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Abstract In this paper we show how to accurately perform a quasi-a priori estimation of the truncation
error of steady-state solutions computed by a discontinuous Galerkin spectral element method (DGSEM).
We estimate the spatial truncation error using the ⌧ -estimation procedure. While most works in the lit-
erature rely on fully time-converged solutions on grids with di↵erent spacing to perform the estimation,
we use non time-converged solutions on one grid with di↵erent polynomial orders. The quasi-a priori ap-
proach estimates the error while the residual of the time-iterative method is not negligible. Furthermore,
the method permits one to decouple the surface and the volume contributions of the truncation error, and
provides information about the anisotropy of the solution as well as its rate of convergence in polynomial
order. First, we focus on the analysis of one dimensional scalar conservation laws to examine the accuracy of
the estimate. Then, we extend the analysis to two dimensional problems. We demonstrate that this quasi-a
priori approach yields a spectrally accurate estimate of the truncation error.

Keywords discontinuous Galerkin · spectral method · ⌧ -estimation · truncation error · uncertainty
estimator

Mathematics Subject Classification (2000) 65M60 · 65M70 · 65M15 · 65M50

1 Introduction

Discontinuous Galerkin (DG) methods were first introduced by Reed and Hill [37] to solve the neutron trans-
port equation. They have emerged in recent years as an e�cient and flexible method to solve convection dom-
inated problems [11, 12]. The discontinuous Galerkin Spectral Element Method (DGSEM) [4, 24, 27, 28, 31]
can be seen as a Spectral Element Method (SEM) [7] where the continuity requirement across element
boundaries is relaxed, or as a high order Finite Volume (FV) [15] method with a compact stencil. As in
a usual FV method, the Riemann Solver [46] stabilizes the solution. However in this case higher accuracy
may be achieved by increasing the orde r of the approximation, N , as well as by reducing the size of the
elements, h. The DGSEM is used in a wide range of applications such as compressible flows [5,35], electro-
magnetics and optics [1, 13, 14, 29], heat transfer [32], aeroacoustics [9, 36, 42, 43], meteorology [22, 23, 38],
and geophysics [16, 17].

This work estimates numerical errors in the solutions of the DGSEM. Error estimates have been ex-
tensively used in numerical simulation [40] as they provide valuable information about the quality of the
solution [33,39], and are an integral part of every mesh adaptation algorithm [30,49]. The largest and most
di�cult error to estimate is the spatial discretization error [34], which is the di↵erence between the exact
and the numerical solution. Moreover, the spatial truncation error is defined as the di↵erence between the
discrete partial di↵erential operator and the exact partial di↵erential operator both applied to the steady,
exact solution of the problem, as follows
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⌧N = R
N (u)�R (u) . (1.1)

Both the discretization and the truncation error are related through the Discretization Error Transport
Equation (DETE) [40], where the truncation error acts as a local source for the discretization error. This
relationship makes the truncation error especially well suited to act as a sensor for a mesh adaptation
algorithm [44], [10], showing the regions where the mesh should be adapted to reduce the error. Moreover,
an accurate estimate of the truncation error also allows for an increase in the order of the scheme via a
procedure known as ⌧ -extrapolation [19].

The truncation error may be estimated by means of the ⌧ -estimation method of Brandt [6]. This method
relies on the evaluation of the discrete PDE operator on a hierarchy (fine to coarse) of meshes. The original
works of Berger [2], Bernert [3] and Fulton [20] posed the fundamentals of the method and studied the
conditions on the restriction operators for transfers from fine to coarse and coarse to fine grids, mainly for
finite di↵erence uniform meshes. Syrakos and Goulas [45] successfully implemented ⌧ -estimation for finite
volume (FV) discretizations of the incompressible Navier-Stokes equations. Fraysse et al. [18] have extended
those previous analyses to FV discretizations on any kind of meshes, with an interesting extension to non-
converged solutions [19]. Recently, Rubio et al. [41] extended this methodology to high-order methods
using a spectral collocation method. It was shown in [41] that some of the fundamental assumptions about
error tendency well established for low-order methods are no longer valid in high-order schemes, making
necessary a complete revision of the error behavior before redefining the algorithm. To facilitate this task,
pure spectral Chebyshev collocation schemes were considered in that analysis, limiting their application to
simple geometries.

In this paper, we extend the application of the ⌧ -estimation method to the DGSEM. Weak formulation,
multidomain discretization and the discontinuous formulation will introduce additional features to the
accurate definition and estimation of the error. From a practical point of view, we consider the development
of a method to perform a quasi-a priori estimation of the truncation error using the quasi-a priori idea
exposed by Fraysse et al., namely by employing a solution where the di↵erence from steady state is not
negligible. Iterative errors appear in standard iterative procedures used to obtain the solution of systems of
Partial Di↵erential Equations (PDE), e.g. Navier Stokes equations, like Richardson iteration or Newton’s
method. The solution is considered converged or steady when the iterative errors are below a certain
threshold, normally close to machine roundo↵. Obtaining the truncation error in advance, or before the
solution is totally converged, would give computational savings while providing valuable information to
perform adaptation in advance.

The rest of the paper is organized as follows: in Sect. 2 and for completeness, the mathematical formu-
lation of the DGSEM and the definition of the errors are revisited. In Sect. 3, the truncation error in the
DGSEM is analyzed. This analysis results in the separation of the truncation error into volume and surface
contributions, which is a particularity of the extension to the DGSEM and could be interesting for applica-
tions of mesh adaptation algorithms. Furthermore, the quasi-a priori ⌧ -estimation method is extended to
the DGSEM. This extension includes the decoupling between the volume and the surface contributions to
the error. In Sect. 4, three algorithms to e�ciently estimate the truncation error are developed. The algo-
rithms permit the extraction of information about the anisotropy and rate of convergence of the problem.
Furthermore, the cost of the algorithms is analyzed. Finally, in Sect. 5, numerical experiments are carried
out to support the estimation procedure. These experiments include one and two dimensional examples of
the linear and nonlinear advection equation.

2 Mathematical foundations

In Sect. 2.1 we review the mathematical fundamentals of the DGSEM. Then, in Sect. 2.2, we define the
errors that play a role in the definition of the truncation error or in its estimation by means of ⌧ -estimation.

2.1 DGSEM

Discontinuous Galerkin (DG) methods were originally developed to solve conservation laws,

ut +r · f = 0. (2.1)
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The DGSEM [4,28] solves (2.1) in general three-dimensional geometries. In this paper, the approximation
is restricted to at most two dimensional problems. The region under consideration is divided into non-
overlapping quadrilateral elements, denoted by ⌦k. Each element in the subdivided domain is mapped
individually onto the unit square by an isoparametric transformation. The mapping of each element onto
the unit square is described by x = r (⇠, ⌘). Inside each element the solution is approximated by a series
of orthogonal polynomials of degree N (PN ) [7]. A basis for this space is the set of Lagrange interpolating
polynomials, `j (⇠) , j = 0, . . . , N , which can be written as

`j (⇠) =
NY

i=0
i 6=j

(⇠ � ⇠i)
(⇠j � ⇠i)

. (2.2)

The nodal points, ⇠i, which will become the grid points of the scheme, are chosen to be the nodes
of the Legendre-Gauss quadrature. Multiple space dimensions are spanned by tensor products of these
polynomials, so that we write PN,N = PN ⇥ PN . For simplicity of exposition only, we will take the same
polynomial order in each direction, though this is not required in practice. As a matter of fact, we will
use di↵erent polynomial orders in each direction in other sections of this paper. Finally, we simplify the
derivation by considering that no mapping is done, i.e. the elements are already reference elements. For a
complete derivation see [28].

