵erential equations arising from the discretisation of the55

mathematical model of the multiphase flow in porous media.56

The FIM is regularly used in the simulation of the large far-field reservoir57

areas. Being unconditionally stable, it allows for selecting large time steps58

which are able to solve years of operation of complete reservoirs with dozens59

of producers and injectors in a few hours of computational time [19, 20].60

However, when small time steps are required, e.g. to capture fast dynamic61

behaviour or coupling with other solvers, FIM method is not as computa-62

tional advantageous. In these scenarios, and despite its limitations, the IM-63

PES method is normally preferred. IMPES is an operator splitting technique64

[16] based on physics, which solves only the pressure equation implicitly, but65

updates the saturation explicitly. The pressure equation in this approach is66

formed by substituting the saturation constraint and Darcy’s law into the67

sum of the mass conservation laws. The computational cost (time and mem-68

ory) required by the IMPES method is smaller than the FIM at each time69

step. This advantage is more pronounced for problems with a high number of70

degrees of freedom and high velocity fluctuations, which induce shorter time71

steps. The explicit treatment of the saturation equation results in a stability72

limitation for the time step, especially for highly heterogeneous permeable73

3
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media. It should be noticed that this drawback is not so important if there74

is a physical constraint in the maximum time step, as it happens in the near75

wellbore region.76

However, the IMPES method is not widely used in industrial problems77

due to the high computational cost of solving the implicit pressure equa-78

tion, which roughly represents the 90 percent of the solver [14]. Therefore,79

as already mentioned, modelling that region is the preferred option. To cir-80

cumvent this problem, Chen, Huan and Li [13] have proposed an improved81

IMPES method where the implicit pressure equation is only solved after the82

variation in the saturation exceeds a certain threshold. The main drawback83

of this method is a lack of accuracy resulting from updating the saturations84

with incorrect pressure values, which eventually gives rise to nonphysical nu-85

merical oscillations of the pressure. This idea has been further extended and86

improved in the last years [14, 21, 18].87

88

In this work, we propose a novel methodology to improve the performance89

of the IMPES method by reducing the computational cost of the pressure90

equation solver. A combination of iterative solver, preconditioner, initial con-91

dition and stopping criterion is proposed and analysed in multiple scenarios.92

Although iterative solvers have been used to solve the IMPES problem before93

[14], to the authors known no attention has been paid to the e↵ect of the94

preconditioner, the initial condition or the stopping criterion in the e�ciency95

and accuracy of the solution. From an industrial point of view, the iterative96

solver strategy is only practical if it is not problem dependent and it does not97

require parameter tuning. In this work, a non problem dependent iterative98

4
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solver strategy is introduced. This strategy drastically reduces the computa-99

tional cost of the pressure equation solver to the same order of magnitude of100

the saturation solver, eventually giving rise to a total reduction of the com-101

putational time in an order of magnitude while retaining enough accuracy in102

the solution for most of the applications. The method developed is referred103

here as iterative IMPES, while the IMPES using direct solver for pressure104

equation will be denoted as conventional IMPES.105

The present paper is organised as follows: First in Section 2 the math-106

ematical model of the physical problem is introduced. Then in Section 3107

numerical models are discussed. Special attention is paid to the iterative108

solver for the pressure equation. In Section 4, five validation test cases are109

detailed. These simulations are used to analyse the e↵ect of the iterative110

solver tolerance in both the solution and the e�ciency. Lastly in Section 5,111

overall conclusions for this work are drawn.112

2. Mathematical model113

The flow of two incompressible immiscible fluids through porous media114

can be modelled by the saturation equation and the Darcy’s law for each115

phase ↵. The saturation equation for the phase ↵ is given by:116

�
@S↵

@t
+r · u↵ = q↵, ↵ = n,w, (1)

where the subscripts w and n denote the wetting and nonwetting phases. S,117

u and q are the saturation, velocity and volumetric flux of the phase ↵ and118

� represents the porosity of the media. The velocity of each phase is given119

5
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by the Darcy’s law:120

u↵ = �kr↵K
µ↵

(rp↵ � ⇢↵g) , ↵ = n,w, (2)

where kr, µ, p and ⇢ are the relative permeability, the viscosity, the pressure121

and the density for the phase ↵. g is the gravity vector and K is the absolute122

permeability tensor. In this work K is assumed to be diagonal and isotropic,123

so K = kI where I is the identity matrix.124

For two phase immiscible flows, the pressure of the two phases is related125

through the capillary pressure:126

pc(Sw) = pn � pw. (3)

