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Abstract

This article is devoted to the numerical discretisation of the hyperbolic two-phase flow model of Baer and

Nunziato. A special attention is paid on the discretisation of intercell flux functions in the framework of Finite

Volume and Discontinuous Galerkin approaches, where care has to be taken to e�ciently approximate the

non-conservative products inherent to the model equations. Various upwind approximate Riemann solvers have

been tested on a bench of discontinuous test cases. New discretisation schemes are proposed in a Discontinuous

Galerkin framework following the criterion of Abgrall and the path-conservative formalism. A stabilisation

technique based on artificial viscosity is applied to the high-order Discontinuous Galerkin method and compared

against classical TVD-MUSCL Finite Volume flux reconstruction.
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1. Introduction

Nowadays, numerical computation of multiphase fluid dynamics problems involving complex physical phe-

nomena is becoming a↵ordable. Many industrial sectors have to deal with fluid flows composed of various

phases in interaction such as the nuclear industry (reactor safety, cooling, detonation), the aerospace (solid or

liquid propulsion, ice formation, reentry vehicles), the oil and gas (extraction, transport, fracturing) and many

others now and in the future. While experiments are very handful to validate theoretical models, in many cases

the set up is not possible or too expensive. Direct numerical simulation of multiphase flow problems remain

too expensive for industrial applications and today only a few academical attempts are realizable. Thus, many

average models have been developed and studied both theoretically and numerically. Among the averaged two-

phase flow model equations the set of Baer and Nunziato [1] is becoming more and more attractive since it is

hyperbolic unless in some well established circumstances. It is composed of seven equations in one-dimension,

continuity, momentum and energy balance for each phase and a convection equation for the volume fraction.

The model does not make any assumption on mechanical, thermal or chemical equilibrium, thus, two pressure,

velocity and temperatures are present. The main challenge of this set of equations is that it cannot be cast

in conservative (or divergence) form because of the presence of non-conservative products. As a consequence,

classical Rankine-Hugoniot conditions cannot be used to define the jumps across the contact discontinuities
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and shocks. This issue has remained challenging for a long time but recently some authors published di↵erent

methods in order to treat these additional terms [2, 3, 4, 5]. One of the objectives of this article is to review

these methods and compare them against each other.

Most works in the literature use a Finite Volume methodology to discretise the Baer and Nunziato model

equations. While this approach has interesting features, it is often limited to second-order of accuracy. Attempts

to reconstruct Finite Volume methodology to higher order seems promising but su↵er from a lack of compactness,

which is a bottleneck for massive parallel implementation. On the other hand, Discontinuous Galerkin methods

take the advantages of Finite Volume approach (conservation, interface jumps, compactness) but naturally allows

the solution to be represented by a high-order polynomial. The second objective of this work is to develop a

Discontinuous Galerkin formulation able to solve the Baer-Nunziato equations with a high-order (typically >

2) in the presence of strong discontinuities. The Discontinuous Galerkin spectral element method (DGSEM)

[6, 7, 8, 9, 10] will be taken as a basis for the developed method. A special treatment to avoid oscillations in

the vicinity of shocks and contact discontinuities is presented. The method is based on artificial viscosity of

Persson et al. [11].

The paper is organized as follows: in Sec. 2 the discretisation of the Baer-Nunziato equations is presented.

The Discontinuous Galerkin method is detailed as well as the upwind fluxes and the treatment of the non-

conservative products. High-order flux functions formulations are developed following the criterion of Abgrall

and also a path-conservative formalism. In Sec. 3, a bench of one-dimensional test cases is used to assess

the accuracy of each upwind flux when a low-order discretisation is employed (Finite Volume). Finally, in

Sec. 4, the numerical scheme is tested using high order solution representation and compared against classical

TVD-MUSCL Finite Volume flux reconstruction.

2. Discretisation of the two-phase two-pressure model of Baer and Nunziato

The one-dimensional set of Baer-Nunziato equations reads:
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This system of equations is closed with an equation of state for each phase m = g, l (gas and liquid) relating

the internal energy em = Em � 0.5u2
m to the density ⇢m and pressure pm, the saturation condition ↵l + ↵g = 1
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(liquid and gas volume fractions) and finally appropriate interfacial pressure and velocity. In this work, sti↵ened

gas equation is considered for the liquid phase, em = ⇢mem(�m � 1)+⇡m, and perfect gas law for the gas phase

(⇡g = 0). The interfacial quantities are set according to the choice of Baer and Nunziato: uint = ul, pint = pg.

Details of the eigenstructure of the model can be found in AppendixA.

2.1. Discontinuous Galerkin Spectral Element Method

Discontinuous Galerkin methods were first introduced by Reed and Hill [12] to solve the neutron transport

equation. They have emerged in recent years as an e�cient and flexible method to solve convection dominated

problems [13, 14]. The Discontinuous Galerkin Spectral Element Method (DGSEM) [6, 7, 8, 9, 10, 15] can be

seen as a Spectral Element Method (SEM) [16] where the continuity requirement across element boundaries is

relaxed, or as a high order Finite Volume (FV) [17] method with a compact stencil. As in a usual FV method, the

Riemann Solver [18] stabilises the solution. However in this case higher accuracy may be achieved by increasing

the order of the approximation, N , as well as by reducing the size of the elements, h. The DGSEM is used in a

wide range of applications such as compressible flows [19, 20], electromagnetics and optics [21, 22, 23, 24], heat

transfer [25], aeroacoustics [26, 27, 28, 29], meteorology [30, 31, 32], and geophysics [33, 34].

Discontinuous Galerkin methods were originally developed to solve conservation laws,

@U

@t
+r · F = 0 (1)

A particular nodal variant of the discontinuous Galerkin technique is used here, the Discontinuous Galerkin

Spectral Element Method (DGSEM), see Kopriva [10], which solves Eq. 1 in general three-dimensional geome-

tries in which the domain ⌦ is divided into k non-overlapping quadrilateral elements ⌦k. In this paper, the

approximation is restricted, without loss of generality, to two-dimensional problems. Each element in the do-

main is mapped individually onto a unit square by an iso-parametric transformation. This mapping between

the unit square and the physical space is described generically by x = r(⇠, ⌘) where ⇠, ⌘ are the computational

coordinates on the unit square. For a complete derivation of the DGSEM method, the reader is referred to Ko-

priva [10]. On each element the solution is approximated by a series of orthogonal (w.r.t. the L2 inner product)

polynomials PN of degree N , for more information see Canuto et al. [16]. As a basis for this approximation, a

set of Lagrange interpolating polynomials `j(⇠), j = 0, ..., N is used and can be written as

`j(⇠) =
NY

i=0
i 6=j

⇠ � ⇠i

⇠j � ⇠i
. (2)

The nodal points, ⇠i, which will become the grid points of the scheme, are chosen to be the nodes of the

Legendre-Gauss quadrature. Multiple space dimensions are spanned by tensor products of these polynomials,

so that we write PN,N = PN ⇥PN . For simplicity of exposition only, we will take the same polynomial order in

each direction, though this is not required in practice. From this point onwards and to simplify the notation,

we consider that no mapping is performed, i.e. only the reference element in the computational space is used.

