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Abstract

In this work, local p-adaptation strategies for high order discontinuous Galerkin

spectral element methods are compared. The principal aim of the paper is to

determine the advantages and drawbacks of various sensors, based on trun-

cation or discretisation errors, to detect the regions that require adaption.

A well-established discretisation error based approach, estimated through

the decay of the energy associated to the approximated solution modes, is

compared to recently proposed truncation error adaptation methodologies

(i.e. isotropic and anisotropic versions). The truncation error technique de-

tects the regions that require refinement by estimating the truncation error

in meshes with varying degrees of freedom. This comparison is particularly
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interesting since the truncation error is related to the discretisation error

through a Discretisation Error Transport Equation, where the truncation er-

ror appears as a source term for the discretisation error.

The comparisons included quantify the accuracy of the flow solutions result-

ing from meshes adapted with these sensors and hence provide guidelines

into which sensors are better suited to adapt meshes for inviscid and viscous

flows. All the adaption strategies are tailored to high order methods and

particularly implemented and tested in a discontinuous Galerkin solver.

Results include an inviscid NACA0012 and a viscous flat plate boundary

layer. Output functionals (e.g. lift, drag) resulting from adapted meshes are

compared in terms of the number of degrees of freedom, providing a critical

assessment of the performance of each sensor. Namely, it is shown that both

truncation error adaptation methodologies provide meshes with polynomial

order distributions that lead to fewer degrees of freedom than when using the

discretisation error based adaptation. In addition, the examples illustrate the

outperforming advantage of anisotropic over isotropic adaptation.

Keywords: anisotropic p-adaptation, high order discontinuous Galerkin,

Tau-estimation (⌧ -estimation), truncation error, discretisation error

1. Introduction

Computational Fluid Dynamic or CFD simulations require large numbers

of Degrees of Freedom (DoF) to capture the complex physics governed by the

Navier-Stokes equations. This set of non-linear partial di↵erential equations
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accommodate for a wide range of temporal and spatial scales that can render5

its numerical resolution di�cult. The range of spatial scales necessitates a

varying number of DoF to attain good numerical accuracy. A naive approach

may consider adapting all flow regions uniformly to attain higher accuracy

overall, but it is also possible to increase/decrease the DoF locally. The latter

strategy can reduce the overall number of DoF and consequently minimise10

the computational cost. Historically, mesh adaptation methods for fluid flows

have increased the number of mesh elements or grid nodes (h-refinement),

which can be seen as the natural strategy when low order methods (e.g. Fi-

nite Volumes, Finite Elements) are considered.

High order methods (e.g. Spectral or discontinuous Galerkin) o↵er an alter-15

native to low order methods and to the classical h-refinement strategy. Such

methods enable the use of high order polynomials inside each computational

element to approximate the numerical solution, which decreases the error

exponentially when smooth flows are considered [50, 25, 12].

Discontinuous Galerkin (DG) methods have seen increasing popularity20

during recent years and have been used to solve a variety of problems includ-

ing compressible [5, 29, 32, 33, 28] and incompressible [4, 37, 9, 43, 14, 15, 13]

flows. DG methods enable discontinuities in the numerical solution between

mesh elements, which facilitates local adaptation strategies since mesh dis-

continuities (e.g. hanging nodes) and polynomial discontinuities can be han-25

dled naturally and accurately. Local adaptation techniques for DG methods

are relatively new and may consider h or p refinement independently. When
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the numerical solution is smooth, p-refinement outperforms h-refinement

since the former leads to an exponential decrease of the error. However, when

flow discontinuities are present in the numerical solution (e.g. shock waves30

or geometric discontinuities), then h-refinement becomes advantageous.

The previous discussion underlines three of the main di�culties when

dealing with local mesh adaptation in the framework of high order meth-

ods. First, it is necessary to locate the flow regions that, when adapted, will

improve the accuracy of the numerical solution. Second, when high order35

techniques are used to solve the underlying equations, then it is necessary to

select the adaptation strategy (h or p refinement) that minimises the error

locally. Third, if the flow presents an anisotropic character (e.g. boundary

layers), then the adaptation strategy can take advantage of an anisotropic

adaptation to refine/coarsen the mesh following particular directions. Ex-40

amples of h and p refinement strategies can be found in Mavriplis [31], Van

der Vegt et al. [48] or Roy et al. [38].

To determine the region that requires adaptation (i.e. refinement or coars-

ening) various methods exist. Historically, the so called “feature based adap-

tation” has been broadly applied to improve the accuracy of numerical solu-45

tions [11, 1]. These methods identify regions for adaptation by quantifying

flow gradients. This approach does not rely on a direct relation between the

computed feature and the numerical errors and therefore the resulting mesh

does not guarantee a reduction of the error. Extension to high order meth-

ods [31, 34, 3] may use the polynomial energy decay for each mode (that50
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approximate the numerical solution) to account for the flow gradients (i.e.

quantifying the solution smoothness). These methods can also be seen as

discretisation error based, since the polynomial energy decay for each mode

is a measure of the discretisation error (i.e. the di↵erence between the ex-

act solution of the PDE and the exact solution of the discretised PDE) [8].55

Discretisation error based adaptation methods neglect the fact that the dis-

cretisation error can be transported throughout the mesh domain, resulting

in regions with large discretisation errors that have actually small discretisa-

tion error contributions [51, 21].

