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Abstract

In the discontinuous Galerkin (DG) community, several formulations have been proposed to solve PDEs
involving second-order spatial derivatives (e.g. elliptic problems). In this paper, we show that, when the
discretisation is restricted to the usage of Gauss-Lobatto points, there are important similarities between two
common choices: the Bassi-Rebay 1 (BR1) method, and the Symmetric Interior Penalty (SIP) formulation.
This equivalence enables the extrapolation of properties from one scheme to the other: a sharper estimation
of the minimum penalty parameter for the SIP stability (compared to the more general estimate proposed by
Shahbazi [1]), more e�cient implementations of the BR1 scheme, and the compactness of the BR1 method
for straight quadrilateral and hexahedral meshes.

Keywords: Discontinuous Galerkin, Gauss-Lobatto Legendre, Poisson equation, summation-by-parts
property

1. Introduction

High order discontinuous Galerkin spectral element methods (DGSEM) have seen an increased popu-
larity in solving partial di↵erential equations (e.g. the Navier-Stokes equations). However, their lack of
stability and robustness is still a concern, and the researchers have made e↵orts towards deriving schemes
which discretely satisfy energy [2, 3, 4, 5, 6, 7] or entropy [8, 9] inequalities in order to derive provably5

stable schemes. One approach considers operators that satisfy the summation-by-parts property, hence,
allowing to bound the discrete energy. In a discontinuous Galerkin framework, this can be achieved by
selecting Gauss-Lobatto nodes as both interpolation and quadrature points, instead of the more common
Gauss-Legendre points.

10

Several DG formulations exist to solve elliptic problems [10]. Among the most popular ones, we find the
Bassi Rebay 1 [11], and the Symmetric Interior Penalty [12] formulations. Both formulations have been used
to solve the compressible and incompressible Navier-Stokes equations [13, 9, 14, 15, 16, 17, 18, 19, 20, 21].
These formulations have traditionally been considered di↵erent approaches to discretise PDEs involving
second order derivatives. However, when restricting the DG discretisation to Gauss-Lobatto points, we find15

that these two share common patterns, enabling the transfer of properties between formulations. The rest
of the paper is organised as follows: in Section 2 the BR1 and SIP configurations are summarised. Then,
in Section 3 these formulations are re-formulated for the particular case of Gauss-Lobatto points. Next,
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in Section 4, the BR1 scheme is shown to become a particular version of the SIP formulation. The main
conclusions are gathered in Table 1. For comparison, we have included the estimates derived by Shahbazi20

[1] for the SIP method to be stable. It can be seen that our results provide lower penalties than Shahbazi’s.
Lastly, in Section 6, some remarks and consequences of these findings are summarised.

2. Problem description

We consider a nodal discontinuous Galerkin discretisation, applied to a linear Poisson equation:

f(x) = r2u in ⌦, u = 0 on @⌦. (1)

Following Arnold et al. [10], this equation may be rewritten as a first-order system:25

g = ru, r · g = f, (2)

being g = {gx, gy} the solution gradient (in Cartesian coordinates). The weak formulation of (2),

Z

⌦k

g · ⌧dx =

Z

@⌦k

u⇤⌧ · nds�
Z

⌦k

ur · ⌧dx,
Z

⌦k

fvdx =

Z

@⌦k

g⇤ · nvds�
Z

⌦k

g ·rvdx,
(3)

depends on the numerical flux choice for u⇤ and g⇤. In (3), v and ⌧ are scalar and vectorial test functions
respectively, and n is the outward pointing normal vector. Two popular formulations are compared in this
work: the Bassi-Rebay 1 (BR1, [11]) method and the Symmetric Interior Penalty (SIP, [22]) formulations.
For the solution flux, u⇤, both methods use the solution average:30

u⇤
BR1 = u⇤

SIP
= {{u}}, (4)

whilst for the gradient flux, g⇤, BR1 and SIP require:

g⇤
BR1 = {{g}}, g⇤

SIP
= {{ru}}� �JuK, (5)

where {{•}} and J•K stand for the DG average and jump operators:

{{u}} =
u+ + u�

2
, JuK = u+n+ + u�n�, {{g}} =

g+ + g�

2
, JgK = g+ · n+ + g� · n�, (6)

and symbols + and � account for the left and right elements, as described in Figure 1(b).