In two dimensions, the spectral element method approximates the solution and the fluxes element-by-element
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by the polynomials
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where �µ,⌫ = `µ (⇠) `⌫ (⌘). The nodal (grid point) values of the fluxes are computed from the grid point
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The former is the solution of the discretised PDE while the latter is the spectral interpolation of the exact

solution of the PDE. The same applies to the fluxes
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As generally imposed in variational formulations, the PDE residual is required to be orthogonal to the

approximation space locally within an element. Thus,
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where @⌦ represents the boundary of the element and the summation is extended over the edges e of @⌦.

To solve these equations, the integrals are replaced by Legendre-Gauss quadratures, which in two dimensional

rectangular domains have the property

Z 1
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This replacement is exact provided that the element sides are straight. If the sides are curved a quadrature

error is incurred in the evaluation of
�
U

N
t ,�i,j

�
and in the evaluation of the fluxes. Finally, substituting (3)

into (7), taking into account (8) and the discrete orthogonality of the Lagrange interpolating polynomials yields

[16]
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In (9),
P

e2@⌦

R
e F

N · n�i,jdS is the sum of all the integrals over all the edges of the element approximated

by quadrature. The boundary term can be written as follows,
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It can be seen that due to the discrete orthogonality of the Lagrange interpolating polynomials, the mass

matrix is diagonal, so the inversion is trivial.

The discretisation requires the evaluation of the fluxes along the element edges. Since the grid point values of

the solutions are not defined on the edges, the edge values come from evaluating the polynomial representation

of the solution. The interpolants from each side di↵er at the element faces. The di↵erence is resolved by solving

a Riemann problem for the flux. Thus,
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where F
N⇤ is the result of solving the Riemann problem. Having obtained a suitable discrete expression for

each elemental contribution, it su�ces to sum over all elements in the mesh and apply the boundary conditions

weakly to finalize the DGSEM method, see details in Kopriva [10]. It is remarkable that when a polynomial

of degree N = 0 is used, then the classical first order Finite Volume formulation is recovered. It should also

be noticed that Eq. 1 does not include non-conservative products. The extension of the DGSEM to include

non-conservative products will be performed in Sec. 2.3.

2.2. Cell interface flux approximation

In this section we present the approximate Riemann solvers employed to compute the intercell fluxes F
N⇤

of the 7-equation Baer-Nunziato two-phase flow model.

The Rusanov flux. The Rusanov flux [35, 36] only uses one wave speed Smax which is the maximum absolute

eigenvalue of left and right states of the Jacobian matrix Ac(U). The main advantage of the Rusanov flux is

its simplicity and low dependence on the eigenstructure of the flux Jacobian. Thus, it is particularly easy to

implement when the flux Jacobian is di�cult to formulate, for example when a complex equation of state is

used. Its main disadvantage is its high di↵usion of discontinuities, in particular the contact discontinuities.

The GForce flux. The GForce numerical flux [37, 38] is the weighted average of classical Lax-Wendro↵ and

Lax-Friedrichs fluxes. As the Rusanov flux, the main advantage of the GForce flux is its low dependence on the

eigenstructure of the flux Jacobian, only the maximum eigenvalue is required. GForce flux tends to dissipate

less than Rusanov flux.
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The AUSM+ flux. The AUSM+ flux scheme of Liou [39, 40] has been recently extended to two-phase

flows [41, 42]. Its formulation does not depend at all on the hyperbolic nature of the PDE, hence is independent

of any flux Jacobian eigenstructure. It is also capable of capturing exactly isolated contact discontinuities.

The VFRoe flux. The VFRoe flux [43, 44, 45] is an approximate Godunov method in the sense that the exact

solution to the Riemann problem at the cell interface is replaced by an approximation.

The Godunov flux reads:

F
⇤(UL,UR) = F(U⇤

ex(UL,UR))

The key idea of the VFRoe method is to replace the exact solution to the non-linear Riemann problem

U
⇤
ex(UL,UR) by the exact solution to a linearized Riemann problem. The VFRoe scheme will produce entropy-

satisfying numerical solutions, if the approximate solution of the Riemann problem is also entropy-satisfying.

The approximate Riemann solution for the VFRoe scheme is obtained as in the Roe method. It is well known

that it can be entropy-violating. In order to circumvent this issue, locally when �i(VL) < 0 and �i(VR) > 0,

the VFRoe flux is replaced by the Rusanov flux which in turn is entropy-satisfying.

The Osher flux. The main advantage of the Osher flux [46, 47] with respect to the VFRoe scheme is that

it does not need any entropy fix. A further advantage of this scheme is that it may be written using a path-

conservative formulation, making it particularly suitable to deal with non-conservative products.

The full non-linear flux. The key ingredient is that, given the choice of Baer and Nunziato for the interfacial

pressure and velocities, the description of the structure of the exact solution of the Riemann problem is made

available. This is possible because away from the linearly degenerate solid contact wave the phases decouple

and the equations recover their conservative character.

In other words, it means that away from the solid phase contact discontinuity, the solution of the Riemann

problem associated to the mono-phasic Euler equations holds. On either side of the solid contact where ↵l is

constant, the equations reduce to a pair of Euler equations for each phase separately. Accordingly, the jump

conditions across shocks and rarefactions are the same as those for the Euler equations with the chosen equation

of state.

The states of the flow to the left (1) and right (2) side of the solid contact are determined completely by the

pressures (p1g , p2g ) of the gas and (p1l , p2l) of the liquid. These pressures also determine whether the transitions

are shocks or rarefactions, and they specify the positions of these waves. The density ⇢0g of the gas in region

0 (between gas and liquid contact) is the remaining unknown and is obtained through the iterative solution of

the thin-layer equations [48, 4].

The HLLC approximation. The HLLC [49] approximation has been extended to the set of Baer-Nunziato

equations in [5]. The idea is that instead of performing the analysis of the wave structure (shock or rarefaction

waves), which must be carried out on every step of the iterative solution process of the non-linear thin-layer

equations, their speed is estimated through HLLC approach. The left and right waves of each phase are treated

as discontinuities propagating at approximated speeds.
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Then, as it is done for the exact full non-linear flux, the thin layer equations are solved iteratively and all

variables in region “0” can be found. Another di↵erence then, with respect to the full non-linear solver is in the

construction of the final flux function which follows the HLLC decomposition.