In two space dimensions, the spectral element method approximates the solution and the fluxes element-
by-element by the polynomials

uN (⇠, ⌘) =
NX

µ,⌫=0

uN
µ,⌫�µ,⌫ , fN (⇠, ⌘) =

NX

µ,⌫=0

fNµ,⌫�µ,⌫ , (2.3)

where �µ,⌫ = `µ (⇠) `⌫ (⌘). The nodal (grid point) values of the fluxes are computed from the grid point
values of the solution, i.e. fNµ,⌫ = f

�
uN
µ,⌫

�
. Note that uN

µ,⌫ is not the nodal value of u (⇠, ⌘), but the result
of solving the discretized PDE. Therefore we distinguish

uN (⇠, ⌘) =
NX

µ,⌫=0

uN
µ,⌫�µ,⌫ , and INu (⇠, ⌘) =

NX

µ,⌫=0

uµ,⌫�µ,⌫ . (2.4)

The former is the solution of the discretized PDE while the latter is the spectral interpolation of the exact
solution of the PDE. The same applies to the fluxes

fN (⇠, ⌘) =
NX

µ,⌫=0

fNµ,⌫�µ,⌫ , and IN f (⇠, ⌘) =
NX

µ,⌫=0

fµ,⌫�µ,⌫ . (2.5)

As the method is Galerkin, the residual is required to be orthogonal to the approximation space locally
within an element. Thus,

⇣
uN
t ,�i,j

⌘
+

⇣
r · fN ,�i,j

⌘
= 0 i, j = 0, 1, . . . , N (2.6)

where (u, v) =
R 1
�1 uvdx represents the usual L2 inner product. Integration of (2.6) by parts gives

⇣
uN
t ,�i,j

⌘
+

X

e2@⌦

Z

e
fN · n�i,jdS �

⇣
fN ,r�i,j

⌘
= 0 i, j = 0, 1, . . . , N, (2.7)

where @⌦ represents the boundary of the element and the summation is extended over the edges e of @⌦.
To solve these equations, the integrals are replaced by Legendre-Gauss quadratures, which in two di-

mensional rectangular domains have the property

Z 1

�1

Z 1

�1
v (⇠, ⌘) d⇠d⌘ =

NX

i,j=0

v (⇠i, ⌘j)wiwj 8v 2 P2N+1,2N+1. (2.8)

This replacement is exact provided that the element sides are straight. If the sides are curved a quadrature
error is incurred in the evaluation of

�
uN
t ,�i,j

�
and in the evaluation of the fluxes. Finally, substituting
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(2.3) into (2.7), taking into account (2.8) and the discrete orthogonality of the Lagrange interpolating
polynomials yields [7]

uN
ti,jwiwj +

X

e2@⌦

Z N

e
fN · n�i,jdS �

NX

µ,⌫=0

fNµ,⌫ ·r�i,jwµw⌫ = 0 i, j = 0, 1, . . . , N. (2.9)

In (2.9),
P

e2@⌦

RN
e fN ·n�i,jdS is the sum of all the integrals over all the edges of the element approximated

by quadrature. The boundary term can be written as follows,

X

e2@⌦

Z N

e
fN · n�i,jdS = fN (1, ⌘j)�i,j (1, ⌘j)wj � fN (�1, ⌘j)�i,j (�1, ⌘j)wj+

+ fN (⇠i, 1)�i,j (⇠i, 1)wi � fN (⇠i,�1)�i,j (⇠i,�1)wi.

(2.10)

It can be seen that due to the discrete orthogonality of the Lagrange interpolating polynomials, the mass
matrix is diagonal, so no inversion is necessary.

The discretization requires the evaluation of the fluxes along the element edges. Since the grid point
values of the solutions are not defined on the edges, the edge values come from evaluating the polynomial
representation of the solution. The interpolants from each side di↵er at the element faces. The di↵erence is
resolved by solving a Riemann problem for the flux. Thus,

uN
ti,jwiwj +

X

e2@⌦

Z N

e
fN⇤

· n�i,jdS �

NX

µ,⌫=0

fNµ,⌫ ·r�i,jwµw⌫ = 0 i, j = 0, 1, . . . , N, (2.11)

where fN⇤ is the result of solving the Riemann problem.

Finally, we introduce a couple of definitions. First we define the discrete partial di↵erential operator for
each element,

R
N (u) =

X

e2@⌦

Z N

e
IN fN⇤

· n�i,jdS �

NX

µ,⌫=0

fµ,⌫ ·r�i,jwµw⌫ i, j = 0, 1, . . . , N. (2.12)

Secondly we define the isolated discrete partial di↵erential operator as,

R̂
N (u) =

X

e2@⌦

Z N

e
IN fN · n�i,jdS �

NX

µ,⌫=0

fµ,⌫ ·r�i,jwµw⌫ i, j = 0, 1, . . . , N. (2.13)

As can be seen, the di↵erence between (2.12) and (2.13) is the use of the solution of the Riemann problem,
IN fN⇤, as numerical flux. While in the former the values at the interfaces of the element are substituted
by the Riemann flux, IN fN⇤, in the latter the flux is calculated using the interior values IN fN . From a
practical point of view, this change deactivates the communication between the elements and also between
the elements and the boundaries.

A remark should be made on the definitions of the discrete partial di↵erential operator, RN (u), and
the isolated discrete partial di↵erential operator, R̂N (u). Both operators can be decomposed in a sum of
an homogeneous operator that is a function of u, and an independent term that accounts for the source
terms and the value of the boundary conditions,

R
N (u) = R̃

N (u) + SN ,

R̂
N (u) = ˆ̃

R

N
(u) + ŜN .

(2.14)

As a result of (2.14), we have

R
N (u+ v) = R̃

N (u) + R̃
N (v) + SN = R

N (u) + R̃
N (v), (2.15)

for linear operators and,

R
N (u+ v) = R̃

N (u) +
@R̃N

@u

����
u

v + SN +O

⇣
v2

⌘
= R

N (u) +
@RN

@u

����
u

v +O

⇣
v2

⌘
, (2.16)
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for nonlinear operators. A similar result can be obtained for the isolated discrete partial di↵erential opera-

tor. In the following, we will assume that R̃N in (2.15) and @RN

@u

���
u
in (2.16) are invertible. This assumption

is reasonable as they are the spatial discretization and the linearization of the spatial discretization of a
well posed PDE problem (2.1).