3. Description of the DG-GL method in quadrilateral curvilinear meshes

This paper is based on the nodal DG method with tensor product introduced by Black [23]. In brief,35

the computational domain ⌦ is tessellated into non-overlapping quadrilateral elements, ⌦k, and the physical
coordinates are transformed to a local coordinate system by means of a mapping,

Xk = Xk(⇠, ⌘), (⇠, ⌘) 2 [0, 1]2. (7)

In this work, we only consider 2D meshes but the extension of the proof to 3D hexahedral elements is
direct. The mapping for the Laplace operator is performed using curvilinear bases as in [24]. These bases
define a local curvilinear coordinate system:

aj =
@Xk

@⇠j
, Jak = ai ⇥ aj , (i, j, k) cyclical, (8)

2



which is used to map the operators. Under these mappings, the gradient and divergence operators become:

ru =
1

J

NDX

d=1

@

@⇠d

�
Ja⇠du

�
, r · g =

1

J

NDX

d=1

@

@⇠d

�
Ja⇠d · g

�
. (9)

Defining the nabla operator in the local basis, r̃ =
�
@⇠, @⌘

�
, the previous expressions can be seen as the

divergence of the tensor F̃ , defined as:40

F̃ = u
⇥
Ja⇠, Ja⌘], (10)

and the contravariant gradients, g̃, defined as:

g̃ = gT ·
⇥
Ja⇠, Ja⌘

⇤
, (11)

such that:

Jru = r̃ · F̃ , Jr · g = r̃ · g̃. (12)

With this new set of variables, the original system (2) is transformed in the first order system as described
in [11, 10]:

Jg = r̃ · F̃ , Jf(x, y) = r̃ · g̃. (13)

The solution is approximated in each element ⌦k by Nth degree polynomials (referred to with the45

sub-index h: uh):

uk

h
(⇠, ⌘; t) =

NX

i=0

NX

j=0

uk

ij
(t)li(⇠)lj(⌘). (14)

The nodal version of both F̃ and g̃ are constructed with the Lagrange interpolation operator (see [25]):

F̃ h =
NX

i,j=0

uij

⇥
Ja⇠

ij
, Ja⌘

ij
]li(⇠)lj(⌘), g̃

h
=

NX

i,j=0

gT

ij
·
⇥
Ja⇠

ij
, Ja⌘

ij

⇤
li(⇠)lj(⌘). (15)

3.1. Comments regarding the mesh construction

The methodology presented herein assumes a well-constructed mesh (see [24]). This is essential to
uniquely define the mapping terms at the inter-element shared edges, which prevents mapping discontinuities50

across adjacent cells. To achieve this condition, the evaluation of the interpolated mappings on the edges
should be identical on adjacent elements. We define the mapping for a general curvilinear element as:

X(⇠, ⌘) = �B(⇠)(1� ⌘) + �R(⌘)⇠ + �T (⇠)⌘ + �L(⌘)(1� ⇠)

� x1(1� ⇠)(1� ⌘)� x2⇠(1� ⌘)� x3⇠⌘ � x4(1� ⇠)⌘.
, (16)

where �B , �R, �T , �L are the curves that describe the bottom, right, top, and left edges, respectively, and
xi is the position of the i corner of the quadrilateral.

55

The mapping interpolant, Xh, is obtained using interpolation with Nth degree polynomials. Since this
work considers Gauss-Lobatto points, the interpolants will automatically match the original curves at their
end-points (e.g. �B(0) = x1). When the Nth degree curve interpolants, �h, are introduced in (16), the
Nth degree mapping interpolant, Xh, is obtained. If the mapping is constructed following this procedure, it
will satisfy continuity across elements. Additionally, we note that maintaining continuity ensures identical60
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(a) Mappings, curvilinear basis and interpola-
tion nodes. Dashed lines represent ⇠ = const.
and ⌘ = const.. according to the curvilinear
basis represented. The four normal vectors are
a prolongation of r⇠ and r⌘ lines (orthogo-
nal to the dashed lines). Empty circles rep-
resent interior nodes, empty squares represent
edge-interior nodes, and filled squares repre-
sent edge end-points.

(b) Illustration of the edges that concur
in an edge end-point, P . The edge e
is shared by the elements ⌦+ and ⌦�,
the edge �+ belongs to the element ⌦+,
and the edge �� belongs to the element
⌦�. All edges (e, �+ and ��) meet in

P . The three normal vectors, Se
+
, S�+

and S�� , are represented. Notice that
the jumps of the solution , JuKe, JuK�+

and JuK�� , follow their direction, respec-
tively.