2.3. Discretisation of non-conservative terms

A specificity of the Baer and Nunziato equations is the presence of non-conservative products of the form

H(U)@↵l
@x . The di�culty of integrating this term over a control volume arises in the presence of a discontinuity

in the volume fraction.

Our objective in this section is to develop and/or extend discretisation schemes for the non-conservative

terms for all numerical fluxes presented in Sec. 2.2 in a Discontinuous Galerkin framework.

In the following, we present two discretisation approaches. The first one is based on physical considerations,

in order to recover steady states, the so-called Abgrall criterion. The second approach finds its roots in a recent

definition of the product of distributions, following the path-conservative formalism extended here to high order

discretisations.

2.3.1. Criterion of Abgrall

One way is to discretise the non-conservative products based on physical considerations. The criterion of

Abgrall [50] states that a two-phase flow uniform in velocity and pressure should remain uniform in these

variables with time evolution. Applied to the set of Baer and Nunziato equations, this condition can be used to

derive a discretisation scheme for the non-conservative terms present in the momentum and energy equations

as well as the equation of evolution of the volume fraction. Let us consider three cells of uniform volume �x

indexed by i�1, i, i+1, their interfaces by i�1/2, i+1/2 and an explicit Euler time discretisation with time-step

�t. Furthermore, let us assume a two-phase flow with constant velocity U and pressure P .

The continuity equation associated to a generic phase of the Baer-Nunziato equation reads:

(↵⇢)(n+1) = (↵⇢)(n) � �t
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Denoting by � the discrete form of @↵
@x and considering constant pressure and velocity, the momentum
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Finally the conservation of energy yields to:
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Combining Eqs. 12 and 13, one obtains the following expression for �:
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If we combine Eqs. 12 and 13 and explicitly use the sti↵ened gas equation of state, a discretisation of the

volume fraction equation may be obtained as:
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If we apply Eqs. 15 and 16 to the Rusanov scheme, we obtain:

� =
�↵Ri�1 � ↵Li + ↵Ri + ↵Li+1

2�x
(17)

and

↵
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Eqs. 17 and 18 follow the expressions obtained in [2]. If applied to the GForce flux, the expression for �

remains unchanged, however the discretisation for the volume fraction equation now takes the following form:
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Our objective is to extend these formulations for the Rusanov and GForce fluxes in a Discontinuous Galerkin

framework. Integrating the one-dimensional set of Baer and Nunziato equations over a control volume ⌦ and

multiplying by a test function � one obtains:
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Integrating Eq. 20 by parts yields:
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We can compare Eq. 21 with Eq. 11 to see that there are two extra terms that require a discretisation:

H and ↵l. The discretisation of these terms is performed using Legendre orthogonal polynomials in Lagrange
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form (the same discretisation as for the fluxes and the solution, Eq. 5). The integrals are approximated using

Legendre-Gauss quadrature, as in the usual DGSEM.

In order to satisfy the criterion of Abgrall for the Rusanov and GForce fluxes, some choices are to be made

for the flux F
⇤
b and the liquid volume fraction at the interface ↵⇤

l . The classical flux holds the conservative part

of the system and is here augmented to hold a contribution from the liquid volume fraction equation, denoted

by F
⇤
1b . The schemes are chosen such that:

8
<

:
F

⇤
1b = �Smax

2
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↵
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2

for the Rusanov flux (22)

8
><

>:

F
⇤
1b = �Smax(1� !)

2CFLloc
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↵
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l =

↵R + ↵L

2

for the GForce flux (23)

It is easy to check that rewriting Eq. 21 in a Finite Volume way and inserting definitions from Eq.s 22 or 23,

one recovers Eqs. 17 to 19. We will see in the results section that these discretisations allow to keep uniformity

of the flow even for very high orders.

Developing this strategy for the AUSM+ conservative flux function is however cumbersome due to its formu-

lation. The simplifications of Eqs. 15 and 16 using formal calculus tools did not give satisfactory expressions due

to the numerous switches present in the method. Therefore, we adopted the set of conditions from Eq. 22. We

will see however that this choice gives very inaccurate results which are independent from the original AUSM+

formulation.

The other schemes detailed in Sec. 2.2, e.g. VFRoe, Osher, the full non-linear flux and its HLLC approxima-

tion have their own definitions of F ⇤
1b and ↵⇤

l . We refer the reader to this section to find references of detailed

formulations.

2.3.2. Path conservative scheme

Another approach to treat non-conservative products is based on the theory of Dal Maso et al. [51], where

they give a definition to a non-conservative product at a discontinuity. By introducing a family of path  :

[0, 1]⇥Rn ⇥Rn which satisfy:

 (0,UL,UR) = UL and  (1,UL,UR) = UR (24)

In Eq.24, UL and UR represent the left and right states on each side of the contact discontinuity ⇠. Then,

they define the product at the jump as:

Z ⇠+

⇠�
H(U)

@↵l

@x
dx =

Z 1

0
H( (s,UL,UR))

@ (s,UL,UR)

@s
ds (25)

The simplest path which satisfies 24 is the canonical path  (s,UL,UR) = UL + s(UR �UL).
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A further step can be taken by rewriting the whole set of non-conservative equations into quasi-linear form

(see AppendixA). Then, denoting by Ac(U) = @F(U)
@U +H(U)@↵l

@U the extended Jacobian, the full scheme reads:
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Integrating by parts the last term, one obtains:
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@x
↵l�dx�

Z

⌦\@⌦
H↵l

@�

@x
dx

#
= 0 (26)

where Fb represents the projection of the flux to the face. The final step is obtained by introducing the

Godunov state U(0) in Eq. 26 following [5]:

Z

⌦

@U

@t
�dx+ (Fb�)|@⌦ + (Ui �U(0)i�1/2)

Z 1

0
Ac( (s,U(0)i�1/2,Ui))�i�1/2ds

+(U(0)i+1/2 �Ui)

Z 1

0
Ac( (s,Ui,U(0)i+1/2))�i�1/2ds

�
Z

⌦\@⌦
F�xdx+

"
(Hb↵l�)|@⌦ �

Z

⌦\@⌦

@H

@x
↵l�dx�

Z

⌦\@⌦
H↵l

@�

@x
dx

#
= 0 (27)

The discretisation of H and ↵l is performed using Legendre orthogonal polynomials in Lagrange form while

the integrals may be approximated using for example Legendre-Gauss quadrature. Note that if a polynomial

order of degree N = 0 is used, then the solution is constant inside the cell and Fb together with the third

line of Eq. 27 cancel out yielding a classical Finite Volume formulation. This approach has been adopted to

extend the VFRoe, full non-linear flux and its HLLC approximation. The Osher flux already uses this formalism

(see [46, 47]).