The saturations of the two phases are constrained by the relation:127

Sw + Sn = 1. (4)

Relative permeabilities, kr, and capillary pressure, pc, are modelled using128

semiempirical functions. For the relative permeability the modified Brooks-129

Corey relation [22] is used. This model is based on the e↵ective saturation,130

which is defined as:131

Seff =
Sw � Sw,r

1� Sn,r � Sw,r
, (5)

where Sw,r and Sn,r are the residual or irreducible (or connate for water

phase) saturations. The expressions for the relative permeabilities are:

krn(Seff ) = krn,max(1� Seff )
n,

krw(Seff ) = krw,maxS
m
eff ,

(6)

where krn,max and krw,max are the relative permeabilities for the only one132

flowing phase limits. Exponents n and m are semi empirical parameters that133

6
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depend on the nature of the porous media. Capillary pressure is modelled134

using a relation that depends on absolute permeability:135

pc(Sw) = � Bcp
k
log(Seff ), (7)

where Bc is a positive parameter related to the porous media and k is the136

absolute permeability [23].137

For further simplification, we define the mobility of the phase ↵ as:138

�↵ =
kr↵
µ↵

, ↵ = n,w. (8)

An elliptic equation for the pressure is obtained by combining equations139

(1), (2) and (4):140

�r · [K�w (rpw � ⇢wg) +K�n (rpn � ⇢ng)] = q, (9)

where q is the total source flux q = qw + qn.141

Finally, introducing the capillary pressure equation (3) into (9) the prob-

lem can be reduced to a system in two primary variables Sw and pn:

�
@Sw

@t
+r · uw = qw, (10)

�r · [K (�w + �n)rpn] = r · [K (�w⇢w + �n⇢n) g] +r · (K�wrpc)� q.

(11)

The system (10) – (11) is fully coupled through Darcy velocity, uw, that142

depends on the pressure, and mobilities, �↵, which are functions of the sat-143

uration.144

3. Numerical discretisation145

In this work, the system of equations in (10) – (11) will be integrated146

with an implicit explicit (IMEX) method where a splitting approach based147

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

on physics is used. This method, usually known in the literature as IMPES,148

solves the pressure equation (11) implicitly and updates the saturation equa-149

tion (10) explicitly. A second order finite di↵erence scheme will be used for150

the spatial discretisation of (10) – (11) while a Runge-Kutta 2 (RK2) method151

will be used for the temporal evolution of (10).152

The space is discretised by means of a second order finite di↵erence ap-153

proach on a cartesian staggered grid. Scalar properties such as pressure or154

saturation are evaluated in cell centres, while vectorial magnitudes such as155

velocities, pressure gradients or mobilities are evaluated in the midpoints be-156

tween cell centres. In Figure 1, the complete stencil for the 2d case is shown.157

It can be seen that x-components of vector magnitudes are evaluated at x-158

faces (white triangles), while y-components are evaluated at y-faces (black159

triangles).160

i,j i+1,ji-1,j

i,j+1

i,j-1

Figure 1: 2d 5-point stencil. White triangles mark x-faces, where x-component of vector

magnitudes are evaluated. Black triangles show y-faces where y-component of vector

magnitudes are evaluated.

Equations in system (10) – (11) are expressed in divergence form. To161

numerically solve the system, we define the discretised divergence operator162

8
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on a mesh point xi,j = (xi,j, yi,j), at a given time tn as follows:163

(r · F )ni,j =
F n
i+1/2,j � F n

i�1/2,j

(xi+1,j � xi�1,j)/2
+

F n
i,j+1/2 � F n

i,j�1/2

(yi,j+1 � yi,j�1)/2
, (12)

where F n are magnitudes evaluated on the faces, for example, F n
i+1/2,j cor-164

responds to the x-component of the vectorial magnitude F evaluated on the165

x-face between xi,j and xi+1,j. In order to apply the discretisation in (12) to166

the system (10) – (11), the involved magnitudes must be computed at the167

grid faces. The expressions for the computation on the face between xi,j and168

xi+1,j are detailed below, where j subscripts are dropped for clarity.169

Absolute permeability tensor is assumed to be “uniform-diagonal” (i.e.,170

only elements corresponding to pairwise equal indices are non-zero and con-171

stant, Ki,j = ki,jI). The evaluation of this magnitude on a face between two172

points, also known as hydraulic conductivity, is computed using the harmonic173

mean:174

ki+1/2 =
2kiki+1

ki + ki+1
. (13)