The ⌧ -estimation procedure interpolates the solution from a fine grid to a coarse grid. Since the DGSEM
works with the values of polynomial expansions from a set of nodes, the interpolant from order P to N is

INP fP (⇠i, ⌘j) =
PX

µ,⌫=0

f (⇠µ, ⌘⌫)�µ,⌫ (⇠i, ⌘j) , i, j = 0, . . . , N, (2.17)

where (⇠i, ⌘j) are the (N + 1)⇥(N + 1) Gauss-Legendre nodal points of order N and (⇠µ, ⌘⌫) the (P + 1)⇥
(P + 1) Gauss-Legendre nodal points of order P . INP fP is the polynomial of order N whose values in the
Gauss-Legendre nodes of order N match fP . To apply the discrete operator R

N to a solution of di↵erent
order uP it is necessary to evaluate this solution at the Gauss-Legendre nodes of order N , i.e. to interpolate
to the coarse grid. For compactness, the notation in this work omits the interpolant

R
NuP = R

NINP uP . (2.18)

2.2 Error definitions

In this section we define the errors that play a role in the definition of the truncation error or in its estimation
by means of ⌧ -estimation, specifically, discretization, interpolation, iteration error and the truncation error
itself.

– Discretization error

The discretization (solution) error is the di↵erence between the exact solution of the problem, u (x),
and the approximate solution, uN (x),

(Discretization error) ✏N = u� uN . (2.19)

In the asymptotic range, for su�ciently smooth functions, we assume that the convergence of this error
is spectral (or exponential). This means that for a fixed size hk of the elements, we assume that the
behavior in each element ⌦k with the polynomial order Nk is

||✏Nk || 

KX

k=1

Ck exp (�⌘kNk) , (2.20)

where Ck and ⌘k are constants that depend on the smoothness of the functions [8, 25] and K the total
number of elements.

Remark 1 In general, the discretization error in one element is influenced by the discretization error in
the others. To get a good solution, not only should the element be well resolved, but also its neighbors.

Furthermore, for problems with anisotropic solutions, we assume a “tensor-product”-type error bound

||✏Nk || 

KX

k=1

NdimX

i=1

Cik exp (�⌘ikNik) , (2.21)

where Ndim is the number of spatial dimensions of the problem. For a detailed explanation of anisotropic
error bounds in DG see [21].

Remark 2 Eq. (2.21) forms the basis for anisotropic refinement. For problems with solutions whose com-
plexity di↵er according to the spatial direction of measurement, e.g. boundary layers, an increment in
the number of degrees of freedom (DOF) in only one direction is more e�cient than isotropic refinement.
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– Interpolation error

We define the interpolation error as the di↵erence between a function, (in particular, this function can
be the solution of the problem) u (x), and its Lagrangian interpolant, INu (x),

(Interpolation error) "Nu = u� INu. (2.22)

If the Gauss-Legendre nodes are used as interpolation nodes, the interpolation error behaves asymp-
totically as the best possible approximation for the set of nodes (the truncated Legendre series) [7].
For su�ciently smooth functions, in the asymptotic range, the convergence of this error is spectral (or
exponential). This means that for a fixed size hk of the elements, the behavior in each element ⌦k with
the polynomial order Nk is approximated by

||"Nk ||  Ck exp (�⌘kNk) , (2.23)

where, again, Ck and ⌘k are constants which depend on the smoothness of the functions.

Remark 3 The interpolation error measures the suitability of the element but not its neighbors to
approximate the solution locally.

Furthermore, for anisotropic functions we assume a “tensor-product”-type error bound

||"Nk || 

NdimX

i=1

Cik exp (�⌘ikNik) , (2.24)

where Ndim is the number of spatial dimensions of the problem. This result is obtained in [7] or in [21].

– Iteration error

We define the iteration error as the di↵erence between the steady, time-converged approximate solution,
uN , and the current approximation of the solution (not time-converged), ũN ,

(Iteration error) ✏Nit = uN
� ũN . (2.25)

The iteration error is directly related to the residual of the time-iterative method, e.g. Runge-Kutta,
used to find the solution of the discrete partial di↵erential set of equations, because

R
N
⇣
ũN

⌘
= R

N
⇣
uN

� ✏Nit
⌘
=
�����
R

N
⇣
uN

⌘
�

@RN

@uN

����
uN

✏Nit +O

⇣
✏Nit

⌘2
. (2.26)

– Truncation error

The truncation error is defined as the di↵erence between the discrete operator applied to the exact
solution and the exact operator applied to the exact solution,

⌧N = R
N (u)�R (u) . (2.27)

When u (x) is the steady exact solution, it exactly solves the exact operator R (u) = 0, so

(Truncation error) ⌧N = R
N (u) . (2.28)

Remark 4 The assumption of u (x) being the steady exact solution of the problem R (u) = 0 means
(2.28) is only valid for steady exact solutions. The truncation error defined as (2.28) gives a measure
of the suitability of the spatial discretization to solve the steady problem. Any temporal evolution is
considered as an iteration, and is only a mathematical artifice to get the steady solution of the problem.

3 Truncation error

This section studies the truncation error. First, in Sect. 3.1, we analyze the truncation error in the DGSEM,
which results in the decoupling of the surface and volume contributions of the truncation error. The latter
will be defined as the isolated truncation error. Second, in Sect. 3.2, we extend the quasi-a priori error
estimation of Fraysse et al. [18] to the DGSEM. This extension includes the estimation of both the truncation
and the isolated truncation error.
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3.1 Truncation error analysis in the DGSEM

In this section we analyze the truncation error in the DGSEM. First, in Sect. 3.1.1, we show that the
truncation error includes a volume and a surface contribution; furthermore, we show how to decouple both
contributions, which results in the definition of the isolated truncation error. Second, in Sect. 3.1.2, we
establish the connections of the truncation error to the errors defined in Sect. 2.2, i.e. discretization and
interpolation error. Third, in Sect. 3.1.3, we study the behavior of the truncation error for problems with
anisotropic solutions.

3.1.1 Isolated truncation error

The DGSEM allows a straightforward separation between volume and surface contributions to the trunca-
tion error, as

⌧N = R
N
@⌦ (u) +R

N
⌦ (u) , (3.1)

where R
N
@⌦ (u) is the surface discretization and R

N
⌦ (u) is the volume discretization. Furthermore, the

volume contribution can be calculated using the isolated discrete partial di↵erential operator (2.13),

R̂
N (u) = R

N
⌦ (u) . (3.2)

From (3.2) we can define the isolated truncation error as the result of the isolated discrete partial di↵erential
operator applied to the exact solution,

⌧̂N = R̂
N (u) . (3.3)

The di↵erence between the truncation error and the isolated truncation error is the surface contribution to
the truncation error,

⌧N
� ⌧̂N = R

N
@⌦ (u) . (3.4)

Proof:

For simplicity of exposition only, we prove this result in 1D. In a one dimensional problem, (2.11) is

uN
t
�x
2

!j + fN⇤ (u)�i

���
1

�1
�

⇣
fN (u) ,�⇠

⌘

N
= 0, (3.5)

where fN⇤ (u) is the value of the flux calculated with the contributions of the interior values and the neighbor
values, i.e. the Riemann flux. The definition of the truncation error (2.28) for the DGSEM operator in 1D,
(3.5), reads

⌧N = R
N (u) = IN f⇤�i

��1
�1

� (IN f ,�⇠)N . (3.6)

If we add and subtract IN f�i|
1
�1 we get,

⌧N =
�
IN f⇤ � IN f

�
�i

��1
�1

+ IN f�i|
1
�1 � (IN f ,�⇠)N , (3.7)

where IN f�i|
1
�1 represents the flux calculated using only the interior values and, as a result, does not

depend on the neighbors. Finally, we identify the two last terms in (3.7) as the volumetric integral before
the integration by parts is performed

⌧N =
�
IN f⇤ � IN f

�
�i

��1
�1

+ (IN f⇠,�)N

=R
N
@⌦ (u) +R

N
⌦ (u) .