The truncation error technique appeared as a cost e�cient methodology60

to select regions that require adaptation. The truncation error is defined as

the di↵erence between the discrete Partial Di↵erential Equation (PDE) and

the exact PDE operator, both applied to the exact solution of the problem

[35]. This may be stated as

⌧N = R
N(u)�R(u), (1)

where ⌧N denotes the truncation error for a polynomial order N , R is the65

partial di↵erential operator, RN the discrete partial di↵erential operator (of

order N) and u represents the exact solution.

The discretisation error and the truncation error are related through the

Discretisation Error Transport Equation (DETE) [39] such that the trunca-

tion error acts as a local source for the discretisation error. This relationship70
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provides a compelling argument for the use of the truncation error, instead

of the discretisation error, as a sensor for a mesh adaptation algorithm. In

addition the DETE shows that truncation errors do not su↵er from trans-

ported and cumulative e↵ects (as for discretisation errors) and hence can be

better suited to select regions for adaption.75

Examples of ⌧ -estimation method for low order spatial discretisations can

be found in [6, 7, 20, 46] for finite di↵erences, and in [45, 44, 16, 19, 17] for

finite volumes. More recently the method has been extended by the authors

to continuous high order [41] and discontinuous Galerkin formulations [42,

26].80

Finally, adjoint methods enable the estimation of the discretisation er-

ror associated with functional outputs. This family of methods has been

extended to high order discontinuous Galerkin methods [49, 23, 22, 24] but

require the solution of the dual problem and generally the explicit storage

of an embedded grid. Comparisons between adjoint methods for adaptation85

and truncation error can be found in [18, 10]. In addition, an explicit rela-

tionship between adjoint methods, discretisation error and truncation errors

have been derived by the authors [26]. The latter shows that the truncation

error controls the discretisation error and also any output functional error.

Consequently, adaption strategies based on the truncation error should pro-90

vide more solutions with lower discretiation errors and more accurate output

functionals. Adjoint methodologies being a wide field of research, they are

not considered in this work.
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In summary, this paper includes comparisons of p-refinement strategies

for adaptation using discontinuous Galerkin methods. An isotropic discreti-95

sation error adaption [31, 34, 3], based on the decay of the energy (i.e. L2

norm) associated to the di↵erent modes, is compared to truncation error

implementations. In particular, we compare isotropic and anisotropic trun-

cation error methodologies, as well as two definitions for the truncation error,

i.e. non-isolated and isolated [42].100

The paper is organised as follows. The first section details the discon-

tinuous Galerkin formulation and introduces various definitions for solution

errors that are necessary to define the adaptation strategy. The second sec-

tion details the adaptation strategies that consider discretisation, truncation

and isolated truncation errors. In the third section, the adaptation strategies105

are compared for an inviscid NACA0012 and a viscous flat plate boundary

layer test case. The comparison includes the number of degrees of freedom

required by each method to attain a similar level of accuracy. Finally, the

paper provides conclusions of the compared strategies.

2. Mathematical background110

In this section the mathematical background of the problem is introduced.

First, the Discontinuous Galerkin Spectral Element Method (DGSEM) is

briefly advanced. Second, the errors that will serve as a basis for the refine-

ment criteria are defined.
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2.1. Discontinuous Galerkin Spectral Element Method115

Discontinuous Galerkin methods were first developed [36] to solve con-

servation laws of the type: F(u) = ut + r· f = 0. To apply the discontin-

uous Galerkin method, we first tessellate the physical domain  to obtain

its discrete version  h. This variational technique requires multiplying the

conservation law at an elemental level ⌦ by a test function (typically poly-120

nomials) and integrate. By doing so, it is ensured that the residual of the

equation is orthogonal (in the L2 norm) to the space spanned by the test

functions. Summing over all elemental contributions in the mesh domain

( h) and integrating by parts leads to the weak formulation of the problem

and includes volume and surface contributions. Since in the discontinuous125

framework, discontinuities are allowed at edge interfaces, dual valued func-

tions co-exist at the interfaces between neighbouring elements. To resolve

the discontinuity associated to the convective fluxes, a Roe approximate Rie-

mann solver is used (see Toro’s monograph [47] for details). In addition,

discontinuities associated to the viscous terms are resolved using a Bassi-130

Rebay formulation [5, 2]. Finally, boundary conditions are weakly imposed

at domain boundaries. The resulting volume and surface integrals are nu-

merically approximated using Gauss quadrature rules and lead to a discrete

set of equations for each nodal point.

A nodal variant of discontinuous Galerkin technique that uses a quad/hexa135

mesh topology and tensor product expansions for the polynomial spaces is

known as Discontinuous Galerkin Spectral Element Method (DGSEM), as

8



detailed in Kopriva [28]. The compressible Navier-Stokes equations can be

discretised using the DGSEM approach [27, 28, 26]. The temporal terms are

discretised using a third order Runge-Kutta method and are converged until140

steady state, which is reached once the the infinite norm of the conservation

law residual (for all flow equations) falls below a tolerance not larger than

10�8 .