2.4. Stabilisation using an artificial viscosity method

All upwind schemes presented earlier may yield high oscillations in the vicinity of discontinuities. Classical

limiters work well in order to avoid the local creation of extrema, however they severely degrade the accuracy,

often reduced to one in the entire cell. In this work, we follow an artificial viscosity approach [11]. The idea

of the artificial viscosity is to add a controlled amount of viscosity to the governing equations in the vicinity of

strong gradients, such as shock waves or contact discontinuities. In this way the discontinuity may be resolved

in the space of interpolating polynomials. The new set of equations reads:

@U

@t
+
@F

@x
+H

@↵l

@x
=

@

@x

✓
✏
@U

@x

◆
(28)
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Then the discontinuity should spread over a layer of thickness ✏. The definition of the parameter ✏ that

controls the amount of viscosity introduced as well as the definition of a sensor to capture the regions where

the stabilising viscosity should be added are key aspects in the development of the artificial viscosity method.

The discontinuity sensor is built following [11]. Spectral methods represent the solution of the problem as a

sum of basis functions multiplied by some coe�cients. In particular the DGSEM uses the Legendre orthogonal

polynomials as a basis and therefore a one dimensional solution of order N , can be represented in each element

as

U
N (x) =

NX

i=0

Ũ
N
i Li(x), (29)

where Ũ
N
i is the projection of the solution onto the basis function Li(x), that is a Legendre orthogonal poly-

nomial. It should be noticed that the DGSEM is a nodal method, and therefore the coe�cients obtained in

Eq. 11 are not directly Ũ
N
i . However, they can be computed from the nodal values as

VŨN = U
N
, (30)

where matrix V is a Vandermonde matrix [52]. A particularity of spectral methods is that for smooth solutions

the coe�cients Ũi decay very quickly (exponential convergence), while the convergence rate is poor (algebraic

convergence) for non smooth solutions [16].

A truncated expansion of order N � 1 of the solution, UN (x), is also constructed as

Û
N�1(x) =

N�1X

i=0

Ũ
N
i Li(x). (31)

The di↵erence between the truncated expansion of the solution, ÛN�1, and the solution itself, UN , is small

for smooth solutions and big for discontinuous solutions due to spectral convergence. In order to measure the

di↵erence between the two functions the following indicator is computed within each element:

s = log10 max

 
(UN � Û

N�1
,U

N � Û
N�1)

(UN ,UN )

!
(32)

where (u, v) =
R 1
�1 uvdx represents the usual L2 inner product and can be approximated using Legendre-Gauss

quadrature. It should be noticed that the maximum value among all the equations is taken, which is justified

as the objective of the indicator is to capture discontinuities in any of the equations.

Finally, ✏, the amount of viscosity imposed in each element, is computed as:

✏ =

8
>>>><

>>>>:

0 if s < s0 � 

✏0

2

✓
1 + sin

⇡(s� s0)

2

◆
if s0 �   s  s0 + 

✏0 if s > s0 + 

(33)

In this work, the values of ✏0 = h
(N+1) (being h the size of the elements), s0 = log10

1
(N+1)4 and  = 5 were

chosen empirically and demonstrated very satisfactory results. As it is explained in [11], the selection of these

values for the parameters introduces viscosity only when the solution is not continuous and the profiles of the
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discontinuities are sharp but smooth. The e↵ectiveness of these parameters to correctly capture the disconti-

nuities and stabilise the solution will be studied in Sec. 4.3.

The artificial viscosity method produces an a posteriori stabilisation, i.e. the solution is not stabilised until

the oscillation is generated. In general there is no problem with this, however if the amplitude of the oscillation

is too high it can transiently produce unphysical values of the variables, e.g. negative densities or volume

fractions outside the interval [0, 1]. This in inadmissible as the computation of some quantities, e.g. the speed

of sound, would result in invalid operations. The development of a robust artificial viscosity method requires

the introduction of relaxation iterations. If any of the aforementioned variables acquire an unphysical value

as a result of an oscillation, a relaxation iteration is performed instead of the regular iteration. In a regular

iteration, the time derivative of the solution is computed as

@U

@t
= �@F

@x
�H

@↵l

@x
+

@

@x

✓
✏
@U

@x

◆
, (34)

while in a relaxation iteration, only the di↵usive terms are computed

@U

@t
=

@

@x

✓
✏
@U

@x

◆
. (35)

It should be noticed that relaxation iterations do not produce an advance in physical time but only a filtering

of the solution. As will be seen in Sec. 4.3, relaxation iterations are only activated in particular test cases.

The derivation of the DGSEM performed in Sec. 2.1 does not include second order derivatives. Several

methods are available in the literature to perform the discretisation of elliptic problems, e.g. Bassi-Rebay 1

[53], Local Discontinuous Galerkin [54], Compact Discontinuous Galerkin [55] or Symmetric Interior Penalty

Discontinuous Galerkin [56]. A thorough review of all these methods within a unified framework can be found

in [57].

In this work, we will compare the e�ciency for the artificial viscosity method of the Bassi-Rebay 1 (BR1)

and the Symmetric Interior Penalty (SIP) implementations. The main advantage of the BR1 method is that

it is easy to implement. The disadvantages of the BR1 method are that the resultant scheme is non compact

(the approximation in one element depends on the solution in non neighbor elements) and only weakly stable

(understanding stability as ensuring that the numerical model enjoys the same solution uniqueness as the

analytical solution of the mathematical model)[57]. The non compactness of the scheme is especially critical for

implicit solvers, where the Jacobian couples the non neighbor elements. However, BR1 works well for explicit

computations for advection dominated equations. As far as the Symmetric Interior Penalty method is concerned,

it results in a compact and stable scheme. Its main disadvantage is that it includes a penalty parameter that

guarantees the stability for a high enough value but also produces sti↵ness. A formula to compute a value of

the penalty parameter that keeps the stability was derived in [58] and simplified in [59]. This formula is applied

here to compute the penalty parameter. The e�ciency of BR1 and SIP for the artificial viscosity method will

be tested in Sec. 4.3.

12



3. First order results

In this section, our aim is to make a serie of comparisons between all upwind schemes presented in Sec. 2.2.

Several shock tube problems are used to test the capturing properties of the di↵erent flux schemes in the presence

of discontinuities.