Pressure gradients are computed in the faces using finite di↵erences:175

rpn|i+1/2 =
pn|i+1 � pn|i
xi+1 � xi

,

rpc|i+1/2 =
pc|i+1 � pc|i
xi+1 � xi

.

(14)

Mobilities, that depend on the advected saturation, are computed using

a Total Variation Diminishing (TVD) upwind scheme:

�↵|i+1/2 = �↵|i � '

✓
�↵|i �

�↵|i + �↵|i+1

2

◆
, if u↵ > 0 (15)

�↵|i+1/2 = �↵|i+1 � '

✓
�↵|i+1 �

�↵|i + �↵|i+1

2

◆
, if u↵ < 0 (16)

�↵|i+1/2 =
�↵|i + �↵|i+1

2
, if u↵ = 0 (17)

9
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where ' is the second order van Leer TVD limiter [24] based on the satura-

tion. Finally, velocities are computed using the variables previously evaluated

on the faces:

uw|i+1/2 = ��w|i+1/2

�
rpn|i+1/2 � gx⇢w �rpc|i+1/2

�
, (18)

un|i+1/2 = ��n|i+1/2

�
rpn|i+1/2 � gx⇢n

�
, (19)

where gx is the x-component of the gravity vector g.176

Introducing discretisation (12)–(17) into (11), pressure equation is trans-177

formed into a system of linear equations, with the non–wetting pressure val-178

ues on each point as unknowns. The system can be expressed in matrix179

form:180

Apn = b, (20)

where A is the system matrix, that contains the total transmissibilities be-181

tween adjacent cells (LHS of equation (11)), pn is the vector with the values182

of non–wetting pressure pn|i,j in all the points of the domain, and b con-183

tains the terms related to flux sources, gravity and capillary pressure (RHS184

of equation (11)).185

186

Saturation equation (10) is updated in time with a RK2 scheme. The187

discretised algorithm, after introducing (18) in (10), is listed below:188

10
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Data: Fluid and porous media properties.

initialization of S0
w, u

0
w;

for n = 0 to Number of iterations do
Solve Anpn

w = bn and compute un
w with (18)

Compute �t with (23)

Sn+1/2
w;i,j =

Sn
w;,i,j +

�t
2�

⇣
qnw;i,j �

⇣
un
w;i+1/2,j�un

w;i�1/2,j

(xi+1,j�xi�1,j)/2
+

un
w;i,j+1/2�un

w;i,j�1/2

(yi,j+1�yi,j�1)/2

⌘⌘

Solve An+1/2pn+1/2
w = bn+1/2 and compute un+1/2

w with (18)

Sn+1
w;i,j =

Sn
w;,i,j +

�t
�

✓
qnw;i,j �

✓
u
n+1/2
w;i+1/2,j�u

n+1/2
w;i�1/2,j

(xi+1,j�xi�1,j)/2
+

u
n+1/2
w;i,j+1/2�u

n+1/2
w;i,j�1/2

(yi,j+1�yi,j�1)/2

◆◆

tn+1 = tn +�t

end
Algorithm 1: IMPES algorithm

189

As can be seen, pressure equation (11) has to be solved twice each time190

step. The system of linear equations resulting from the spatial discretisation191

is solved using an iterative preconditioned Generalised Minimal RESidual192

(GMRES) solver [25]. This strategy reduces drastically the computational193

time required for the implicit part of the IMPES algorithm compared to194

direct solvers. Iterative pressure solver is discussed in detail in Section 3.1.195

Time step is computed using the stability criteria from [26, 27] and impos-196

ing a maximum variation in saturation �Smax per time step. The stability197

criteria for a two dimensional problem reads:198

�tCFL = CFL · ��x�y

2 p0c
P

T + 4f 0
w (|qx|+ |qy|)