Figure 1: Description of a general curvilinear quadrilateral mesh.

normal vectors on both sides of a surface. The surface Jacobian vectors, S, are obtained as a result of the
prolongation to edges of the mapping derivatives, as described in [26]. For instance:

SB(⇠) = �r⌘ = �Ja⌘(⇠, 0), SR(⌘) = r⇠ = Ja⇠(1, ⌘),

SL(⌘) = �r⇠ = �Ja⇠(0, ⌘), ST (⇠) = r⌘ = Ja⌘(⇠, 1),
(17)

where B,R,T, and L refer to the bottom, right, top, and left edges, respectively. Due to the construction of
(16) with Gauss-Lobatto points, normal vectors obtained as a prolongation of the contravariant basis, Ja⇠j ,
will be identical when computed from both sides of a shared edge. If the discretisation is non conforming,65

it is necessary to adapt the interpolation curves, as described in [27]. Additionally, we define the jump
operators referred to the local basis, JuKn̂ as:

JuKn̂ = u+n̂+ + u�n̂�, JgKn̂ = g+ · n̂+ + g� · n̂�, (18)

which yield a compact notation for the following expressions. Notice that, with this notation, it follows:

JuK · S+ =
�
u+n+ + u�n�) · S+ = kS+k(u+ � u�)

= kS+k(u+n̂+ + u�n̂�) · n̂+ = kS+k
�
JuKn̂ · n̂+�,

(19)

where n± = S±/kS±k.

4. BR1 and SIP formulations on DG-GL quadrilateral curvilinear meshes70

In this section show the similarities between the BR1 and SIP formulations applied to the discretisation
of the Poisson equation, (13). Following [10], the first equation in (13) (i.e. the equation governing the
solution gradient) is multiplied by a test function ⌧h and integrated by parts in element ⌦k:

Z

⌦k

Jg
h
· ⌧hd⇠ =

Z

@⌦k

⌧h · F̃ ⇤ · n̂d⇠ �
Z

⌦k

r̃⌧h : F̃ hd⇠, (20)
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where F̃ ⇤ is the solution numerical flux, n̂ is the normal vector in the local basis (i.e. pointing outwards
in the reference domain), and “:” denotes the tensor double inner product (i.e. A : B =

P
8i,j AijBij).75

Subsequently, the integrals in (20) are replaced by numerical quadrature rules based on Gauss-Lobatto

points. The discrete integral is denoted
R
N
. Next, (20) is summed across all mesh elements:

Z
N

⌦
Jg

h
· ⌧hd⇠ =

Z
N

E

�
{{⌧h}} · JF̃ ⇤Kn̂ + {{F̃ ⇤}} : J⌧hKn̂

�
d⇠ �

Z
N

⌦
r̃⌧h : F̃ hd⇠, (21)

where the surface integral is obtained as a result of each two adjacent element contributions to a single face
(see [10, 28]). Furthermore, E refers to the set of interior and boundary faces in which the domain ⌦ is
divided. The DG average and jump operators, (6), have been adapted to work with tensors:80

{{⌧}} =
⌧+ + ⌧�

2
, J⌧ Kn̂ = ⌧+ ⌦ n̂+ + ⌧� ⌦ n̂�,

{{F̃ }} =
F̃

+
+ F̃

�

2
, JF̃ Kñ = F̃

+
· n̂+ + F̃

�
· n̂�.

(22)

Using the summation-by-parts property (see [2, 29, 30]), (21) can be discretely integrated by parts again,
to obtain:

Z
N

⌦
Jg

h
· ⌧hd⇠ =

Z
N

E

�
{{⌧h}} · JF̃ ⇤ � F̃ hKn̂ + {{F̃ ⇤ � F̃h}} : J⌧hKn̂

�
d⇠ +

Z
N

⌦

�
r̃ · F̃ h

�
⌧hd⇠. (23)

Both BR1 and SIP schemes use the averaged solution as the interface flux (i.e. F̃ ⇤ = {{F̃ h}}). Hence,
the term JF̃ ⇤Kn̂ vanishes, and so does the second term in the surface integral, {{F̃ ⇤ � F̃ h}}, such that:

Z
N

⌦
Jg

h
· ⌧hd⇠ = �

Z
N

E
{{⌧h}} · JF̃ hKn̂d⇠ +

Z
N

⌦

�
r̃ · F̃ h

�
⌧hd⇠. (24)

The contribution of every element, ⌦k, to (24) can be expressed as:

Z
N

⌦k

Jg
h
· ⌧hd⇠ = �1

2

Z
N

@⌦k

⌧h · JF̃ hKn̂d⇠ +
Z

N

⌦k

�
r̃ · F̃ h

�
⌧hd⇠. (25)

Since (25) must hold for any ⌧h, it must hold independently for the basis functions in each of the85

Gauss-Lobatto points. Therefore, it is possible to replace the test function by the product of the Lagrange
polynomials ⌧h = li(⇠)lj(⌘)ed (being ed the d unitary Cartesian direction). After applying the numerical
quadrature, the contribution of every Gauss-Lobatto point to the volume integrals yields:

Z
N

⌦k

Jgk

h
· ⌧hd⇠ = wiwjJ

k

ij
gk

ij
,

Z
N

⌦k

�
r̃ · F̃

k

h

�
⌧hd⇠ = wiwjJ

k

ij
ruk

h,ij
. (26)

On the other hand, since the product F̃ · n̂ defines the solution multiplied by the normal vector, we
can write JF̃ Kn̂ =

�
JuKn̂ · n̂

�
S, being S one of the surface Jacobian defined in (17). As a consequence, the90

contribution of every Gauss-Lobatto point to the surface integral yields:

Z
N

@⌦k

{{⌧h}} · JF̃ hKn̂d⇠ =
1

2

Z
N

@⌦k

�
Juk

h
Kn̂ · n̂

�
⌧h · Skd⇠

=
1

2

�
JuhKn̂ · n̂

�k,B
i

�j0wiS
k,B

i
+

1

2

�
JuhKn̂ · n̂

�k,T
i

�jNwiS
k,T

i

+
1

2

�
JuhKn̂ · n̂

�k,L
j

�i0wjS
k,L

j
+

1

2

�
JuhKn̂ · n̂

�k,R
j

�iNwjS
k,R

j
,

(27)
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where the assumption of a well-constructed mesh allows to replace the prolongation of Ja⇠j by the appro-
priate surface Jacobian (17).

To compute the second equation in (13), we proceed as in (20), i.e. the weak formulation is constructed95

multiplying by a test function v and integrating by parts once in an element:
Z

⌦k

Jfvd⇠ =

Z

@⌦k

g⇤ · Svd⇠ �
Z

⌦k

g̃ · r̃vd⇠, (28)

where the surface integral has been rewritten using the equivalence between local and physical coordinates,
g̃⇤ · n̂ = g⇤ · S. Following (28), the study of BR1 and SIP schemes requires the prolongation of g to the
edges to obtain the numerical flux g⇤. Notice that the volume term is common in both techniques. For
the sake of simplicity, and without loss of generality, only the left face of element k is considered. Due to100

the Gauss-Lobatto interpolation, this is achieved evaluating one nodal value (i.e. setting i = 0). Hence, we
replace (26) and (27) in (24) and evaluate gL,j :

gk

L,j
= gk

0j = ruk

h,0j �
1

2Jk

0jw0
(JuhKn̂ · n̂

�L
j
SL

j

� 1

2

�
JuhKn̂ · n̂

�B
0

�j0
Jk

0jwj

SB

0 � 1

2

�
JuhKn̂ · n̂

�T
0

�jN
Jk

0jwj

ST

0 .
(29)

Notice that, for interior edge points (i.e. non-corner points, j 6= 0, N), (29) reduces to:

gk

L,j
= ruk

h,0j �
1

2Jk

0jw0
(JuhKn̂ · n̂

�L
j
SL

j
, (30)

whilst at the corners (e.g. j = 0), the jumps from the two adjacent faces are added to (30):

gk

L,0 = ruk

h,00 �
1

2Jk

00w0


(JuhKn̂ · n̂

�L
0
SL

0 +
1

2

�
JuhKn̂ · n̂

�B
0
SB

0

�
. (31)

From the gradients prolongation to the faces, we can write the BR1 flux. Inserting (30) into (5), for an
edge-interior point (empty squares in Fig. 1(a)), we obtain:105

g⇤
BR1 · S = {{ruh}} · S � kSk2

2w0
{{J�1}}(JuhKn̂ · n̂

�
. (32)

Similarly, following (5), the SIP flux, g⇤
SIP

, is:

g⇤
SIP

· S = {{ruh}} · S � �kSk(JuhKn̂ · n̂
�
, (33)

where we used (19) to relate the jump operator in the physical and computational domains. Finally, we find
that, for face-interior points, the BR1 and SIP formulations are equivalent when the penalty parameter �
is:

� = �?