2.2. Definitions for discretisation and truncation errors

Let us consider the high order discretisation of a Partial Di↵erential Equa-145

tion (PDE) of the following form:

Z

 

F(u)�dx = 0 !

X

el2 h

R
N(uN) = 0, (2)

where � is the test function, uN represents the discrete solution of the PDE,

N is the degree of the polynomial used to represent the solution inside each

spectral element el 2  h and R
N represents the discrete spatial partial dif-

ferential operator. Henceforth, we assume that the solution is converged in150

time such that ut = 0 and consequently R
N(uN) is independent of time.

The DGSEM allows a straightforward separation between interior and

inter-element contributions. Following [42] we define the isolated discrete

partial di↵erential operator

R̂
N(uN) = R

N
@el(u

N) +R
N
el (u

N), (3)
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where R
N
@el(u) and R

N
el (u) represent the inter-element (surface terms) and155

interior (volume terms) contributions respectively, and the discrete partial

di↵erential operator

R
N(uN) = R

N
@el

⇤
(uN) +R

N
el (u

N) = 0, (4)

where RN
@el

⇤
(u) represents the inter-element (surface terms) after solving the

Riemann problem. From a practical point of view, R̂N(uN) can be computed

by evaluating R
N(uN) without solving the Riemann problem arising at ele-160

ment edge discontinuities and leading to the surface terms, which means that

each of the elements is isolated from its neighbors (i.e. minimising convective

and di↵usive e↵ects).

The discretisation error, ✏N , and the truncation error, ⌧N , corresponding

to (2) are defined as165

✏N = u� uN ,

⌧N = R
N(u),

(5)

where uN denotes the discrete numerical solution and u its continuous coun-

terpart. Furthermore from (3) Rubio et al. [42] defined the isolated trunca-

tion error as

⌧̂N = R̂
N(u). (6)

To apply the discrete operator, RN , or the isolated discrete operator, R̂N ,
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to a continuous solution, a simple injection to the quadrature nodes is per-170

formed.

It should be noticed that the definitions of the three errors (5) and (6)

include the exact solution of the problem, u, which is generally unknown.

In the next section, we introduce error estimation methods that are subse-

quently used as adaptation refinement criteria.175

3. Adaptation Process

In this section, we firstly detail the adaptation criteria for p-adaptation

to secondly explain the algorithm used to refine/coarse the polynomial space.

3.1. Refinement criteria

One of the main di�culties when dealing with local mesh adaptation is180

to locate the flow regions that when adapted will improve the numerical

solution. On the one hand, a good refinement criteria will generate a mesh

with minimum error for a given number of degrees of freedom. On the other

hand, the computational cost for the computing the refinement criteria has

to be small such that the adaptation process is e�cient.185

This paper targets the point showing the evolution of output function-

als under adaptation algorithms based on three di↵erent refinement criteria.

Each of the criteria will be based in the estimation of the errors defined in

the previous section, i.e. discretisation error, truncation error and isolated

truncation error.190

11



As stated in the introduction, the discretisation error and the trunca-

tion error are related through the Discretisation Error Transport Equation

(DETE) [39] such that the truncation error acts as a local source for the

discretisation error. Consequently, the truncation error is expected to be

a better sensor for mesh adaptation. Besides the isolated truncation error195

(see previous section) only considers the interior element contributions of the

truncation error [42] and, as a result, is expected to perform even better than

the truncation error.

To estimate the error introduced in the previous section, we use a pos-

teriori estimations. A posteriori methods require the computation of a con-200

verged approximate solution to compute the estimation of the error. It will

be shown that this requirement can be relaxed in the truncation error and

isolated truncation error estimations since non time-converged solution may

be used. However, for the sake of simplicity but without loss of generality, we

assume only time converged solutions. The approximate solution is obtained205

by solving the same problem with a higher polynomial order on each ele-

ment. Then, the error can be estimated for all polynomial orders lower than

specified, e.g. ⌧NP is the truncation error estimation using a fine simulation

with order P to estimate the coarse error with polynomial order N , when

N < P .210

Discretisation error based. The discretisation error based refinement cri-

terion was introduced by Mavriplis [30] and more recently used by Barosan

et al. [3]. This criterion necessitates of the evaluation and extrapolation of
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the spectrum of a discretisation based on Legendre polynomials (i.e. modal

basis functions). The approximate solution of order P in each element can215

be written as

uP =
PX

n=0

anLn, (7)

where Ln is the Legendre polynomial of degree n and an is the spectral

coe�cient (i.e. modal energy). The estimation of the discretisation error for

the Legendre polynomial approximation reads

✏NP =

✓
a2N

1
2(2N + 1)

+

Z 1

N+1

[a(n)]2

1
2(2N + 1)

◆
, (8)

where function a(n) is a least squares best fit of the last six points of the220

spectrum. To perform the least squares best fit an exponential decay, a(n) ⇠

ce��n, is assumed. Note that this method estimates the solution error and it

is a measure of the discretisation error, but may also viewed as an estimator

for the smoothness (i.e. determines the order polynomial necessary) and

hence as a “feature based adaptation” method.225

Let us note that to apply this method to our nodal DGSEM approach, we

need to project our nodal basis into a modal space constituted by Legendre

polynomials (e.g. using a generalised Vandermonde matrix [25]). This is an

element-wise operation with a reduced computational cost.