We consider seven test problems which are classical benchmark, see for instance [5]. The initial data consists

of two constant states separated by a discontinuity located at x = x0 , all the parameters are listed in Tables 1-

3. Transmissive boundary conditions are imposed at x = 0 and x = 1. All the results presented below were

computed on a mesh of 100 elements, except for test 6 where an additional 500 elements mesh is used. A

comparison is made between all Riemann solvers presented in Sec. 2.2 for a first-order discretisation (which

corresponds to a classical Finite Volume approach), results are shown in Figs. 2 and 3 where the mixture

density is displayed (⇢m = ↵l⇢l + ↵g⇢g). Final time has been set to t = 0.2 for test 0, t = 0.15 for tests 1 to 5

and t = 0.006 for test 6.

Test 0 Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

�l 1.4 1.4 3.0 1.4 1.4 3.0 3.0

�g 1.4 1.4 1.35 1.4 1.4 1.4 1.4

⇡l 0.0 0.0 3400.0 0.0 0.0 10.0 100.0

⇡g 0.0 0.0 0.0 0.0 0.0 0.0 0.0

x0 0.5 0.5 0.5 0.5 0.5 0.5 0.8

Table 1: One-dimensional shock tubes. EOS parameters and initial discontinuity position.

Test ↵Ll ⇢Ll uLl pLl ↵Rl ⇢Rl uRl pRl

0 0.5 1.0 0.0 1.0 0.5 0.125 0.0 0.1

1 0.8 1.0 0.0 1.0 0.3 1.0 0.0 1.0

2 0.2 1900.0 0.0 10.0 0.9 1950.0 0.0 1000.0

3 0.8 1.0 0.75 1.0 0.3 0.125 0.0 0.1

4 0.8 1.0 -2.0 0.4 0.5 1.0 2.0 0.4

5 0.6 1.4 0.0 2.0 0.3 1.0 0.0 3.0

6 0.7 1.0 -19.5975 1000 0.2 1.0 -195975 0.01

Table 2: One-dimensional shock tubes. Initial data for the liquid phase.

Test 0. This preliminary test considers a constant volume fraction in all the domain. In this situation, both

phases are fully decoupled as the interfacial terms vanish. This test case is well known as Sod shock tube [60].

The obtained results naturally follow those present in the literature. An important aspect of this test case for the

Baer and Nunziato set of equations is the expected ability of the path-conservative schemes to recover exactly

the flux formulation for conservative systems. However, as can be seen in Fig. 1, di↵erences are observable for
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Test ↵Lg ⇢Lg uLg pLg ↵Rg ⇢Rg uRg pRg

0 0.5 1.0 0.0 1.0 0.5 0.125 0.0 0.1

1 0.2 0.2 0.0 0.3 0.7 1.0 0.0 1.0

2 0.8 2.0 0.0 3.0 0.1 1.0 0.0 1.0

3 0.2 1.0 0.75 1.0 0.7 0.125 0.0 0.1

4 0.2 1.0 -2.0 0.4 0.5 1.0 2.0 0.4

5 0.4 1.4 0.0 1.0 0.7 1.0 0.0 1.0

6 0.3 1.0 -19.5975 1000.0 0.8 1.0 -19.5975 0.01

Table 3: One-dimensional shock tubes. Initial data for the gas phase.

the VFRoe/VFRoePC and the HLLC/HLLCPC. These di↵erences are in agreement with the tests performed

by Abgrall et al. [61] where they compared a path-conservative Roe scheme on Euler equations written in non-

conservative form (primitive variables) to the classical Roe flux in conservative form. A mesh refinement study

tends to decrease these di↵erences as well as the use of a less dissipative scheme. Indeed, the full non-linear flux

give more accurate results and a better agreement with its path-conservative version.

Test 1. The liquid phase wave pattern consists of a left rarefaction, a right shock wave and a right travelling

liquid contact, while the gas phase consists of a left rarefaction, a contact and a right shock wave. The equations

of state for both phases are assumed ideal, with �g = �l = 1.4. In this test case, the Rusanov, GForce and

AUSM+ fail to predict correctly the liquid contact. Furthermore, the AUSM+ scheme gives very inaccurate

results, due to the discretisation of non-conservative terms. Remind that the schemes adopted for the non-

conservative terms are the same as those developed for the Rusanov flux. Clearly, this assumption cannot be

made and show how dependent is the discretisation of non-conservative products on the full scheme. A full

development of a compatible non-conservative discretisation for the AUSM+ would be necessary but is beyond

the scope of this work. From now on, AUSM+ will be skipped from the comparative study. All other Riemann

solvers behave generally much better. Here, the full non-linear Riemann solver and its HLLC approximation

are undistinguishable.

Test 2. This test problem is more demanding than Test 1 as it includes large variations of initial data and

non-ideal equation of state. As far as the other Riemann solvers are concerned, the same remarks as in Test 1

hold. Rusanov and GForce fluxes su↵er from a high dissipation with respect to more accurate schemes.

Test 3. The solution, for both phases, consists of a right shock wave, a right travelling contact discontinuity

and a left sonic rarefaction wave. The correct resolution of the sonic point is very important in assessing the

entropy satisfaction property of the numerical scheme. With the exception of the very di↵usive Rusanov and

GForce fluxes, all the other present a non-physical entropy glitch at the sonic point, but it can be checked that

it slowly vanishes when the mesh is refined. The path-conservative approach tends to amplify this phenomenon.

It can be noticed that the simple entropy fix in the VFRoe scheme (local Rusanov flux), while not perfect, gives
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satisfactory results. In particular the path-conservative formalism applied to the VFRoe scheme give very close

results to the Osher flux, which in turn is entropy satisfying.

Test 4. Both solid and gas phases consist of a two symmetric rarefaction waves and a trivial stationary contact

wave. The region between the rarefaction waves is close to vacuum, therefore this test case is useful to assess

the pressure positivity in di↵erent numerical methods. In this test case we were unable to make the path-

conservative schemes work, as the pressure and density approached zero, positivity preserving was lost for any

CFL. The non-linear Riemann solver and its HLLC approximation are clearly superior here and the other

schemes give comparable results.

Test 5. This test was designed to assess the ability of numerical methods to resolve the stationary isolated

contact waves. The exact solution allows the existence of the stationary contact waves in the solid and gaseous

phases when the volume fraction and solid pressure gradients are present across the solid contact. The solution

of this test problem contains isolated contacts in both solid and gas phases. As far as the other approaches are

concerned, it can be seen that except the Rusanov and GForce schemes, all other allow to resolve exactly the

isolated contact waves.