BR1 =
N(N + 1)

2
kSk{{J�1}}, (34)

which only depends on the mesh geometry and the polynomial order, since the quadrature weight w0 =110

wN = 1/N(N + 1) for Gauss-Lobatto points in [0, 1]. For the edge end-points (i.e. corners), we take (31)
and consider the contribution of the faces shared by the node. As depicted in Fig. 1(b), naming �+ and ��

the two faces shared by the elements ⌦+ and ⌦� we find:

g⇤
BR1·Se = {{ru}}·Se�kSek2

2w0
{{J�1}}e


(JuhKn̂·n̂

�e
+(JuhKn̂·n̂

��+ Se · S�+

2kSek2 +(JuhKn̂·n̂
��� Se · S��

2kSek2

�
. (35)
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We conclude that the penalty parameter remains the same as in (34), but the jumps are modified. The
SIP method considers the jumps across shared faces, whilst the BR1 method adds the projection to the115

edge of the jumps across both �+ and ��, as described in Fig. 1(b). Let us note that these extra terms
are responsible for the non-compactness of the BR1 method. These terms vanish if the faces cross at 90o,

such that Se · S�±
= 0. This is true for Cartesian meshes, and also for one-dimensional discretisations. If

these conditions are satisfied, the BR1 and SIP schemes are algebraically identical as long as the penalty
parameter for the SIP method is chosen following (34). The results found are summarised in Table 1.120

Table 1: Comparison of the architecture of BR1 and SIP formulations with Gauss-Lobatto points. The estimate for the
penalty parameter from Shahbazi [1] is included for comparison. Note that Shahbazi’s estimate holds only for straight-sided
elements, whilst the penalty parameter (with associated numerical fluxes) derived here suits elements with arbitrary curvilinear
geometries.

Face-interior SIP BR1 (Shahbazi’s [1] estimation)

Penalty parameter � �
N(N + 1)

2
kSk{{J�1}} (N + 1)(N + 2)

2
kSkmax(J�1,+, J�1,�))

Jump operator J•Kn̂ JuKn̂ JuKn̂

Face end-point SIP BR1 (Shahbazi [1] estimation)

Penalty parameter � �
N(N + 1)

2
kSk{{J�1}} (N + 1)(N + 2)

2
kSkmax(J�1,+, J�1,�))

Jump operator J•Kn̂ JuKen̂ JuKen̂ + JuhK�+

n̂
Se·S�+

2kSek2 + JuhK��

n̂
Se·S��

2kSek2

5. Numerical experiments

In this section we investigate the accuracy of the previous theoretical findings. We study the di↵erence
between BR1 and SIP operators, applied to the two-dimensional Poisson equation with Dirichlet boundary
conditions:

r2u = 0, (x, y) 2 ⌦([0, 1]2)

u(@⌦) = uD.
(36)

The study performed in Section 4 only referred to interior faces. Nevertheless, the study of Dirichlet125

boundary conditions follows similar steps and is included in Appendix Appendix A. We solve (36) in
a two-dimensional structured mesh with 42 straight-sided elements and polynomial order N = 3. For this
configuration and following Table 1, we obtain �BR1 = 24 and �SHAH = 40. To show the similarities of both
methods, we compare the analytical Jacobian of the discrete Laplacian operators. Figure 2 shows the relative
error between the BR1 and the SIP Jacobian matrices, measured using the L2 norm. When considering130

the penalty parameter (�BR1) as proposed in this work, we observe that both methods are identical to
machine precision. Furthermore, to provide further insight into the e↵ect of the penalty parameter in the
Jacobian matrix, we show the eigenvalue spectra in Figure 3. Note that, since both discretisations are

7



Figure 2: L2 norm of the error of the BR1 and the SIP Jacobian matrices when varying the penalty parameter (�). We have
highlighted our estimate (�BR1) and Shahbazi’s estimate (�SHAH), confirming that both techniques are equivalent when the
penalty parameter is �BR1.