Truncation error based. The truncation error based refinement criterion230

is based on the ⌧ -estimation method. The expressions to estimate the trun-
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cation error were first deduced by Fraysse et al. [16] for finite volume schemes

and subsequently extended to spectral Chebyshev collocation method and to

DGSEM by Rubio et al. [41, 42]. This estimation method is quasi-a priori

as it uses a non fully time-converged solution, ũP , to perform the estimation.235

For non-converged solutions and non-linear partial di↵erential operators the

approximated truncation error becomes

⌧NP ⌘ R
N
�
ũP

�
� ĪNP R

P
�
ũP

�
, (9)

where ĪNP is the transfer operator of the residual from order P to N , that

defined as

ĪNP ⌘
@RN

@uN

����
uN

INP

✓
@RP

@uP

����
uP

◆�1

. (10)

The di↵erence between the exact and the approximate truncation error reads240

⌧NP = ⌧N �
@RN

@uN

����
uN

✏P +O
�
✏P
�2

+O
�
✏Pit
�2

, (11)

where ✏Pit represents the iteration error, i.e. the di↵erence between the con-

verged and the non-converged approximate solutions. If the second term in

the RHS of (9) is not computed (notice the high cost of its computation), the

di↵erence between the exact and the approximate truncation error reads:245

⌧NP = ⌧N �
@RN

@uN

����
uN

�
✏P + ✏Pit

�
+O

�
✏P
�2

+O
�
✏Pit
�2

. (12)
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A proof of (11) is included in the Appendix and more information can be

found in [42, 40]. It should be noticed that to apply the discrete operator,RN ,

to a solution of di↵erent order, uP , it is necessary to evaluate this solution

at the Gauss-Legendre nodes of order N , i.e. to interpolate to a coarse grid.

For compactness, the notation in this work omits the interpolant such that250

R
NuP = R

NINP uP .

Isolated truncation error based. The isolated truncation error based

refinement criterion is also based on the ⌧ -estimation method. Rubio et al.

[42] shown that for non-converged solutions and non-linear partial di↵erential

operators, the approximated isolated truncation error becomes255

⌧̂NP ⌘ R̂
N
�
ũP

�
� ÎNP R

P
�
ũP

�
. (13)

Besides ÎNP , the transfer operator of the residual from order P to N for the

isolated truncation error is,

ÎNP ⌘
@R̂N

@uN

�����
ũP

INP

✓
@RP

@uP

����
ũP

◆�1

(14)

and the di↵erence between the exact and the approximate truncation error

reads

⌧̂NP = ⌧̂N �
@R̂N

@uN

�����
u

✏P +O
�
✏P
�2

+O
�
✏Pit
�2

. (15)

If the second term in the RHS of (13) is not computed (notice the high cost260

of its computation), the di↵erence between the exact and the approximate
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truncation error reads:

⌧̂NP = ⌧̂N �
@R̂N

@uN

�����
u

�
✏P + ✏Pit

�
+O

�
✏P
�2

+O
�
✏Pit
�2

. (16)

The interested reader is referred to the Appendix of this document for a

proof of (15). Additional information can be found in [42, 40]. From a

practical point of view, R̂N(uN) can be computed by evaluating R
N(uN)265

without solving the Riemann problem for the surface terms, which means

that each of the elements is isolated from its neighbors. For a more detailed

explanation, the reader is referred to [40].

Remarks on the accuracy and computational cost of the estima-

tions.270

• Accuracy:

The three error estimators described in this section, (8), (9) and (13),

are accurate only if the asymptotic rate of convergence has been reached.

In particular, it can be explicitly seen in (11) and (15) that the discreti-

sation error in the fine mesh (polynomial order P ), acts as a source of275

inaccuracy in the estimation. A similar result might be obtained for

the discretisation error estimation. Therefore it is assumed that the

discretisation error in the fine mesh, ✏P , is lower than the error being

approximated ✏N , ⌧N or ⌧̂N , which is true for spectral methods in the

asymptotic rate of convergence. If the asymptotic rate of convergence280

has not been reached, the sensors will indicate where the discretisation
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error in the fine mesh, ✏P , is high. This analysis also explains why the

coarse to fine estimation (P < N) results in inaccurate estimations. In

that case, ✏P , the error made in the estimation will be usually higher

than quantity being estimated ✏N , ⌧N or ⌧̂N .285

As far as the iteration error ✏Pit is concerned, it has a first order or

second order e↵ect depending if the second term in the RHS of (9) and

(13) is computed or if it is not, respectively. However, this source of

inaccuracy can be reduced up to roundo↵ by converging the solution

in the fine mesh ũP
! uP so ✏Pit ! 0.290

• Computational cost:

It was previously stated that the estimation methods considered are

a posteriori. That means that a solution, uP should be available to

perform the estimation. It is shown in [42] that the error estimation

cost is negligible compared to the cost of converging the solution, uP .295

Although the aim of this paper is to compare the e�ciency of the

sensors to locate the zones that require refinement, some methods to

reduce the computational cost of the a posteriori approach are reviewed

here.