, (21)

where  = �w�n/(�n + �w), p0c = dpc/dSw,
P

T represents the total trans-199

missibilities defined as:
P

T = 2k�y/�x+ 2k�x/�y, f 0
w = dfw/dSw is the200

derivative of the fractional flow fw = �w/(�w+�n) and qx = �y(ux,w+ux,n),201

11
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qy = �x(uy,w + uy,n).202

The solution is stable and free of oscillations for CFL < 1 [27]. The203

additional time step restriction is defined as:204

�t�Smax =
�Smax�

qw �r · uw
. (22)

Iteration time step is the minimum value among all the points in the205

domain for both criteria:206

�t = min (�tCFL,�t�Smax) . (23)

A value for the maximum variation of saturation per iteration of�Smax =207

0.1 is imposed to avoid instabilities in the firsts iterations. After that, the208

CFL condition is more restrictive and it is enough to guarantee stability.209

It should be mentioned that Algorithm 1 does not include any artificial210

limit for the saturation, even for test cases with saturation injection of Sw = 1211

or Sn = 1 and residual saturations Sr,w = Sr,n = 0. These artificial limita-212

tions have been avoided as they usually result in errors in phase conservation213

[10]. The discretisation used in this work conserves the volume of each phase,214

which is crucial on long runs in reservoir simulation.215

Finally, as far as the boundary conditions are concerned, no flow condition216

is imposed on all boundary faces. Additionally, flux or pressure conditions217

are introduced in well form using Peaceman model [2].218

3.1. Iterative pressure solver219

As it was stated in the previous section, the IMPES strategy for solv-220

ing system (10) – (11) requires two resolutions of a sparse linear system of221

equations (20), associated to the discretisation of the pressure, per iteration.222

12
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The resolution of this system is the most computational expensive part of223

Algorithm 1, so an e�cient method to perform this operation is essential.224

This system can be solved using direct methods, which are robust and com-225

pute the solution of the system up to machine precision. However, they are226

expensive from the point of view of computational time and present high227

memory requirements. Iterative solvers, which approximate the solution of228

the system starting from an initial guess in a iterative way, are the alternative229

to direct ones. The iterative nature of these methods make them capable of230

approximating the solution up to a prescribed tolerance. Iterative methods231

are much less robust than direct ones and their e�ciency relies on the initial232

guess and the preconditioning that, in general, are problem dependent. For233

a through review of iterative methods see [28].234

235

The matrix of the pressure equation (20) is numerically non–symmetric236

and typically ill conditioned, for these reasons, a preconditioned GMRES237

method is used in this work for solving the pressure equation.238

The iterative solver strategy is only practical if is not problem dependent239

and requires no parameters tuning. In this section, the initial condition, the240

preconditioner and the stopping criterion for the GMRES are detailed.241

3.1.1. Initial guess242

The explicit time step restriction imposed by the stability criteria is ex-243

ploited to improve the performance of the GMRES method. In particular a244

small time step means that the pressure variation between consecutive time245

steps is also small, therefore a high-quality initial guess is available before-246

hand. To further exploit this fact, the initial guess for the iterative solver is247
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computed by linear extrapolation of the two previous pressure solutions.248

3.1.2. Stopping criterion249

The tolerance in pressure equation (20) can be used as stopping criterion250

but its relationship with the error in saturation distribution is problem de-251

pendent. Instead, the error in total velocity per time step is used as problem252

independent control parameter,253

DIVtol = max [r · (uw|i,j + un|i,j) + qw|i,j + qn|i,j]�t. (24)

This tolerance can be computed with negligible cost every time step but254

it is costly to compute at every GMRES iteration. To circumvent this short-255

coming, the GMRES residual (norm of the last vector in the GMRES Arnoldi256

iteration) is used. This parameter is problem dependent but shows the same257

convergence behaviour as the error in total velocity as shown in Figure 2.258

This tolerance, GMREStol, is set in the time step k + 1 from their value in259

the previous time step, k, using the expression:260

GMRESk+1
tol = GMRESk

tol

⌧

DIVk
tol

, (25)

where ⌧ is the desired tolerance in divergence of total velocity.261

As can be observed in Figure 2, the factor between the GMRES residual262

and the error in total velocity divergence may also vary in the course of263

a simulation however the proposed stopping criterion is able to track the264

desired tolerance accurately.265

Equation (24) is exactly zero if a direct solver is used for the pressure266

equation. On the contrary, if it is not exactly zero, an error of order DIVtol267

acts as a source term in Equation (10). Prescribing a tolerance of the same268
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Figure 2: Left: example of evolution of GMRES residual (gmres), error in divergence of

total velocity (divergence) and error in pressure equation (pressure) with the number of