symmetric, the eigenvalues are strictly real (i.e. without imaginary part associated to dispersion errors).
We have considered the SIP without stabilization (� = 0), which yields positive eigenvalues, confirming135

that the SIP is unstable when under-penalized, as described in [31]. Additionally, we observe that BR1
and SIP (with �BR1) have identical eigenvalues. The SIP method with Shahbazi’s estimate for the penalty
parameter is also represented, as an example of an over-penalized SIP approach. We note that increasing
the penalty parameter above our estimate (�BR1) tends to increase the condition number of the Jacobian,
without a↵ecting the stability of the method. These results are complemented by the evolution of the largest140

SIP eigenvalue, when increasing the penalty parameter (see Figure 4). This eigenvalue is positive (unstable
discretisation) for penalty parameters below our estimate �BR1, and negative (stable discretisation) for
penalty parameters above the estimate (e.g. Shahbazi’s estimate).

6. Summary and conclusions

The main conclusions are:145

• The Bassi-Rebay 1 (BR1) scheme can be regarded as a particular version of the Symmetric Interior
Penalty (SIP) method since the numerical fluxes are computed as the average of the solution gradient,
{{ruh}}, plus a penalty term that depends on the interface jumps. This equivalence is consistent with
the identical rates of convergence observed for both methods ([10]).

• The estimation of the minimum penalty parameter required to obtain a coercive (and stable) SIP150

scheme is sharper than the one provided by Shahbazi [1]. However, the bound provided by Shahbazi
is general, since no assumption is made regarding the node distribution, whilst our work is limited to
Gauss-Lobatto points (and satisfy the summation by part property).

• Gassner et al. [9] proved that a stable method can be derived by using a DG-BR1 discretisation of
a general advection-di↵usion equation. In this note, we have shown that the SIP method is an over-155

penalised BR1, for a particular set of points and type of elements. Combining these two results, it
may be concluded that a DG-SIP discretisation, of the linear advection-di↵usion system, is also stable
with Gauss-Lobatto points, and Cartesian meshes.
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Figure 3: Eigenvalue spectra of the BR1 and SIP Jacobian matrices. The penalty parameters considered for the SIP are
� = 0,�BR1 and �SHAH . Note that all eigenvalues lay on the real axis (i.e. the discretisation does not introduce any
dispersion error). We show that the SIP method with � = 0 is unstable, that both BR1 and SIP (with �BR1) eigenvalues are
identical and that Shahbazi’s estimate decreases the minimum eigenvalue significantly, which increases the condition number
of the Jacobian.

Figure 4: Maximum eigenvalue obtained from the SIP Jacobian as a function of �. We show that for � < �BR1 the scheme is
unstable and stable for � > �BR1.

9



• Since the BR1 method is a particular version of the Symmetric Interior Penalty formulation, this work
proposes an alternative way to implement the BR1 method using a SIP formulation.160
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Appendix A. Penalty parameter in Dirichlet boundary conditions faces

In this section we derive the SIP penalty parameter � that mimics the BR1 scheme at Dirichlet boundary165

faces. For the sake of brevity, we will only consider Cartesian elements (i.e. without corner cross-terms), but
the generalisation for curvilinear elements follows the reasoning of Section 4. In both BR1 and SIP schemes,
the solution numerical flux u? for faces with Dirichlet boundary conditions coincides with the boundary
value uD:

u?

BR1 = u?

IP
= uD. (A.1)

Hence, we can consider the gradient equation in all elements, (21) with the contribution of Dirichlet170

boundary condition faces:

Z
N

⌦
Jg

h
· ⌧hd⇠ =

Z
N

E

�
{{⌧h}} · JF̃ ⇤Kn̂ + {{F̃ ⇤}} : J⌧hKn̂

�
d⇠ +

Z
N

@⌦D

⌧ · FD · n̂d⇠ �
Z

N

⌦
r̃⌧h : F̃ hd⇠, (A.2)

where FD = uD[Ja⇠, Ja⌘] results from the imposition of Dirichlet boundary conditions (A.1). Following
(24), we integrate (A.2) by parts to obtain:

Z
N

⌦
Jg

h
· ⌧hd⇠ = �

Z
N

E
{{⌧h}} · JF̃ hKn̂d⇠ �

Z
N

@⌦D

⌧h ·
�
F̃ h � F̃D

�
· n̂d⇠ +

Z
N

⌦

�
r̃ · F̃ h

�
⌧hd⇠. (A.3)