A “correction term” is introduced in (9) and (13) that permits the use300

of a non converged solution ũP . This is also known as quasi-a priori

⌧ -estimation. Although the computation of the extra term involves

solving a linear system of equations of dimension the number of DoF
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of the problem, it is shown in [42] that it results in an overall reduction

of the cost of the method. It should be noticed that the adaptation305

algorithms that make use of this “correction term” are optimised such

that the linear system of equations is only solved once, even if the errors

are estimated in several coarse (with lower polynomial order, N < P )

meshes [26]. Finally, the computational cost of the truncation error

estimation can be further reduced by extrapolating the estimations310

for polynomial orders higher than P . This enables the use of a lower

polynomial order for the fine mesh and it is accurate if the asymptotic

rate of convergence has been reached. For a more detailed analysis

of the cost reduction strategies, the interested reader is referred to

authors’ paper [26].315

In summary, a priori and a posteriori methods provide very similar estimates

in terms of accuracy whilst reductions in computational cost are noticeable

for a priori methods. In this work we focus on accuracy and compare the

required number of degrees of freedom for each method. Henceforth, we do

not consider the a priori approach (since it provides very similar results to320

the a posteriori) and do not compare computational costs.

3.2. Adaptation Algorithms

The common philosophy of all the algorithms presented is to equidis-

tribute the error selected as refinement criteria, i.e. discretisation error,

truncation error and isolated truncation error. All start with the computa-325
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tion of a solution with a high order polynomial P to then use this solution

to compute the criteria in all the coarser meshes N < P . The elements in

the adapted mesh use the lowest possible polynomial order that satisfies the

required refinement criteria. Finally the high order polynomial solution P is

interpolated into the new mesh and the simulation restarted.330

In what follows, we first detail the discretisation error based estimation. Sub-

sequently, the isotropic and anisotropic approaches for the truncation error

and isolated truncation error based are introduced.

Discretisation Error Adaptation Algorithm. The discretisation error

based adaptation algorithm uses the estimate (8) that is based on the spec-335

tral coe�cients. The complete algorithm is detailed in Algorithm (1) and

is performed for each mesh element. In part A, the simulation is converged

until steady state and the coe�cients ak, and ✏NP estimated. In part B, a new

polynomial order is chosen such that the discretisation error estimation ✏NP

is below the desired threshold ✏required. Having selected the polynomial that340

fulfills the threshold, the mesh is adapted by refining or coarsening the nec-

essary element. In part C, the solution is interpolated into the new adapted

mesh and the simulation is restarted and continued until convergence.

Isotropic Truncation / Isolated Truncation Error Adaptation Al-

gorithm. The isotropic truncation error based adaptation algorithm relies345

on the estimate (9) that is based on the ⌧ -estimation method. The complete

algorithm is detailed in Algorithm 2. In part A, the simulation is converged
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Part A - Estimation
Integrate in time on the fine mesh P until steady state;
for N < P do

Calculate the coe�cient ak;
Estimate ✏NP ;

end
Part B - Adaptation
for N < P do

if ✏NP  ✏required then
P new
x = N ;

P new
y = N ;

exit;
end

end
Part C - Simulation
Interpolate converged solution to new adapted mesh;
Continue the simulation;

Algorithm 1: Discretisation error (feature based) algorithm on each mesh
element

until steady state and the truncation error is estimated for all coarser meshes

N < P . In part B, the new polynomial order is selected. If the estimation

fulfills the requirement k⌧ (N,N)
P kL1 for a certain polynomial order, then this350

polynomial order is set for the new adapted mesh. In part C, the new solution

is interpolated into the new mesh and the simulation restarted.

The algorithm can be modified to use the isolated truncation error by

using (13) instead of (9).

Anisotropic Truncation / Isolated Truncation Error Adaptation355

Algorithm. The anisotropic truncation error based adaptation algorithm

uses the estimate (9) that is based on the ⌧ -estimation method. The com-
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Part A - Estimation
Integrate in time on the fine mesh P until steady state;
for N < P do

Estimate the truncation error ⌧ (N,N)
P ;

end
Part B - Adaptation
for N < P do

if k⌧ (N,N)
P kL1  required then

P new
x = P new

y = N ;
end

end
Part C - Simulation
Interpolate converged solution to new adapted mesh;
Continue the simulation;

Algorithm 2: Isotropic ⌧ -estimation adaptation

plete procedure is detailed in Algorithm 3. In part A, the simulation is

converged until steady state and the truncation error is estimated for all

coarser meshes (Nx < P,Ny < P ). In part B, the new polynomial order is360

chosen such that the error threshold is satisfied using a minimum number

of local degrees of freedom (LDoF), for each mesh element. In part C, the

solution is interpolated into the new mesh and the simulation restarted.