Test 6. This test is a strong-shock test problem, which was designed to assess the robustness and accuracy

of numerical methods. The solution of this problem contains, for each phase, a right travelling shock wave, a

contact discontinuity and a left rarefaction wave. As the jump of initial pressures is very large, strong shock

waves are generated in each phase; the distance between the right shock and contact waves is small in the gas

phase (see Fig. 4(d)). These flow features can lead to inaccuracies in numerical solution. We were unable to

perform this test case using the path-conservative formalism applied to the HLLC solver. As reported in [5],

a fine tuning of the initial guess for the solution of the non-linear thin layer equations was necessary. Apart

from the Rusanov and GForce schemes which gave slightly worse results, all Riemann solvers behaved in a

comparable way. A comparative test on a refined grid with 500 elements (ensuring about 10 cells between the

contact and the shock in the gas phase) is displayed in Figs. 4 and reveals oscillations in the path-conservative

VFRoe scheme. In fact, on even finer grids the VFRoe starts to oscillate as well. Also, the HLLC approximation

scheme of Tokareva and Toro [5] diverges for any CFL on a grid of 1000 elements. On such fine grids, only the

most dissipative Rusanov and GForce and the complete Riemann solvers of Osher and the full non-linear flux

behave well and give a stable shocked state.

Given the results of these seven test cases, it is clear that the flux discretisation has a great impact on

the overall accuracy and detection of flow features. It is clear that on coarse meshes and with a low-order

approach, the Rusanov and GForce schemes give quite inaccurate results, however proved to be very robust

as they produced results on every test case. The most accurate results were provided by the full non-linear

Riemann solver and its HLLC approximation. However, at a much higher computational cost, because a system

of four non-linear equations (the thin layer equations) must be resolved at each edge of the mesh and at each

time step. Applied on a multidimensional problem this can be an unrealistic expense. In these one dimensional

problems the computational time required by the Rusanov flux was about 20% of the time required by the
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full non-linear solver, time computed for a whole flow simulation (Test 1). Under these conditions, the VFRoe

scheme seems to be a very good candidate, as it gave accurate results and implied a time overhead of about

15% with respect to the Rusanov flux.

(a) (b)

Figure 1: Shock tube problems. Test 0, density. First order comparison of upwind solvers using 100 elements. (a): all fluxes and

(b): magnified view of path-conservative schemes.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Shock tube problems. Tests 1 to 3. First order comparison of upwind solvers using 100 elements. Density mixture, right

column is a specific zoomed region.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Shock tube problems. Tests 4 to 6. First order comparison of upwind solvers using 100 elements. Density mixture, right

column is a specific zoomed region.
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(a) (b)

(c) (d)

Figure 4: Shock tube problems. Test 6 on a finer grid. First order comparison of upwind solvers using 500 elements. Density

mixture, whole domain and specific zoomed regions.
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4. Extension to higher order

Discontinuous Galerkin methods naturally allow to construct a high-order solution. However, in the presence

of discontinuities special care has to be taken in order to avoid destructive oscillations. In this section, we propose

two strategies to evaluate the high-order non-conservative products and a simple method to stabilize oscillations

in the vicinity of discontinuities. Then, the approach retained is tested on one-dimensional shock-tube cases.

Finally a comparison is performed in a two-dimensional framework with a classical TVD-MUSCL Finite Volume

reconstruction.

4.1. High-order comparison between Rusanov, VFRoe and path-conservative VFRoe schemes

As we have seen in Sec. 3, when the spatial discretisation uses a first order representation of the solution,

the Rusanov flux, although robust, does not give satisfactory results in the sense that it dissipates too much

discontinuities. Here, we propose to apply the concept of artificial viscosity presented in Sec. 2.4 to the Rusanov,

VFRoe and path-conservative VFRoe fluxes. A comparison is made between these schemes using a first order

discretisation and using a fifth order polynomial reconstruction, on a mesh consisting of 100 elements. In order

to stabilize the oscillations which typically occur when a method tries to interpolate through a discontinuity, the

artificial viscosity approach detailed in Sec. 2.4 is employed. Several tests are performed using Test 1 to Test 5

and compared using a first order full non-linear Riemann solver on a mesh consisting of 2000 elements, results

are displayed in Fig. 5. The results and conclusions di↵er greatly from the low-order comparison of section

Sec. 3. While in a low-order framework, huge di↵erences in accuracy were observable between the Rusanov and

the VFRoe flux, or more accurate Riemann solvers, when the order of the spatial discretisation increases, these

di↵erences become very low. In all test cases presented here, the fifth order curves of Rusanov, VFRoe and

path-conservative VFRoe are almost undistinguishable. It is remarkable how the artificial viscosity approach

achieves to impose a very controlled amount of viscosity, keeping very sharp fronts and almost no oscillations.
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(a) (b)

(c) (d)

(e)

Figure 5: Shock tube problems. Tests 1 to 5. Comparison between Rusanov and VFRoe numerical flux using a fifth order polynomial

and 100 elements. Density mixture.
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4.2. Volume fraction discontinuity in a uniform flow

A crucial requirement of the non-conservative terms is that their discretisation allow a flow initially at

constant pressure and velocity to stay unperturbed by the presence of a volume fraction discontinuity. Our

Rusanov and GForce non-conservative fluxes have been built upon this condition, and we will check here that

it is verified even for very high orders stabilised by artificial viscosity. A domain of 1 m length is considered.

A layer of water initially located in x 2 (0.2, 0.3), with volume fraction ↵l = 0.99 and sti↵ened gas equation

of state parameters �l = 4.4, P1 = 6.8 ⇥ 108, is set in motion in a uniform flow at atmospheric pressure and

constant velocity v = 100 m.s�1. The rest of the domain is filled with air modeled as a perfect gas with volume

fraction ↵g = 0.99. Results are displayed after a physical time of 3.10�3 s in Fig. 6. A comparison is shown

between a zeroth-order polynomial solution on a mesh composed of 600 elements and fifth-order polynomial

solutions on 100 elements. High-order Rusanov, GForce, VFRoe and path-conservative VFRoe are displayed

and demonstrate equivalent accuracy. Most importantly, it is clear that the uniformity of the flow is perfectly

maintained for all schemes.
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(a) (b)

(c)

Figure 6: Advection of a volume fraction discontinuity in a uniform flow. (a): Water volume fraction, (b): water velocity and (c):

water pressure.
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4.3. Stabilisation using artificial viscosity method

The stabilisation method introduced in Sec. 2.4 will be tested in this section. The analysis will focus on

the discretisation method for the second order derivatives, i.e. Bassi-Rebay 1 (BR1) and Symmetric Interior

Penalty (SIP), and the amount of viscosity used in the stabilisation process. Besides, special attention will be

paid to the extra iterations introduced by the stabilisation method. All the test cases in this section make use

of the high-order Rusanov non-conservative flux described before.
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Figure 7: Droplet advection results. Comparison of SIP and BR1 implementations for the artificial viscosity.