Setting (A.3) for a particular boundary element ⌦k such that @⌦k \ @⌦D 6=?:

Z
N

⌦k

Jg
h
·⌧hd⇠ = �1

2

Z
N

@⌦k\{@⌦k\@⌦D}
⌧h·JF̃ hKn̂d⇠�

Z
N

@⌦k\@⌦D

⌧h·
�
F̃ h�F̃D

�
·n̂d⇠+

Z
N

⌦

�
r̃·F̃ h

�
⌧hd⇠, (A.4)

we find that interior faces are weighted with 1/2 whilst external boundary faces are not. Following (29), we175

prolong the lifted gradient g to a Dirichlet boundary face (e.g. a left face) to find:

gk

L,j
= ruk

h,0j �
1

Jk

0jw0
(u0j � uD

�L
j
SL

j
. (A.5)

Regarding the Poisson equation, gradient fluxes (5) for Dirichlet boundary conditions become:

g⇤
BR1 = g

h
, g⇤

SIP
= ruh � �(uh � uD)n. (A.6)

Replacing (A.5) in the BR1 flux, we obtain:

g⇤
BR1 · S = {{ruh}} · S � kSk2

w0
{{J�1}}(uh � uD

�
, (A.7)

and

g⇤
SIP

· S = {{ruh}} · S � �kSk(uh � uD

�
. (A.8)
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Comparing (A.7) and (A.8), we find that the penalty parameter for Dirichlet boundary condition faces180

is the double that of interior faces:

�D

BR1 = 2�BR1 = N(N + 1)kSk{{J�1}}. (A.9)

The requirement to double the penalty parameter at Dirichlet boundaries, in the SIP method, was
already introduced in [32, 31] and references therein.
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[17] B. Cockburn, G. Kanschat, and D. Schötzau, An equal-order DG method for the incompressible Navier–Stokes equations,
Journal of Scientific Computing 40 (2009) 188–210.

[18] E. Ferrer and R.H.J. Willden, A high order discontinuous Galerkin finite element solver for the incompressible Navier–225

Stokes equations, Computers & Fluids 46 (1) (2011) 224–230.
[19] E. Ferrer and R. H.J. Willden, A high order discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with

rotating sliding meshes, Journal of Computational Physics 231 (21) (2012) 7037–7056.
[20] E. Ferrer, D. Moxey, R. Willden, S. Sherwin, Stability of projection methods for incompressible flows using high order

pressure-velocity pairs of same degree: Continuous and discontinuous galerkin formulations, Communications in Compu-230

tational Physics 16 (3) (2014) 817–840.
[21] E. Ferrer, An interior penalty stabilised incompressible Discontinuous Galerkin - Fourier solver for implicit Large Eddy

Simulations, Journal of Computational Physics 348 (2017) 754–775.
[22] R. Hartmann, P. Houston, Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations I:

Method Formulation, Nottingham e-prints.235

11



[23] K. Black, A conservative spectral element method for the approximation of compressible fluid flow, Kybernetika 35 (1)
(1999) 133–146.

[24] D. A. Kopriva, Metric identities and the discontinuous spectral element method on curvilinear meshes, Journal of Scientific
Computing 26 (3) (2006) 301.

[25] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domains (Scientific240

Computation), 1st Edition, Scientific computation, Springer, 2011.
[26] D.A. Kopriva, Implementing spectral methods for partial di↵erential equations, Springer Netherlands, 2009.
[27] D. A. Kopriva, S. L. Woodru↵, M. Y. Hussaini, Computation of electromagnetic scattering with a non-conforming discon-

tinuous spectral element method, International Journal for Numerical Methods in Engineering 53 (1) (2002) 105–122.
[28] J. Peraire, P.-O. Persson, The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems, SIAM Journal on245

Scientific Computing 30 (4) (2008) 1806–1824.
[29] J. Hicken, D. Zingg, Summation-by-parts operators and high-order quadrature, Journal of Computational and Applied

Mathematics 237 (1) (2013) 111 – 125.
[30] D. A. Kopriva, A Polynomial Spectral Calculus for Analysis of DG Spectral Element Methods, Springer International

Publishing, Cham, 2017, pp. 21–40.250

[31] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Society for Industrial and
Applied Mathematics, 2008.

[32] Y. Epshteyn, B. Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin methods, Journal of
Computational and Applied Mathematics 206 (2) (2007) 843 – 872.

12