(3.8)

It can be seen that, by definition, the operator R̂N (u) fulfills the condition f⇤ = f , therefore

⌧̂N = R̂
N (u) = R

N
⌦ (u) . (3.9)
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3.1.2 Truncation error dependence on discretization and interpolation errors

The truncation error, ⌧N , acts as the local source for the discretization error

⌧N = R̃
N
⇣
✏N

⌘
(3.10)

for linear operators and

⌧N =
@RN

@uN

����
uN

✏N +O

⇣
✏N

⌘2
(3.11)

for nonlinear ones. The isolated truncation error, ⌧̂N , (the volumetric contribution to the truncation error)
is related to the interpolation error by

⌧̂N = �

⇣
r · "Nf ,�i,j

⌘

N
. (3.12)

Proof:

Equations (3.10-3.11) are the direct application of the DETE equation [40]. For linear operators, from
(2.15), (2.19) and (2.28),

⌧N = R
N
⇣
uN + ✏N

⌘
= R̃

N
⇣
uN + ✏N

⌘
+ SN =

�����
R

N
⇣
uN

⌘
+ R̃

N
⇣
✏N

⌘
(3.13)

and for linear operators, from (2.16), (2.19) and (2.28),

⌧N = R
N
⇣
uN + ✏N

⌘
=
�����
R

N
⇣
uN

⌘
+

@RN

@uN

����
uN

✏N +O

⇣
✏N

⌘2
. (3.14)

Equation (3.12) is a representation of the isolated truncation error (3.3). Remember that we define
the isolated truncation error as the residual obtained by substituting the exact solution onto the isolated
discretized partial operator,

⌧̂N = R̂
N (u) (3.15)

and, in the DGSEM discretization

⌧̂N = R̂
N (u) =

X

e2@⌦

Z N

e
IN fN · n�i,jdS �

NX

i,j=0

fi,j ·r�i,jwiwj . (3.16)

As can be seen, ⌧̂N is the discretized projection of the divergence of the function r · f onto the basis

R̂
N (u) = (r · IN f ,�i,j)N . (3.17)

We then recall the definition of the interpolation error r · (IN f) = r · f �r · "f . By that definition, for a
steady state solution r · f = 0, the isolated truncation error is

⌧̂N = R̂
N (u) = �

⇣
r · "Nf ,�i,j

⌘

N
. (3.18)

Remark 5 Both the homogeneous discrete operator for linear problems, R̃N , and the discrete Jacobian for

nonlinear problems, @RN

@uN

���
uN

, establish connections between the elements through the Riemann problem.

Equations (3.10-3.11) show that the truncation error in each element is a function of the discretization
error in it and, through the Riemann problem, on the discretization error of its neighbors.

Remark 6 The isolated discrete partial di↵erential operator, R̂N , does not include connections between the
elements. Therefore by (3.12) the isolated truncation error is a function of the interpolation error inside
the element.

Remark 7 Although by (3.10-3.12) the truncation error and the isolated truncation error are functions of
the discretization and interpolation error, it does not mean that the rate of convergence is the same. For
discontinuous Galerkin methods, the truncation error predicts a lower order of accuracy than the actual
rate, as a consequence of superconvergence [48]. A detailed analysis was performed in [41] showing that,
for the Chebyshev spectral collocation method, even though the rate of convergence is not the same, all of
them show exponential convergence. Furthermore, it was shown that the di↵erences depend on the order
of the PDE.
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3.1.3 Anisotropic behavior of the truncation error

We are interested in the behavior of the truncation and the isolated truncation error for anisotropic solutions,
e.g. boundary layers. In these problems, there is a di↵erence between the complexity (in the sense of
nonlinearity) of the solution in each of the spatial dimensions. Without loss of generality, we will suppose
a two dimensional problem where x is the direction of high complexity. Following (2.21) and (2.24) it is
reasonable to describe the discretization, ✏N , and the interpolation error, "N , as,

✏N =✏Nx + ✏Ny

"N ="Nx + "Ny ,
(3.19)

with ✏Nx >> ✏Ny and "Nx >> "Ny . These components represent the contribution to the whole error, which
can be decreased by increasing the number of degrees of freedom (DOF) in each spatial direction.
Under these assumptions, the following results are obtained for the truncation error for linear problems

⌧N = R̃
N
⇣
✏Nx

⌘
+O

✓
@RN

@uN

����
uN

✏Ny

◆
, (3.20)

and for the truncation error for nonlinear problems

⌧N =
@RN

@uN

����
uN

✏Nx +O

✓
max

✓⇣
✏N

⌘2
,
@RN

@uN

����
uN

✏Ny

◆◆
. (3.21)

Similarly, the following result is obtained for the isolated truncation error

⌧̂N = �

⇣
r · "Nxf ,�i,j

⌘

N
+O

⇣
"Nyf

⌘
. (3.22)

Remark 8 Both the truncation error and the isolated truncation error preserve the anisotropy of the dis-
cretization and interpolation errors.

Proof:

Under the assumption of (3.19) and using the nonlinear DETE equation [40] we have

⌧N =
@RN

@uN

����
uN

⇣
✏Nx + ✏Ny

⌘
+O

⇣
✏N

⌘2
. (3.23)

Since we assume ✏Nx >> ✏Ny ,

⌧N =
@RN

@uN

����
uN

✏Nx +O

✓
max

✓⇣
✏N

⌘2
,
@RN

@uN

����
uN

✏Ny

◆◆
. (3.24)

This result is also valid for linear equations with minor modifications.
A similar approach is followed for the isolated truncation error. Under the assumption of (3.19), the

isolated truncation error reads

⌧̂N = R̂
N (u) = �

⇣
r · "Nxf ,�i,j

⌘

N
�

⇣
r · "Nyf ,�i,j

⌘

N
. (3.25)

Since "Nx >> "Ny ,

⌧̂N = R̂
N (u) = �

⇣
r · "Nxf ,�i,j

⌘

N
+O

⇣
"Nyf

⌘
. (3.26)

This result is valid for linear and nonlinear equations.

9



3.2 Quasi-a priori truncation error estimation in the DGSEM

In this section, we explain how to accurately estimate the truncation error and the isolated truncation er-
ror using the ⌧ -estimation method. The idea underlying the ⌧ -estimation method is to use an approximate
solution instead of the exact solution that appears in the definitions of the truncation error (2.28) and the
isolated truncation error (3.3). The approximate solution is obtained by solving the same problem with a
higher polynomial order in each element. The estimation is quasi-a priori, in the sense that the approximate
solution may not be time-converged.

The truncation error estimation procedure permits accurate estimations of the truncation error, ⌧N , of
a lower order approximation using a not necessarily converged higher order approximation, ũP . Therefore
it is assumed that (P > N). We introduce the next expression to estimate the truncation error based on
the low order relative truncation error first used by Fraysse et al. in [18] and extended later to the pure
spectral Chebyshev collocation method by Rubio et al. in [41]:

⌧N
P ⌘ R

N
⇣
ũP

⌘
� ĪNP R

P
⇣
ũP

⌘
. (3.27)

Here ĪNP , the transfer operator of the residual from order P to N , is

ĪNP ⌘ R̃
NINP

⇣
R̃

P
⌘�1

(3.28)

for linear operators and

ĪNP ⌘
@RN

@uN

����
ũP

INP

✓
@RP

@uP

����
ũP

◆�1

(3.29)

for nonlinear operators. Note that for time-converged solutions, uP = ũP and, by definition, RP
�
uP

�
= 0.