GMRES iterations. Right: example of evolution of GMRES tolerance and error in total

velocity divergence using (25) for a target tolerance of 10�8.

order of magnitude as the discretisation error, lead to solutions indistinguish-269

able from the ones obtained with direct methods, but with a reduced cost.270

3.1.3. Preconditioner271

The preconditioner is a key aspect when dealing with iterative solvers. On272

the one hand, advanced preconditioners such as ILUT or more sophisticated273

such as algebraic multigrid show good performance reducing the number of274

GMRES iterations but at high computational cost. On the other hand, other275

preconditioners such as Jacobi or ILU(0) are less e�cient accelerating GM-276

RES convergence but their computation and application is cheaper. As a277

result, each problem should be analysed in detail to get a proper balance278

between iteration cost and number of iterations. It should be noticed that a279

good initial guess plus a relaxed prescribed tolerance reduce the benefits of280

an expensive preconditioner, as the solution might be converged with a small281
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number of iterations, even with a cheap one.282

In Figure 3 the convergence of the GMRES is analysed. Three precondition-283

ers are compared: ILU(0), ILUT(4) and ILUT(8). ILU(0) uses an incomplete284

LU factorization with the same sparsity pattern as the matrix A. ILUT(p)285

uses an incomplete LU factorization retaining only the p values with higher286

magnitude on each row in L and U . As expected, more advanced precon-287

ditioners achieve better convergence rates in term of number of iterations288

but for moderate tolerances (10�7 in Figure 3), a cheap preconditioner such289

as ILU0 performs better from the point of view of simulation time. This290

behaviour is similar in all the analysed cases. The importance of this result291

will be emphasised in the following section, where it will be shown that mod-292

erate tolerances (⇠ 10�6) are adequate to obtain solutions accurate enough293

in most of the scenarios.294

Figure 3: Convergence of error in divergence of total velocity function of the number of

GMRES iterations (left) and computational time (right). The impact of the preconditioner

is shown for ILU(0), ILUT(4) and ILUT(8). The tolerance of the previous time step is set

up to 10�7. Computational time needed by the direct solver(exact) is shown on the right

plot. Markers are plotted every 25 iterations.
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4. Numerical experiments295

In this section numerical experiments to validate and test the performance296

of the developed discretisation technique for multiphase flow in porous media297

are carried out. The impact of the tolerance, defined in Equation (24), in the298

solution accuracy is analysed in a set of problems of interest, next the impact299

of the tolerance in the computational time is presented. For this purpose, we300

define the e�ciency of the iterative solver strategy as:301

e�ciency =
Simulation time using direct solver

Simulation time using GMRES
(26)

The solver is coded in Fortran and compiled with Intel Fortran Compiler302

2016. The code is parallelised with OpenMP. Intel-MKL Pardiso is used for303

the direct solver and an implementation based on Intel-MKL RCI FGMRES304

interface is used for the iterative linear solver. Experiments have been carried305

out on an workstation with a 4-core Intel(R) i7-4790 processor.306

4.1. Test cases307

In this section, four test cases are considered. These test cases have been308

selected because they represent a wide spectrum of physical problems of309

interest. In particular, special attention is paid to gravity, capillary pressure310

and localised high flow velocity e↵ects (both geometrically and permeability311

induced).312

Case 1 is extracted from the SPE10 dataset 1, where the e↵ect of the313

gravity can be measured [29]. Case 2 is a banded domain from [23] with314

capillary pressure. Case 3 is a five-spot simulation on a filtered random315
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domain. Case 4 is a 3d injection problem in a realistic permeability field.316