First we present a test case where the BR1 and the SIP implementations are compared. Figure 7 shows

density mixture plots for the advection problem of Sec. 4.2 at time t = 0.003 s with the same parameters and

initial conditions. The first test case (a) and (b) shows the solution obtained with 20 elements and polynomial

order N = 9 while the second (c) and (d) shows the solution obtained with 100 elements and polynomial order

N = 9. It can be seen that SIP implementation gives a solution with slightly smaller dissipation. In this

case, the stabilisation method introduces extra iterations when unphysical values are obtained. In particular,

oscillations due to the discontinuous initial solution yield values of the volume fraction higher than 1 and smaller

than 0. In the first test case (a) and (b) the amount of extra iterations is about 45% for the SIP and 48% for

the BR1. For the second test case (c) and (d) the amount of extra iterations is about 23% for the SIP and 25%
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for the BR1. This may be explained by the weakly stable nature of the BR1 implementation and justifies the

selection of the SIP as the discretisation method for our artificial viscosity method.
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Figure 8: Test 1 results. E↵ect of ✏0 value in the stabilisation of the solution through the artificial viscosity method.

As far as the amount of viscosity introduced is concerned, we solve Test 1 introduced in Sec. 3 with di↵erent

values of the parameter ✏. The results can be seen in Figure 8. In particular, we change the value of ✏0 from

its definition in Sec. 2.4. Remind that it was defined as ✏0 = h
N+1 . Here we change its value multiplying it by

10, 1, 0.1 and finally 0.5. A solution obtained with first order and 2000 elements is also plotted for comparison.

On the one hand, it can be seen that if the amount of viscosity introduced is higher than the reference value

(✏0 = 10 h
N+1 ) the di↵usion is higher than necessary. On the other hand, if the di↵usion is smaller (✏0 = 0.1 h

N+1 )

not enough di↵usion is introduced resulting in undesirable oscillations. The chosen value of ✏0 = h
N+1 gives

satisfactory results although a better result is obtained with ✏0 = 0.5 h
N+1 . This means that although the chosen

value for the parameter gives accurate solutions, even more accurate results can be obtained by tuning the

parameter around this value. Finally, it should be noticed that in this case, no extra iterations where required

by the method.

4.4. Two-dimensional test cases and comparison with TVD-MUSCL Finite Volume reconstruc-

tion

While the above comparisons and developments were presented in one-dimension for the sake of clarity, the

extension to multidimensional problems does not pose further di�culties, given that applying the divergence

theorem to the governing equations, the Riemann problem is solved in the normal direction to an edge. In

the following we will then test our artificial viscosity Discontinuous Galerkin approach on two-dimensional test

cases.

The first test is concerned with spectral convergence using a smooth solution, to ensure that the artificial

viscosity method does not activate away from discontinuities. Then a comparison with classical Finite Vol-

ume solution reconstruction is presented to assess the gain per degree of freedom obtained using high-order

Discontinuous Galerkin.
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4.4.1. Numerical convergence study

In order to verify the accuracy of the discretisation, the Method of Manufactured Solutions [62] is used.

This method is employed extensively in the context of CFD code verification. It consists in defining an analytic

solution, and modifying the governing equations accordingly, by adding a source term S. This source term S is

added such that the chosen analytic solution satisfies the governing equations.

In the code verification step, when systematic mesh or order refinement studies are performed to examine

the accuracy, it is important that the analytic solution employed fulfils some requirements. Although the form

of the manufactured solution is somewhat arbitrary, it should be chosen to be smooth, infinitely di↵erentiable

(to avoid the cancelation of higher order derivatives) and realisable (i.e., solutions should be avoided that have

negative densities, pressures, temperatures and volume fraction strictly bounded between 0 and 1). The solution

chosen in the scope of this work is as follows:

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

↵l =
9

10
� 1

2
cos(xy)

⇢l = 1 + cos(xy)

ul =
2 + cos(2x)� sin(3y)

10

vl =
2 + cos(2x) + sin(3y)

12
pl = 1 + cos(x) + sin(y)

⇢g = 1 + cos(2xy)

ug =
2 + cos(4x)� sin(6y)

10

vg =
2 + cos(4x) + sin(6y)

12
pg = 1 + cos(2x) + sin(y)

In order to assess the accuracy of the discretisation of the 7-equation model using a Discontinuous Galerkin

approach, the exact solution is compared to the numerical one using di↵erent number of elements or di↵erent

polynomial orders. In all cases the GForce approximate Riemann solver has been used. The L1 norm of

the discretisation error (di↵erence between exact and approximate solution) for all conservative variables is

computed and reported in Fig.9(a) for an h-refinement study (fixed polynomial order and varying number of

elements) and in Fig.9(b) for a p-refinement study (fixed number of elements and varying polynomial order).

With a third order polynomial, a fourth order accurate spatial discretisation method is obtained. When the

number of elements is kept constant and the polynomial order changes, a law of the type ⇠ CN
�N is recovered,

thus the convergence is spectral which is the desired result. It is of importance because it demonstrates the

ability of the artifical viscosity method to deal with smooth regions and to maintain convergence to steady

states. Classical limiters used in the Finite Volume community sometimes su↵er from loss of accuracy away

from discontinuities and convergence issues when they are not di↵erentiable (minmod limiter for instance).

4.4.2. Two-dimensional Riemann problems

In order to compare our high-order approach to more classical methods, we employed a well-known strategy

in the Finite Volume community: a solution reconstruction based on MUSCL approach. Its extension to the set
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(a) (b)

Figure 9: Two-dimensional manufactured solution. ||.||L1 of the discretisation error for all conservative variables. (a): h-refinement

from 25 to 400 elements, 3rd order polynomial and (b): p-refinement from 0th to 3rd order polynomial, 400 elements.

of Baer-Nunziato equations is for instance presented in [4]. In this approach, the left and right states at an edge

are corrected using a minmod slope-limited reconstruction. The corrections are obtained in terms of primitive

variables. Denoting by + and � the values at the right and left edge of a cell i, a one-dimensional in space and

time Taylor expansion about a cell-center value together with a decomposition in characteristic variables yields:

Qpi

+ = Qpi +
1

2
Ri

✓
Id � �t

�x
max(⇤i, 0)

◆
�zi

and

Qpi

� = Qpi �
1

2
Ri

✓
Id +

�t

�x
min(⇤i, 0)

◆
�zi

where Ri is the matrix of the right eigenvectors associated to the matrix Jacobian Qpi , ⇤i is the diagonal

matrix of the eigenvalues of Qpi , Id the identity matrix, and �zi is the minmod slope in characteristic variables:

�zi = minmod
�
Ri

�1(Qpi+1 �Qpi),Ri
�1(Qpi �Qpi�1)

�

We propose an extension of 2D Riemann problems from [63], also presented in [64] to the compressible

Baer-Nunziato model. The computational domain is ⌦ = [0.5, 0.5]⇥ [0.5, 0.5] and the initial condition is given

by four piece-wise constant states defined in each quadrant of the two-dimensional coordinate system in Tab. 4.