This means that the second term on the RHS of (3.27) is zero for time-converged solutions.

Following the previous definition for the estimate of the truncation error (3.27), we define the next
estimate for the isolated truncation error,

⌧̂N
P ⌘ R̂

N
⇣
ũP

⌘
� ÎNP R

P
⇣
ũP

⌘
. (3.30)

The main di↵erence from (3.27) is the substitution of the discrete partial di↵erential operator, RN , by the
isolated discrete partial di↵erential operator, R̂N . Besides ÎNP , the transfer operator of the residual from
order P to N for the isolated truncation error is,

ÎNP ⌘
ˆ̃
R

NINP
⇣
R̃

P
⌘�1

(3.31)

for linear operators and

ÎNP ⌘
@R̂N

@uN

�����
ũP

INP

✓
@RP

@uP

����
ũP

◆�1

(3.32)

for nonlinear operators. As previously mentioned, uP = ũP for time-converged solutions and by definition
R

P
�
uP

�
= 0. Therefore the second term on the RHS of (3.30) is zero for time-converged solutions.

Remark 9 For time-converged solutions, uP , (a posteriori ⌧ -estimation), the second term on the RHS of
(3.27) and (3.30) is zero. For non time-converged solutions, ũP , (quasi-a priori ⌧ -estimation), the second
term on the RHS of (3.27) and (3.30) acts as a “correction” term for the iteration error, ✏Pit.

The di↵erence between the exact truncation error (2.28) and the approximate truncation error (3.27) is

⌧N
P = ⌧N

� R̃
N
⇣
✏P

⌘
(3.33)

for linear operators and

⌧N
P = ⌧N

�
@RN

@uN

����
u

✏P +O

⇣
✏Pit

⌘2
(3.34)
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for nonlinear operators.

Similarly, the di↵erence between the exact isolated truncation error (3.3) and the approximate isolated
truncation error (3.30) is

⌧̂N
P = ⌧̂N

�
ˆ̃
R

N
⇣
✏P

⌘
(3.35)

for linear operators and

⌧̂N
P = ⌧̂N

�
@R̂N

@uN

�����
u

✏P +O

⇣
✏Pit

⌘2
(3.36)

for nonlinear operators.

Proof:

Due to the similarities in the definitions of the approximations of the truncation error (3.27) and the
isolated truncation error (3.30), the proofs of (3.33-3.34) and (3.35-3.36) are similar, so we will only prove
(3.33-3.34) here. This proof can be extended to (3.35-3.36) by taking into account that for the isolated
truncation error estimate, the transfer operator of the residual from order P to N , ÎNP , includes the ho-

mogeneous isolated discrete partial di↵erential operator, ˆ̃
R

N as well as the discrete partial di↵erential
operator, RN .

Substituting the definitions of the iteration error, ũP = uP
� ✏Pit, and the discretization error, uP =

u� ✏P , onto the estimate of the truncation error (3.27) and using (2.16),

⌧N
P = R

N (u)�
@RN

@uN

����
u

✏P �
@RN

@uN

����
u

✏Pit � ĪNP R
P
⇣
ũP

⌘
+O

⇣
✏P

⌘2
+O

⇣
✏Pit

⌘2
. (3.37)

Then

⌧N
P = ⌧N

�
@RN

@uN

����
u

✏P �
@RN

@uN

����
u

✏Pit � ĪNP R
P
⇣
ũP

⌘
+O

⇣
✏P

⌘2
+O

⇣
✏Pit

⌘2
(3.38)

and by (2.26),

⌧N
P = ⌧N

�
@RN

@uN

����
u

✏P �
@RN

@uN

����
u

✏Pit + ĪNP
@RP

@uP

����
uP

✏Pit +O

⇣
✏P

⌘2
+O

⇣
✏Pit

⌘2
. (3.39)

Taking into account that, by definition u�ũP = ✏P+✏Pit, it can be seen that for ĪNP = @RN

@uN

���
ũP

INP
⇣

@RP

@uP

���
ũP

⌘�1

we have

⌧N
P = ⌧N

�
@RN

@uN

����
u

✏P +O

⇣
✏P

⌘2
+O

⇣
✏Pit

⌘2
. (3.40)

Equation (3.40) is for nonlinear equations. However, it is also valid for linear ones taking into account

that, for linear equations the Jacobian @RN

@uN

���
u
( ) is substituted by the homogeneous discrete partial di↵er-

ential operator R̃
N ( ) and that the Taylor expansions are exact taking only one term (so

�
✏P

�2
= 0 and

�
✏Pit

�2
= 0).

Remark 10 For linear problems, the accuracy of the estimates of the truncation error and the isolated
truncation error, (3.33) and (3.35), is a function of the discretization error on the fine mesh ✏P . For
nonlinear problems, the accuracy of the estimates, (3.34) and (3.36), is a function of the discretization error

on the fine mesh, ✏P , and of the square of the iteration error on the fine mesh,
�
✏Pit

�2
.

Remark 11 For linear problems, or for nonlinear problems with time-converged solutions, the relative ac-
curacy of the estimate of the truncation error is,

⌧N
P � ⌧N

⌧N
= O

⇣
✏P /✏N

⌘
(3.41)

and the relative accuracy of the estimate of the isolated truncation error is,

⌧̂N
P � ⌧̂N

⌧̂N
= O

⇣
✏P /"N

⌘
. (3.42)
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Proof:

Due to the similarities in the procedure we will only prove (3.41) for nonlinear problems. From (3.11)
we know that the order of magnitude of the truncation error is

⌧N =
@RN

@uN

����
uN

✏N +O

⇣
✏N

⌘2
= O

⇣
✏N

⌘
. (3.43)

From (3.34) the accuracy of the estimate of the truncation error for nonlinear problems with time-converged
solutions is

⌧N
P � ⌧N = �

@RN

@uN

����
u

✏P = O

⇣
✏P

⌘
. (3.44)

Therefore, from (3.43-3.44) the relative accuracy of the estimate of the truncation error for nonlinear
problems with time-converged solutions is

⌧N
P � ⌧N

⌧N
= O

⇣
✏P /✏N

⌘
. (3.45)

Equation (3.41) is obtained from (3.10) and (3.33) for linear problems. Equation (3.42) is obtained from
(3.12) and (3.35) for linear problems and from (3.12) and (3.36) for nonlinear problems.

Furthermore, it should be noticed that in (3.33-3.34) the discretization error, ✏P , is multiplied by

the homogeneous discrete partial di↵erential operator, R̃N , for linear problems or its Jacobian, @RN

@uN

���
u
,

for nonlinear problems. Since the discrete partial di↵erential operator couples the elements, an accurate
solution in an element and in its neighbors is required for an accurate estimate of the truncation error. On
the contrary, in (3.35-3.36) the discretization error, ✏P , is multiplied by the homogeneous isolated discrete

partial di↵erential operator, ˆ̃
R

N
, for linear problems or its Jacobian, @R̂N

@uN

���
u
, for nonlinear problems. Since

the isolated discrete partial di↵erential operator does not couple the elements, an accurate solution in an
element is su�cient for an accurate estimate of the isolated truncation error.