The algorithm can be used for the isolated truncation error by using (13)

instead of (9).365

To clarify the adaptation procedure, we introduce an example for purely

illustrative purposes of an isolated element mesh in Figure 1. Selecting P = 8

as the reference, we calculate the truncation error ⌧ (Nx,Ny)
P using lower polyno-

mials (Nx = 1, ..., 7 Ny = 1, ..., 7) in each direction (showed in contour colors

in the left figure). In this case, a required truncation error of required = 10�2
370
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Part A - Estimation
Integrate in time on the fine mesh P until steady state;
for Nx < P do

for Ny < P do

Estimate the truncation error ⌧ (Nx,Ny)
P ;

end
end
Part B - Adaptation
LDoFref = (P + 1)(P + 1);
for Nx < P do

for Ny < P do
DoFnew = (Nx + 1)(Ny + 1)

if k⌧ (Nx,Ny)
P kL1  required and DoFnew  LDoFref then

P new
x = Nx;

P new
y = Ny;

LDoFref = (P new
x + 1)(P new

y + 1);
end

end
end
Part C - Simulation
Interpolate converged solution to new adapted mesh;
Continue the simulation;

Algorithm 3: Anisotropic ⌧ -estimation adaptation for each mesh element

cannot be achieved by polynomial combinations of low order (eg. red, yellow

and light green areas). However, the error is below the required threshold in

the upper right (blue) area.

Having identified the combinations (Nx, Ny) that fulfill the threshold crite-

rion, the combination that requires the lowest number of LDoF is retained.375

Figure 1 (right) shows the number of LDoF for each combination. It can be

seen that Nx = 4 and Ny = 5 guarantees the required threshold error, whilst

minimising the local number of degrees of freedom to LDoF=30.
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Figure 1: Truncation error estimation (in log scale) for di↵erent combinations of polyno-
mial orders (left) and corresponding LDoF (right).

4. Numerical Results

The presented adaptation algorithms are applied to two test cases. First380

we analyse results for an inviscid NACA0012 airfoil (i.e. Euler equations),

followed by a Navier-Stokes flat plate boundary layer simulation.

4.1. Inviscid NACA0012 airfoil

A NACA0012 airfoil is simulated at an angle of attack ↵ = 0� using the

Euler equations and a Mach number M = 0.3. We set slip wall boundary385

conditions at all airfoil surfaces and start with meshes that are not symmetric,

see Figure 2. For unsymmetric meshes, the lift coe�cient is not necessarily

zero, but since we are considering a symmetric airfoil at zero angle of attack,

the numerical lift should tend towards zero as the mesh is refined. This test

case determines the advantages and limitations of the various adaptation390
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strategies proposed. The NACA case is converged in time until the maximum

norm of the residual equation fall below 10�8 using a uniform polynomial

order P=8.

Figure 2: Initial NACA0012 mesh used for the adaptation.

First, Figure 3 shows the adapted meshes (nodal Legendre-Gauss points)

obtained when using the discretisation error based adaptation approach (or395

“feature based”) with thresholds 10�3 (top) and 10�4 (bottom). It can be

seen that the discretisation error provides a very fine mesh at the leading

edge whilst maintaining a relatively coarse resolution at the trailing edge.

Second, the adapted meshes resulting from using the truncation error

adaptations are shown in Figure 4. The left figure shows the adaptation re-400

sult when using the truncation error while the right figures show the results
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Figure 3: Adapted meshes (polynomial distributions) using the discretisation error (“fea-
ture based”) strategy with thresholds 10�2 (top) and 10�3 (bottom). The computation
Legendre-Gauss nodes are shown in each element.

based on the isolated truncation error for a threshold 10�4 (top) and 10�5

(bottom). It can be seen that both truncation error based adaptation strate-

gies (non-isolated and isolated) provide meshes with a high concentration of

degrees of freedom near the leading and the trailing edge. In Figure 5 the405

three refinement criteria are compared using thresholds that provide similar

numbers of DoF in the adapted meshes. It can be noticed that the discreti-

sation error based adaptation provides a coarser mesh near the trailing edge

whilst similar meshes are obtained near the leading edge.
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Figure 4: Adapted meshes (polynomial distributions) based on truncation error, TE (left)
and isolated truncation error, ITE (right) for thresholds 10�4 (top) and 10�5 (bottom).
The computation Legendre-Gauss nodes are shown in each element.

Figure 6 summarise lift and drag coe�cients against the global number410

of degrees of freedom (DoF) using the various adaptation strategies. The

adaptation thresholds are maintained for all methods to 10�2, 10�3, 10�4

and 10�5. We also include uniformly adapted meshes for reference. The

figure shows convergence for the lift (left) and drag (right) in all cases once

the asymptotic behaviour is reached (i.e. small enough required thresholds).415

Firstly, comparing the discretisation and truncation error adaptations

show that the truncation error requires fewer number of DoF to attain sim-

ilar accuracy in the selected output functionals. Secondly, comparing trun-

cation error to isolated truncation error adaptation shows that the isolated
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version requires fewer DoF that the non-isolated version. Thirdly, compar-420

ing isotropic to anisotropic adaptation strategies (for both truncation and

isolated truncation) shows a clear reduction of overall number of degrees of

freedom to attain similar levels of accuracy.