Details of the cases are shown in Table 1.317

Parameters Case 1 Case 2 Case 3 Case 4

Domain (m) 762⇥ 15.24 500⇥ 270 100⇥ 100 100⇥ 100⇥ 23

Resolution (points) 100⇥ 20 200⇥ 100 100⇥ 100 75⇥ 75⇥ 30

� 0.2 0.2 0.2 0.0159 – 0.1872

k (md) 10�3 – 103 1 – 100 10�2 – 103 0.12 – 3731.82

µw (Pa·s) 10�3 4.5 · 10�4 10�3 10�4

µn (Pa·s) 10�5 10�3 10�2 10�5

⇢w (kg·m�3) 700 1000 1000 1000

⇢n (kg·m�3) 1 750 750 100

n 5 2 2 2

m 5 2 2 2

Bc (bar md1/2) 0 50 0 0

gravity (m·s�2) 9.81 0 0 9.81

Table 1: Parameters for validation cases

4.1.1. Case 1318

This case is part of the SPE10 Comparative Solution Project. The dataset319

1 consists of a 2d two phase (oil-gas) model with a simple 2d vertical section320

geometry [29, 30]. Gas is injected from an injector located on the left of321

the model and dead oil is produced from a well on the right of the model.322

Relative permeability parameters and fluid properties are taken from [29] and323

listed in Table 1. Residual saturation for gas phase is Sn,r = 0.1 and for oil324

Sw,r = 0.25. Initially, the media is fully saturated with oil. The permeability325
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distribution for this case, shown in Figure 4, presents horizontal bands with326

high permeability. These zones are associated with high flow velocities that327

will impose small time steps to maintain stability. In the following section the328

e↵ect of these heterogeneities on the performance of the method is analysed.329

The solution show a good agreement with the results shown in [29].

Figure 4: Case 1. Top: Absolute permeability field. Bottom: gas saturation distribution

with gravity e↵ects. Solution after 3 years with uniform gas injection rate at 6.6 · 10�7

m/s on the left boundary.

330

In Figure 5 the impact of the solver tolerance in the saturation distribu-331

tion is shown. It can be observed that a tolerance of 10�6 is enough to obtain332

a valid approximation for most of the applications. Solver tolerance has also333

an impact in the production history but as can be drawn form Figure 6 a334

tolerance of 10�6 is enough to obtain a production curve similar to the one335

obtained using the direct solver for the pressure equation.336

4.1.2. Case 2337

In this case [23] [10] we consider a 2d heterogeneous domain composed of338

horizontal layers with alternate absolute permeability oriented along the main339
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Figure 5: Error in gas saturation for case 1 with gravity e↵ects for di↵erent tolerance

values.

flow direction. Wetting phase is injected uniformly across the left boundary340

at a rate of 0.11 PVI/year. The domain is initially saturated with the non341

wetting phase. Values for residual saturation are Sr,w = Sr,n = 0. Saturation342

profile for the wetting phase, at a PVI=0.5, is shown in Figure 7. Important343

flow features, such as wetting phase accumulation in permeability jump inter-344

faces when permeability dependent capillary pressure is used, are accurately345

captured.346

In Figure 8 the impact of the tolerance in the saturation distribution is347

shown. At high tolerances, ⇠ 10�4, the error in saturation is of the same348

order of saturation itself but the solution is stable and important features349

as front positions are accurately solved. A tolerance of ⇠ 10�6 is enough to350

obtain maximal error values of order 10�1.351

4.1.3. Case 3352

This case is a five spot simulation on a 2d squared domain. Permeability353

distribution has been computed with an in-house random porous media gen-354
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Figure 6: Case 1. Impact of iterative solver tolerance on the gas-cut history in the producer

located on the right boundary of the domain

0 100 200 300 400 500
0

100

200

[m
]

[m]

1

100

k(m
D)

Figure 7: Case 2. Left: Absolute permeability distribution. Right: Wetting phase satura-

tion distribution after 0.5 PVI. Domain size of 500⇥270 m⇥m on a 200⇥100 mesh.

erator. Wells are surrounded by permeable zones to avoid high unphysical355

pressures. Water is injected from the four corners of the domain, which is ini-356

tially saturated with oil. Values for residual saturation are Sr,w = Sr,n = 0.1.357

Flow is produced from a well in the centre of the domain. Permeability dis-358

tribution is shown in Figure 9. Injection rate is fixed for each injector to 10�5
359

m2/s.360

This test case has been included because the radial flow configuration361

is of high interest for oil industry and it is usually a challenge for explicit362
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Figure 8: Error in saturation for case 2 for di↵erent tolerance values.