These two test-cases are computed using a seventh-order polynomial Discontinuous Galerkin on 100 elements

and compared to a second-order TVD-MUSCL Finite Volume on 1600 elements, such that the number of degrees

of freedom is the same (6400). The upwind flux function used in either case is the Rusanov flux. A reference
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Configuration C1 (�g = 1.4,⇡g = 0, �l = 1.4,⇡l = 0)

↵l ⇢l ul vl pl ⇢g ug vg pg

(x > 0, y > 0) 0.8 2.0 0.0 0.0 2.0 1.5 0.0 0.0 2.0

(x < 0, y > 0) 0.4 1.0 0.0 0.0 1.0 0.5 0.0 1.0 2.0

(x < 0, y < 0) 0.8 2.0 0.0 0.0 2.0 1.5 0.0 0.0 2.0

(x > 0, y < 0) 0.4 1.0 0.0 0.0 1.0 0.5 0.0 1.0 2.0

Configuration C2 (�g = 1.4,⇡g = 0, �l = 3.0,⇡l = 100)

↵l ⇢l ul vl pl ⇢g ug vg pg

(x > 0, y > 0) 0.3 1000.0 0.0 0.0 600.0 1.0 0.0 0.0 1.0

(x < 0, y > 0) 0.4 800.0 0.0 0.0 500.0 1.5 0.0 1.0 2.0

(x < 0, y < 0) 0.3 1000.0 0.0 0.0 600.0 1.0 0.0 0.0 1.0

(x > 0, y < 0) 0.4 800.0 0.0 0.0 500.0 1.5 0.0 1.0 2.0

Table 4: Initial conditions for the two-dimensional Riemann problems.

solution is computed using the full non-linear Riemann solver with a zeroth-order polynomial on a grid of one

million elements.

Results are displayed in Fig. 10-11 for configuration 1 and 2 respectively. We observe a much better resolution

using our artificial viscosity Discontinuous Galerkin discretisation than classical TVD-MUSCL second order

Finite Volume with a constant number of degrees of freedom. These test cases are also reported in [64] and

compare well qualitatively.
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(a) (b)

(c)

Figure 10: C1 test case. Gas density. (a): TVD-MUSCL Finite Volume (1600 elements, N=1), (b): Artificial viscosity Discontinuous

Galerkin (100 elements, N=7) and (c): reference solution.

29



(a) (b)

(c)

Figure 11: C2 test case. Gas density. (a): TVD-MUSCL Finite Volume (1600 elements, N=1), (b): Artificial viscosity Discontinuous

Galerkin (100 elements, N=7) and (c): reference solution.
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5. Conclusions

Most numerical fluxes developed for the mono-phasic Euler equations may be extended to the two-phase

Baer-Nunziato equations thanks to its hyperbolic nature. However, due to the presence of non-conservative

products some care should be taken in the discretisation especially in the presence of discontinuities. In this work,

we tested several numerical fluxes developed for the Euler equations, based or not on an approximate solution

to the Riemann problem associated to the Baer-Nunziato equations, and several techniques were presented

to treat the non-conservative products. When the spatial discretisation was first order, strong di↵erences

were found between all numerical fluxes. If the Rusanov and GForce fluxes proved to be very robust and

computationally cheap, they also generated the most important amount of dissipation of all schemes especially

at contact discontinuities. The VFRoe scheme gave very satisfactory results, however there is no clear way

of enforcing entropy condition at sonic points: a local Rusanov flux has been used to avoid strong entropy

glitches in rarefaction waves. Finally the non-linear Riemann solvers behaved very well on all test cases but

their computational cost may become prohibitive when extended to three-dimensions.

Di↵erent strategies have been proposed to deal with the presence of non-conservative products. The condition

of Abgrall gives a natural numerical scheme to these terms. We extended the Rusanov and GForce flux following

this criterion to high-order. The path-conservative formalism allows a clean definition of non-conservative

products in the presence of a discontinuity, however we experienced some numerical di�culties on some very

demanding test cases, such as positivity preserving issues in strong rarefaction waves. The most robust approach

proved to be the Rusanov and GForce fluxes extended to the non-conservative Baer and Nunziato system

following the criterion of Abgrall.

In order to deal with the inherent oscillations caused by high-order discretisations in the vicinity of dis-

continuities, a stabilisation technique based on local artificial viscosity has been adapted to the Baer-Nunziato

equations. This approach allowed to smooth the discontinuities in a very thin region and thus resolve them

in the space of polynomials. It allowed to compute very high-order solutions to several shock-tube problems.

A comparison at equal number of degrees of freedom between our high-order Discontinuous Galerkin approach

and a classical TVD-MUSCL Finite Volume reconstruction proved the superiority of the method. Also, it was

shown that in the context of high-order reconstruction, the situation changes in a very positive way for the

dissipative Rusanov flux which proved to be as accurate as the VFRoe scheme. This result is of great interest,

because due to the limited amount of information about the eigenstructure of the flux Jacobian, the Rusanov

flux is easy to implement, fast and easily extendable to more complex equations of state.

Future investigations may concern strong shock situations as it is well known that the non-conservative

character of the equations usually yield to erroneous shocked states [61, 65]. Further extensions to this work

could deal with the development of a Discontinuous Galerkin discretisation to the recent two-phase HLLC solver

of Furfaro and Saurel [66].
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AppendixA. Eigenstructure of the Baer-Nunziato model

The Baer-Nunziato model may be written in quasi-linear form:

@U

@t
+Ac(U)

@U

@x
= 0

where U represents the vector of conservative variables and Ac(U) takes the form:

Ac(U) =

2

666666666664
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2
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3
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with �̂m = �m � 1, for m = g, l. The matrix Ac has 7 real eigenvalues:

�1 = ug � ag

�2 = ug,�3 = ug + ag,�4 = ul � al

�5 = ul,�6 = ul + al,�7 = ul (A.1)

and a corresponding set of linearly independent eigenvectors:
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Similarly, with the following choice of primitive variables:

V = (↵l, ⇢l, ul, pl, ⇢g, ug, pg)
T

the system of Baer-Nunziato equations may be written in the following quasi-linear form:

@V

@t
+Ap(V)

@V

@x
= 0

where Ap(V) takes the form:

Ap(V) =
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The corresponding set of eigenvectors read:
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