Finally, it should be noticed that a similar argument as the one followed in Sect. 3.1.3 may be used in
(3.33-3.36) to decouple the rate of convergence of the estimates for problems with anisotropic solutions.

Remark 12 For nonlinear problems with non time-converged solutions the iteration error, ✏Pit, acts on the
accuracy of the estimates of the truncation and the isolated truncation error (3.34) and (3.36). The e↵ect
of the iteration error can be estimated with a low cost, as it is the same order of magnitude as the residual
of the time-iterative method on the fine mesh,

@RN

@uN

����
uN

✏Pit ⇡ R
P
⇣
ũP

⌘
= R

P
⇣
uP

� ✏Pit
⌘
=
�����
R

P
⇣
uP

⌘
�

@RP

@uP

����
uP

✏Pit +O

⇣
✏Pit

⌘2
. (3.46)

Equation (3.46) can be derived from (3.39) and (2.26). It should be noticed that the “correction” term,
second term on the RHS of (3.27) and (3.30), reduces the e↵ect of the iteration error, ✏Pit, in the accuracy of

the estimates, (3.34) and (3.36), from first order, ✏Pit, to second order,
�
✏Pit

�2
. It should only be calculated

if the first order e↵ect of the iteration error is larger than the required accuracy in the estimates.

4 Implementation

In Sect. 3.2 we derived two formulas to estimate the truncation error (3.27) and the isolated truncation
error (3.30). The formulas use an approximate solution on a fine grid, P , to estimate the error on a coarse
grid, N . The estimates are quasi-a priori, in the sense that the approximate solution on the fine grid, ũP ,
may be not time-converged.

In this section we show how to implement the quasi-a priori estimates of the truncation error (3.27)
and the isolated truncation error (3.30). First, in Sect. 4.1 we derive the computational cost to evaluate
them. Second, in Sect. 4.2 we develop three algorithms to estimate the truncation error and the isolated
truncation error with a minimum cost. The three algorithms follow di↵erent approaches for the treatment
of the iteration error.

12



4.1 Computational cost

In this section we analyze the computational cost of the estimates of the truncation error (3.27) and of
the isolated truncation error (3.30). First, in Sect. 4.1.1 we estimate the required number of operations to
evaluate the estimates. Second, in Sect. 4.1.2 we estimate the memory requirements. In Sect. 4.1.3 we show
that for a fixed fine mesh, P , the computation of the estimates on all the coarser meshes, N < P , cost the
same as the computation of the truncation error on one coarse mesh. We will assume a nonlinear operator,
however the results may be used for linear operators with minor modifications.

4.1.1 Operation count

The operation count (only multiplications) per degree of freedom (DOF) to update the solution in the
DGSEM, i.e. to evaluate the discrete partial di↵erential operator (2.12) or the isolated discrete partial
di↵erential operator (2.13), scales with the polynomial order O (P ) [26].

The estimates (3.27) and (3.30) can be divided into four steps:

1. R
N
�
ũP

�
or R̂N

�
ũP

�
. First term on the RHS (a posteriori ⌧ -estimation):

a) ũP . Approximate non time-converged solution on a fine mesh.

b) R
N
�
ũP

�
or R̂

N
�
ũP

�
. Evaluation of the approximate solution, ũP , on the discrete partial

di↵erential operator on the coarse mesh.

2. ĪNP R
P
�
ũP

�
or ÎNP R

P
�
ũP

�
. Second term on the RHS (“correction” term for quasi-a priori ⌧ -estimation):

a) ✏Pit ⇡

⇣
@RP

@uP

���
ũP

⌘�1
R

P
�
ũP

�
. Approximate iteration error on the fine mesh (2.26). See the

definition of the transfer operators (3.29) and (3.32).

b) @RN

@uN

���
ũP

INP or @R̂N

@uN

���
ũP

INP . Transfer of the iteration error from the fine to the coarse mesh.

The number of operations to obtain the approximate solution on a fine mesh, for an explicit Euler
time-iterative method is

Step 1a ⇡ Nit ⇥DOF⇥ P, (4.1)

where Nit is the number of iterations and DOF is the number of degrees of freedom on the fine mesh
(polynomial order P ).

The evaluation of the approximate solution, ũP , on the discrete partial di↵erential operator on the
coarse grid, RN

�
ũP

�
or R̂

N
�
ũP

�
, requires the interpolation of the fine grid solution to the coarse grid

and the evaluation on the coarse operator. From (2.12), (2.13) and (2.17) we can see that the interpolation
requires fewer operations per DOF than the evaluation on the coarse grid operators. Therefore,

Step 1b  2⇥DOF⇥ P. (4.2)

Both operations are at most twice the cost of the evaluation itself.
The computation of the estimate of the iteration error on the fine mesh requires the resolution of a

linear system of algebraic equations of dimension DOF of the problem. The inversion of the Jacobian on
the fine mesh by Gauss-Jordan elimination algorithm is DOF3. Therefore the resolution of the system is

Step 2a  (DOF)3 . (4.3)

The exact number of operations of Step 2a depends on the e�ciency of the algorithm used to solve the
linear system.

Finally the transfer of the iteration error to the coarse mesh requires another interpolation from the
fine to the coarse grid and a matrix vector multiplication. The dimension of the Jacobian on the coarse
grid is the number of DOF on the coarse grid so,

Step 2b ⇡ (DOFcoarse)
2 , (4.4)

where DOFcoarse is the number of DOF on the coarse grid (polynomial order N).
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We compare Step 1a with Step 1b and find that

Step 1b
Step 1a

⇡
2⇥DOF⇥ P
Nit ⇥DOF⇥ P

=
2
Nit

. (4.5)

Since the number of iterations to convergence is Nit >> 1, Step 1a >> Step 1b. The cost to evaluate the
approximate solution, ũP , with the discrete partial di↵erential operator on the coarse grid, RN

�
ũP

�
or

R̂
N
�
ũP

�
, is negligible compared to the cost to obtain an approximate non time-converged solution on a

fine mesh.
We compare Step 2a with Step 2b and see that

Step 2b
Step 2a

⇡
(DOFcoarse)

2

(DOF)3
/ 1

DOF
. (4.6)

Since DOF >> 1, Step 2a >> Step 2b. The cost to transfer the iteration error from the fine to the coarse
mesh is negligible compared to the cost to approximate the iteration error on the fine mesh.

Finally, we compare Step 2a with Step 1a

Step 1a
Step 2a

⇡
Nit ⇥DOF⇥ P

(DOF)3
=

Nit ⇥ P

(DOF)2
. (4.7)

The ratio of Step 1a and Step 2a will be di↵erent for each problem.

4.1.2 Memory requirements

The memory requirements for the estimate of the truncation error (3.27) and the estimate of the isolated
truncation error (3.30) are, at most, twice the memory requirements of the DGSEM on the fine mesh, P ,
if the “correction” term is not calculated. From [26] we know that the DGSEM memory requirements are
low (⇡ 0.5 Gb for the the Navier-Stokes equations discretized with 1 million DOF).