methods, as small time steps are required to maintain stability due to the363

high velocity regions.364

In this case, due to the viscosity ratio of the fluids involved, fingering365

patterns are formed as can be observed in Figure 9. These structures, asso-366

ciated to the unstable interface between the fluids, are very sensitive to high367

tolerances as sown in Figure 10. For tolerances above 10�5 fingering patterns368

are not correctly captured and the flow configuration is wrongly predicted.369

This e↵ect can be also observed in the production curve in Figure 11 where370

the production curves for tolerances 10�4 and 10�5 di↵er notably from the371

exact solver curve. Again, as observed in the previous cases, a tolerance value372

of 10�6 is enough to produce a solution qualitatively similar to the solution373

22



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 9: Case 3. Left: Absolute permeability distribution. Right: Wetting phase distri-

bution at water breakthrough for the four injector wells. Domain size of 100⇥100 m⇥m

with 100⇥100 mesh.

computed with the exact pressure solver. It should be mentioned that for374

the entire range of tolerances analysed, no oscillations are observed in flux375

production when CFL < 1 is used. The appearance of oscillations is reported376

in [13] when �Smax criterion is used for computing the time step.377

4.1.4. Case 4378

Here the developed technique for the e�cient resolution of the IMPES379

method in a problem of industrial scale. The results are obtained with a three380

dimensional version of the scheme introduced in section 3. The objective381

is twofold: first to show the validity of the scheme to solve a problem of382

industrial scale and second to show the e�ciency of the scheme for a real size383

problem.384

In particular, we simulate the near wellbore region of an injection well385

situated at the center of a domain of 100m⇥100m. As far as the depth is386

concerned, the injection zone is located at 4� 14m while the total depth of387
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Figure 10: Case 3. Impact of solver tolerance in the saturation distribution after a year

of injection.

the domain is 23 m. The porosity and permeability maps can be seen in388

Figures 12-13. It should be noticed that the high permeability zone situated389

at the bottom of the injection zone is behind the injection well. This fact390

will have an important e↵ect on the results.391

Initially, the domain is fully saturated with the non wetting, lighter phase392

while the wetting, heavier phase is injected through the well . The properties393

of the domain and the fluid properties are detailed in Table 1. The residual394

saturation of both phases is set to zero (Srw = Srn = 0).395

As far as the boundary conditions are concerned, the pressure at the396

top of the reservoir and at the top of the well are set to 320 bar and 320.1397
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Figure 11: Case 3. Impact of the solver tolerance on the production history.

bar respectively. The hydrostatic pressure is taken into account both at the398

reservoir and at the well.399

The saturation contour of the wetting phase after 10 days of simulation400

can be seen in Figure 14. There is a strong e↵ect of the gravity on the401

distribution of saturation, as expected. It should be noticed that, although402

no wetting phase is injected in the high permeability zone at the bottom of403

the domain, it arrives there due to the gravity e↵ects. The wetting phase404

accumulates at this zone as it can not cross a non permeable wall located at405

the bottom of the domain. Results shown in Figure 14 have been obtained406

with the iterative IMPES method with a tolerance of 10�6.407

In Figure 15 an error plot is shown. The error is calculated in total flow408

of wetting phase injected at day 10 and it is defined as the di↵erence between409

the one obtained with the classical IMPES and the iterative IMPES divided410

by the classical IMPES.411
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Figure 12: Permeability field in the near wellbore. The injection well is represented at the

center of the domain.

4.2. Iterative-IMPES e�ciency412

From the results in the test cases a tolerance in divergence of 10�4 is413

enough to guarantee stability while a tolerance of 10�6 leads to solutions414

indistinguishable from the ones obtained by using a direct solver.415

The impact of the solver tolerance and the preconditioner for test cases is416

shown in Figure 16. For fixed values of the solver tolerance higher than 10�6,417

it can be seen that GMRES–ILUT(8) does not o↵er an overall computational418

time reduction due to its high computational cost. GMRES–ILUT(4) is ro-419

bust and outperforms conventional IMPES by a factor up to 3 in all the420

analysed scenarios. Both GMRES–ILUT(8) and GMRES–ILUT(4) present421

an approximately constant relative e�ciency with respect to the solver tol-422

erance, as most of the computational cost is due to the computation of the423

preconditioner, i.e., the e↵ect of the number of iterations of the GMRES is424
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Figure 13: Porosity field in the near wellbore. The injection well is represented at the

center of the domain.