In summary, for a similar level of accuracy, i.e.
���C

Adapted
D �CP=8

D

CP=8
D

���< 1, the

following results are obtained. For the discretisation error based adapta-425

tion a 48% reduction of DoF compared to the uniform refinement. For the

truncation error based adaptation a 70% reduction of DoF compared to the

uniform refinement and a 10% reduction of the anisotropic truncation error

compared to the isotropic approach. For the isolated truncation error based

adaptation a 84% reduction of DoF compared to the uniform refinement and430

a 16% reduction of the anisotropic isolated truncation error compared to the

isotropic approach.

This test case shows that the anisotropic isolated truncation error criteria

outperforms the other criteria considered for adaptation.

Finally, according to Wang et al. [50], who summarised results from435

various high order solvers for a NACA0012 at ↵ = 2�, the high-order asymp-

totic convergence cannot be attained when using uniform refinement at the

trailing edge of the airfoil. Indeed, the airfoil trailing edge results in a flow

discontinuity that limits the solution smoothness and hence the exponential

convergence when enriching the polynomial solution space. The truncation440

error has been proven to scale well for cases in the asymptotic range (see

Rubio et al. [42]) while limitations have been observed in problems with sin-
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gularities. In cases with discontinuities, h-refinement is preferred to enhance

the solution accuracy. Nonetheless, the adaptation strategies based on the

truncation errors have shown to perform well even for this challenging case.445

4.2. Flat plate boundary layer

This section compares all presented adaptation strategies for a viscous

Navier-Stokes simulation. We select a flat plate boundary layer case at

Reynolds number per unit length Re=500 and Mach number M=0.2. The

length of the plate is Lx = 6 and the leading edge singularity is included450

in the simulation (and is located at the point (x, y) = (4, 0)). The finest

simulation used a uniform polynomial order P = 8 and was converged until

the equation residual fell below 10�10.

Using the discretisation error based adaptation method results in the

meshes shown in Figure 7. For this criterion the thresholds 10�1, 10�2, 10�3
455

are depicted. Besides a high refinement around the singularity, which is

common to all the schemes, it can be seen that this approach also refines the

far field.

Applying the adaptation based on the truncation error and the isolated

truncation error results in the meshes depicted in Figure 8. Here, we use460

the same thresholds as before (10�1, 10�2, 10�3) for the adaptation. The

truncation error shows a higher refinement around the singularity in com-

parison to the isolated truncation error. This leads to fewer overall number

of DoF for the isolated truncation error case than for the truncation error
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when the same threshold is considered. Both truncation error based adap-465

tations provide meshes with fewer DoF than provided by the discretisation

error (feature based) approach is used.

Finally, we depict in Figure 9 the drag coe�cient CD provided by the

adapted meshes and compare the results to the solutions using uniform poly-

nomials. Let us note that the maximum polynomial order for all adapted470

meshes is set to P new = 8, such that this can be considered as the optimal

solution.

The approaches based on the truncation error achieve similar drag coe�-

cients with fewer global number of DoF than when using uniform adaptation

or the discretisation error (“feature based”) strategy. When using the dis-475

cretisation error approach, the refinement in the far field (see Figure 7) results

in a large number of DoF that are not required to improve the accuracy in

the drag coe�cient, which leads to an oversized mesh. This confirms that

the truncation error acts as a better criteria to identify regions for refinement

than the discretisation error. Indeed, the discretisation error method refines480

elements in the far field that have limited influence on the drag coe�cient.

The anisotropic character of the boundary layer solution provides anisotropic

meshes that significantly reduce the number of DoF whilst maintaining good

a level of accuracy.

In summary, for a similar level of accuracy, i.e.
���C

Adapted
D �CP=8

D

CP=8
D

���< 0.001,485

the following results are obtained. For the discretisation error based adapta-

tion a 25% reduction of DoF compared to the uniform refinement. For the
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truncation error based adaptation a 84% reduction of DoF compared to the

uniform refinement and a 27% reduction of the anisotropic truncation error

compared to the isotropic approach. For the isolated truncation error based490

adaptation a 85% reduction of DoF compared to the uniform refinement and

a 16% reduction of the anisotropic isolated truncation error compared to the

isotropic approach.