The computation of the “correction” term requires the storage of the Jacobian on the fine and on
the coarse grids. The memory requirements to store a square matrix of dimension DOF = 106 is ⇡ 8000
Gb. However due to the compactness of the scheme, the memory requirements decrease drastically if the
Jacobian is stored in sparse form. For each DOF the Jacobian only includes information about the element
and its neighbors so, for a two dimensional problem,

Jacobian non zeros
Jacobian total

⇡
5⇥DOF⇥ (N + 1)2

DOF2 =
5 (N + 1)2

Nel (N + 1)2
=

5
Nel

. (4.8)

An estimate for the memory requirements of the sparse Jacobian of a 2D problem with DOF = 106 and
polynomial order N = 4 is ⇡ 1 Gb.

4.1.3 Multiple estimates for di↵erent coarse grids

For a fixed fine mesh, P , the computation of the estimates of the truncation error (3.27) and of the isolated
truncation error (3.30) on all the coarser meshes, N < P , cost about the same as the computation of the
truncation error (3.27) on one coarse mesh.

From (3.27) and (3.30), we can see that both estimates use the non time-converged approximate solution
on the fine mesh, ũP . Furthermore, the “correction” term in the truncation error estimate (3.27) is

ĪNP R
P
⇣
ũP

⌘
=

@RN

@uN

����
ũP

INP

✓
@RP

@uP

����
ũP

◆�1

R
P
⇣
ũP

⌘
, (4.9)

while in the isolated truncation error estimate (3.30) is

ÎNP R
P
⇣
ũP

⌘
=

@R̂N

@uN

�����
ũP

INP

✓
@RP

@uP

����
ũP

◆�1

R
P
⇣
ũP

⌘
. (4.10)

As can be seen, (4.9-4.10) share the two last terms. The non time-converged approximate solution on the
fine mesh, ũP , and the two last terms in (4.9-4.10) are also shared by any estimate on a coarse grid, since
they only depend on the polynomial order on the fine mesh, P .

Finally, (4.5-4.6) show that to find the non time-converged approximate solution, ũP , on the fine mesh
and to approximate the iteration error on the fine mesh, the two last terms in (4.9-4.10) account for most
of the cost to evaluate (3.27) and (3.30).
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4.2 Algorithms

In this section we develop three algorithms for the e�cient computation of the estimates of the truncation
and the isolated truncation errors. The three algorithms compute the estimates, using an approximate
solution on a fine mesh, P , on all the coarser meshes, N < P . The computation of the estimates on
coarser meshes permits analysis of the rate of convergence of the problem with polynomial order as well
as the anisotropy of the solution. The algorithms are e�cient since, from Sect. 4.1.3, the estimation of
the truncation error and the isolated truncation error on all the coarser meshes cost about the same
as the estimation of the truncation error on one coarse mesh. It should be noticed that the possibility
of the computation of the estimates on all the coarser meshes is a big di↵erence from the ⌧ -estimation
based methods for low order schemes, where one fine mesh is usually generated by refinement of a coarser
mesh. The construction method of the fine mesh permits injection, i.e. direct substitution of the fine mesh
approximation onto the coarse mesh.

The three algorithms deal di↵erently with the iteration error. The first uses the time-converged solution
of the problem, therefore the “correction” term is zero. The second uses a non converged solution and
computes the “correction” term. The third also uses a non converged solution, but does not compute the
“correction”, although it is di↵erent from zero.

We assume a nonlinear problem in the development of the algorithms, however the results may be
extrapolated to linear problems by taking into account that the Taylor expansions are exact with only one
term for the linear problems.

A posteriori ⌧ -estimation

The a posteriori ⌧ -estimation, Algorithm 1, estimates the truncation and the isolated truncation error
with an approximate time-converged solution on a fine mesh, uP , on coarser meshes, N < P . As the ap-
proximate solution is time-converged, the iteration error, ✏Pit, and the “correction” term, the second term
on the RHS of (3.27) and (3.30), are zero.

Data: Polynomial order on the fine mesh P
Result: ⌧N

P , ⌧̂N
P

Integrate in time on the fine mesh P to steady state;
for N < P do

Estimate the truncation error ⌧N
P ; (3.27) with no “correction” term ;

Estimate the isolated truncation error ⌧̂N
P ; (3.30) with no “correction” term ;

end
Algorithm 1: A posteriori ⌧ -estimation

Quasi-a priori ⌧ -estimation

The quasi-a priori ⌧ -estimation, Algorithm 2, estimates the truncation and the isolated truncation
error with an approximate non converged solution on a fine mesh, ũP , on coarser meshes, N < P . As the
approximate solution is non converged, the iteration error, ✏Pit, and the “correction” term, second term on
the RHS of (3.27) and (3.30), are not zero.

The definition of the non fully-converged solution is important as it is related to the accuracy of the
estimate through the iteration error on the fine mesh, ✏Pit. Remark 12 assumes that the iteration error
may be estimated from the residual on the fine mesh, RP

�
ũP

�
. Therefore the solution is converged until

the residual of the relaxation scheme fulfills max
�
R

P
�
ũP

��2
< tolerance. It should be noticed that this

tolerance only applies to the iteration error, ✏Pit, of the estimation . The error associated with the spatial
discretization on the fine mesh, ✏P , cannot be bounded a priori as the discretization error is an unknown
of the problem. A Richardson iteration is used to approximate the iteration error on the fine mesh, ✏Pit.

It is important to remark that by (3.33) and (3.35) the tolerance requirement in Algorithm 2 is fulfilled
at the first iteration for linear problems.
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Data: Polynomial order on the fine mesh P , tolerance
Result: ⌧N

P , ⌧̂N
P

while max
�
R

P
�
ũP

��2
> tolerance do

Integrate in time on the fine mesh;
end

Calculate (Richardson iteration) ✏Pit ⇡
⇣

@RP

@uP

���
ũP

⌘�1
R

P
�
ũP

�
;

for N < P do
Estimate the non converged truncation error ⌧N

P ; (3.27) with “correction” term ;

Estimate the non converged isolated truncation error ⌧̂N
P ; (3.30) with “correction” term ;

end
Algorithm 2: Quasi-a priori ⌧ -estimation

Quasi-a priori ⌧ -estimation with no “correction” term

The quasi-a priori ⌧ -estimation with no “correction” term, Algorithm 3, estimates the truncation error
(3.27) and the isolated truncation error (3.30) with an approximate non converged solution on a fine mesh,
ũP , on coarser meshes, N < P . As the approximate solution is non converged, the iteration error, ✏Pit, and
the “correction” term, second term on the RHS of (3.27) and (3.30), are not zero. However Algorithm 3
does not compute the “correction” term resulting in, by Remark 12, an e↵ect of first order of the iteration
error in the accuracy of the estimates.

Following the same argument explained in Algorithm 2, the solution is converged until the residual of
the relaxation scheme fulfills max

�
R

P
�
ũP

��
< tolerance.