small. On the contrary, GMRES–ILU(0) presents a highly variable relative425

e�ciency with respect to the solver tolerance. The computational cost of426

constructing the preconditioner is small in this case and, as a result, the427

relative e↵ect of the number of iterations of the GMRES (directly linked to428

the solver tolerance) is bigger. It should be noticed that GMRES–ILU(0),429

in spite of showing variable performance, far outperforms the other tested430

methods for solver tolerances higher than 10�7. Using the ILU0 precondi-431

tioner, e�ciencies in the range of 3–12 for low tolerances (10�7) and 10–25432

for moderate tolerances (10�5) have been measured.433

The advantage of using the proposed iterative solver strategy also grows434

with the problem size as can be observed in Figure 17. This property in-435

creases the suitability of the strategy for industrial size problems.436
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Figure 14: Saturation distribution after 10 days of simulation.

4.2.1. Comparisons with alternative approaches437

It has been shown that a solver tolerance value of DIVtol = 10�6 coupled438

with a ILU0 preconditioner results in a proper balance between accuracy and439

performance for all the test cases. In Table 2 detailed timing data is listed.440

It can be observed that for a tolerance of 10�6, that yields accurate results in441

all tested scenarios, the iterative IMPES strategy produces speed ups ranging442

from 7 to 19 due to a drastic reduction in the pressure solver cost.443

These results should be put into perspective by comparing them with444

other techniques found in the literature to reduce the computational cost445

for solving the system (10) – (11) with respect to the conventional IMPES446

method.447

The improved IMPES technique [13], solves the pressure equation every448
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Figure 15: Impact of tolerance in the relative error of injected flow rate for case 4.

n time steps letting the error in total velocity divergence grow up to a tol-449

erance, then the pressure field is updated. This strategy can obtain great450

computational time reductions compared to conventional IMPES when high451

tolerance values DIVtol ⇡ 10�2 ⇠ 10�3 are used. With pressure and satura-452

tion solver times for conventional IMPES shown in Table 2, a maximal speed453

up of 40 can be obtained with this method. However, as detailed in Section454

4.2 , a value for total velocity tolerance of ⇠ 10�6 is required to avoid un-455

physical saturation distributions. With these tolerances, improved IMPES is456

no longer e�cient [14], while iterative IMPES still outperforms conventional457

IMPES by a factor of up to 20 in the analysed cases.458

5. Conclusions459

A method to solve the multiphase flow through a porous media has been460

introduced. The method is very e�cient to solve problems where temporal461

accuracy is required. The developed numerical scheme takes advantage of462
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Figure 16: Relative e�ciency of the iterative IMPES solver for the test cases with three

di↵erent preconditioners, ILU0, ILUT(4) and ILUT(8). Dashed lines show simulations

with wrong saturation distributions.

the time step restriction of the IMPES method to reduce the computational463

cost of the implicit pressure solver by using an iterative linear solver. Fur-464

thermore, the relation between the iterative linear solver tolerance and the465

accuracy of the solution has been studied. The validity of the developed466

strategy to improve the performance of the method without compromising467

the accuracy of the solution has been shown for a wide range of complex468

problems with wells, gravity and capillary e↵ects.469

An improvement in computational time of an order of magnitude with470
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Figure 17: Scalability of the e�ciency of the iterative solver strategy with the problem

size. Data extracted from the test cases using ILU0 preconditioner.

respect to the conventional IMPES has been measured in a wide range of471

simulations. This e�ciency improvement is achieved while retaining high472

temporal accuracy. This feature can be relevant in some applications of high473

interest such as detailed near wellbore simulations or transient processes.474
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Conventional IMPES Iterative IMPES

time (s) p (s) S (s) time (s) p (s) S (s) #Iter speedup

Case 1 138 133 3.2 19 14 3.2 8426 7.2

Case 2 1074 1037 21 98 68 21 6337 11.0

Case 3 4424 4281 91 393 250 91 57663 11.2

Case 4 13800 - - 736 - - - 18.8

Table 2: Performance comparison between conventional and iterative IMPES ( DIVtol =

10�6). Time corresponds to the total simulation time, p corresponds to the time required

by the pressure equation solver and S by the saturation equation solver and mobilities

computation.
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