The previous boundary layer results used a mesh with elements aligned

with the flow direction, which lead to clearly dominant unidirectional adap-495

tations. To further assess the advantages and limitations of the anisotropic

approaches, a 45 degrees tilted mesh is selected, see Figure 10 (top shows the

anisotropic adaptation for the truncation error and bottom for the isolated

truncation error). Tilting the entire mesh by 45 degrees results in a mesh

with many DoFs. In particular, the tilted isotropic adapted meshes have500

29% and 40% extra degrees of freedom compared to their aligned with the

flow isotropic adapted counterparts. However, the tilted anisotropic adapted

meshes have 33% and 48% extra degrees of freedom compared to their aligned

with the flow anisotropic adapted counterparts. This result means that the

alignment worsens more the anisotropic refinement than to the isotropic re-505

finement, as expected. It should be noticed that, although the results are

not as good as for the aligned with the flow mesh, the anisotropic adaption

is still preserved when the mesh is not aligned with the flow.
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Figure 5: Adapted meshes (polynomial distributions) based on di↵erent refinement crite-
ria with comparable final number of DoF. Top is anisotropic truncation error based (10�4

threshold, 20480 DoF). Middle is anisotropic isolated truncation error based (10�5 thresh-
old, 21444 DoF). Bottom is isotropic discretisation error based (10�2 threshold, 19096
DoF). The computation Legendre-Gauss nodes are shown in each element.31



Figure 6: Lift and drag coe�cients (pressure components only) for NACA0012 based on
di↵erent adaptation algorithms. Uniform refinement, Discretisation error (DE), Trunca-
tion error (TE) and Isolated Truncation error (ITE) strategies are shown.
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Figure 7: Adapted meshes (polynomial distributions) based on discretisation error ap-
proach for the, adaptation criteria 10�1 (top), 10�2 (middle), 10�3 (bottom). The com-
putation Legendre-Gauss nodes are shown in each element. The computation Legendre-
Gauss nodes are shown in each element. The computation Legendre-Gauss nodes are
shown in each element.
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Figure 8: Adapted meshes (polynomial distributions) based on the truncation error (left)
and the isolated truncation error (right), adaptation criteria 10�1 (top), 10�2 (middle),
10�3 (bottom). The computation Legendre-Gauss nodes are shown in each element.
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Figure 9: Drag coe�cient CD (including pressure and viscous components) and DoF
based on di↵erent adaptation strategies. Uniform refinement, Discretisation error (DE),
Truncation error (TE) and Isolated Truncation error (ITE) strategies are shown.
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Figure 10: Adaptation for the boundary layer simulation for a threshold of 10�2 and Re
= 100. Top: Truncation Error (TE) based Bottom: Isolated Truncation Error (ITE)
based.
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5. Conclusions510

This work presents comparisons of local p-adaptation strategies for high

order discontinuous Galerkin methods. The regions for adaptation (refine-

ment or coarsening) are selected via three di↵erent procedures. A discreti-

sation error sensor, also called “feature based”, that quantifies the decay of

the energy associated to the di↵erent modes is compared to two variants of515

truncation error approaches. The first truncation error approach relies on

the estimation of the truncation error based on all terms appearing in the

discrete discontinuous Galerkin variational formulation, whilst the second

(the isolated truncation error) only takes into account volume terms.

These adaptation strategies are compared for an inviscid symmetric NACA0012520

airfoil and a viscous flat plate boundary layer. The results show that trunca-

tion error based strategies require fewer degrees of freedom (approximately

80% less than uniform refinement), to attain similar accuracy, than the dis-

cretisation error approach (approximately 40% less than uniform refinement).

Furthermore, it is shown that flow regions with high discretisation errors525

do not necessarily require high resolution to increases the overall accuracy

(defined in terms of output functionals such as lift and drag). This suggests

that refinement in these areas may be un-necessary. The truncation error

is identified as a better criteria for mesh adaptation to improve the overall

accuracy of certain output values e.g. lift and drag.530

Finally, anisotropic adaptations based on the truncation error outperform

isotropic versions (approximately 15% fewer degrees of freedom than isotropic
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versions) specially when considering flows with preferential directions such

as boundary layers.

Appendix535

Proof of the quasi-a priori ⌧ -estimation formula, (9)

Substituting the definitions of the iteration error, ũP = uP
� ✏Pit , and the

discretization error, uP = u � ✏P , onto the estimate of the truncation error

(9) and, using Taylor series, we obtain

⌧NP = R
N (u)�

@RN

@uN

����
uN

✏P �
@RN

@uN

����
uN

✏Pit � ĪNP R
P
�
ũP

�
+O

�
✏P
�2
+O

�
✏Pit
�2

,

(17)

or equivalently540

⌧NP = ⌧N�
@RN

@uN

����
uN

✏P�
@RN

@uN

����
uN

✏Pit�ĪNP R
P
�
ũP

�
+O

�
✏P
�2
+O

�
✏Pit
�2

. (18)

Again, using Taylor series and the definition of the iteration error,

⌧NP = ⌧N �
@RN

@uN

����
uN

✏P �
@RN

@uN

����
uN

✏Pit + ĪNP
@RP

@uP

����
uP

✏Pit +O
�
✏P
�2

+O
�
✏Pit
�2

.

(19)

Taking into account that, by definition u� ũP = ✏P + ✏Pit , it can be seen that

for ĪNP = @RN

@uN

���
ũP

INP

⇣
@RP

@uP

���
ũP

⌘�1

we have

⌧NP = ⌧N �
@RN

@uN

����
uN

✏P +O
�
✏P
�2

+O
�
✏Pit
�2

. (20)

38



Quasi-a priori ⌧ -estimation formula for the isolated truncation error, (13),

can be proved following the same procedure.545
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