Data: Polynomial order on the fine mesh P , tolerance
Result: ⌧N

P , ⌧̂N
P

while
�
R

P
�
ũP

��
> tolerance do

Integrate in time on the fine mesh;
end
for N < P do

Estimate the non converged truncation error ⌧N
P ; (3.27) with no “correction” term;

Estimate the non converged isolated truncation error ⌧̂N
P ; (3.30) with no “correction” term;

end
Algorithm 3: Quasi-a priori ⌧ -estimation. No “correction” term

Algorithms 1-3 computational cost

From Sect. 4.1.3, we assume that the estimation of the truncation error and the isolated truncation
error on all the coarser meshes cost about the same as the estimation of the truncation error in one coarse
mesh. Then, from (4.1-4.4), the number of operations of Algorithm 1 is

Algorithm 1 = Nit1 ⇥DOF⇥ P, (4.11)

the number of operations of Algorithm 2 is

Algorithm 2 = Nit2 ⇥DOF⇥ P + (DOF)3 , (4.12)

and the number of operations of Algorithm 3 is

Algorithm 3 = Nit3 ⇥DOF⇥ P. (4.13)

From the time-iterative residual requirements of Algorithms 1-3, the number of iterations to converge
the fine mesh solution, ũP , is Nit2 < Nit3 < Nit1. Algorithm 3 is cheaper than Algorithm 1 for any problem.
Algorithm 2 is cheaper than Algorithm 3 if

Nit3 �Nit2 >
(DOF)2

P
(4.14)

It should be noticed that the estimation for the number of operations to solve the linear system of equations
to compute the “correction” term, (DOF)3, assumes that the inverse of the Jacobian is explicitly computed.
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Table 1: Summary of the features of the three algorithms

Algorithm 1 Algorithm 2 Algorithm 3

Residual Machine error (tolerance)1/2 tolerance
“Correction” term No Yes No
Operation count Nit1 ⇥DOF⇥ P Nit2 ⇥DOF⇥ P + (DOF)3 Nit3 ⇥DOF⇥ P
Memory requirements Low High Low

The di↵erence between Nit3 �Nit2 may be reduced with more e�cient algorithms that bypass the actual
computation of the inverse of the Jacobian. Furthermore, it should be noticed that for sti↵ problems, which
require small time steps, the di↵erence Nit3 �Nit2 increases while the cost to estimate the iteration error
remains constant.

From Sect. 4.1.2, the memory requirements for Algorithm 1 and 3 are similar to the DGSEM. The
computation of the “correction” term in Algorithm 2 requires sparse storage.

5 Detailed analysis on reference problems

In this section we test the analysis made in Sects. 3 and 4. The test is performed on one and two dimensional
linear and nonlinear problems. In Sect. 5.1, the one dimensional numerical experiments are shown. These
experiments support the theory developed in Sect. 3 with special focus on the behavior of the errors and
the accuracy of the estimates. Two dimensional numerical experiments are shown in Sect. 5.2. The first
objective of Sect. 5.2 is to support the anisotropic analysis of Sect. 3.1.3. The second is to apply the
algorithms shown in Sect. 4 and support the cost analysis.

5.1 One dimensional problems. Linear and nonlinear advection equation

5.1.1 Propagation of errors

This section supports the analysis made in Sect. 3.1.1. We show how the discretization error and both the
truncation error and the isolated truncation error propagate in the computational domain. Error prop-
agation is an important issue in hyperbolic problems, as under-resolution errors in narrow zones of the
computational domain propagate downstream.

The test problem chosen is

ut + ux = 20 (cosh (20 (0.75 + x)))�2 , x 2 (�1, 1) ,

u (�1, t) = tanh (20 (�1 + 0.75)), t > 0,
(5.1)

whose exact solution for steady state, ut = 0, is u = tanh (20 (x+ 0.75)). The test problem is approximated
using four elements and a polynomial degree, N = 7, Fig. 1a. As can be seen, the solution is only di�cult to
approximate in the first element. However, the discretization error is high in all the computational domain.
Due to the hyperbolic nature of the problem, the under-resolution in the “shock” (Element 1) has been
transmitted downstream.

In Fig. 1b we represent the discretization error, the truncation error and the isolated truncation error.
Several remarks should be made

– The truncation error, ⌧N , is high where the discretization error, ✏N , is high (and non-constant). Fur-
thermore, the truncation error is also high if the discretization error of its upstream neighbor is high
(see Remark 5).

– The isolated truncation error, ⌧̂N , measures the di�culty of approximation of the solution and its
derivatives only inside the element (see Remark 6). This is why it is high only in Element 1 (where the
“shock” is located).

This example illustrates why discretization error is not a good sensor for adaptation algorithms in
hyperbolic problems. Furthermore, it can be seen that the isolated truncation error is superior to the
truncation error as a sensor for adaptation algorithms because it is not contaminated by neighbors’ errors.
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Fig. 1: Test Problem 5.1

5.1.2 Convergence of errors

This section tests the analysis made in Sect. 3.1.2. We show convergence of the di↵erent errors with the
polynomial order for the linear equation

ut + ux =
�12 sin (x)

(5� 4 cos (x))2
, x 2 (�1, 1) ,

u (�1, t) =
3

5� 4 cos (�1)
, t > 0

(5.2)

whose exact solution for steady state, ut = 0, is u = 3
5�4 cos(x) , and the nonlinear advection equation

ut + uux = (�2 + sin (x)) cos (x), x 2 (�1, 1) ,

u (�1, t) = 2� sin (�1), t > 0
(5.3)

whose exact solution for steady state, ut = 0, is u = 2 � sin (x). The physical domain is divided into four
elements, and polynomials degrees, N , from one to 14 were used. In Fig. 2 we show, both for the linear and
the nonlinear equations, that the convergence of the discretization error, ✏N , is spectral and, as shown in
Sect. 3.1.2, the truncation, ⌧N , and the isolated truncation error, ⌧̂N , exhibit the same convergence rate.

5.1.3 A posteriori estimates

In this section we show convergence with the polynomial order of the accuracy of the estimates of the
truncation error and the isolated truncation error for the same test cases used in Sect. 5.1.2. We use (3.27)
and (3.30) to estimate the truncation error, ⌧N

P , and the isolated truncation error, ⌧̂N
P , in a fixed coarse

mesh. To test the convergence, we vary the accuracy of the estimate of the exact solution through the
polynomial order on the fine mesh, P .

We estimate the truncation error and the isolated truncation error in a fixed coarse mesh, N = 4. The
estimates are computed using the fine meshes, P = 5, . . . , 14, solutions. As before, the physical domain is
divided into four elements. In Fig. 3 we show the maximum error in the estimate of the truncation error
and the isolated truncation error. We also plot the discretization error for each polynomial order. Both
errors in the estimates are the same order of magnitude as the discretization error on the fine mesh, ✏P , as
established in (3.33-3.36).

5.1.4 Quasi-a priori estimates

In this section we show the convergence of the quasi-a priori estimate for the truncation error and the
isolated truncation error with the number of iterations of the time-iterative method, for the same test cases
used in Sect. 5.1.2.

18



εN vs N
τN vs N
τN vs N

M
ax

im
um

Er
ro

r

10−12

10−10

10−8

10−6

10−4

10−2

1

Polynomial order
0 5 10 15

(a) Linear advection equation

εN vs N
τN vs N
τN vs N

M
ax

im
um

Er
ro

r

10−15

10−12

10−9

10−6

10−3

1

Polynomial order
0 5 10 15

(b) Nonlinear advection equation

Fig. 2: Discretization ✏N , truncation ⌧N and isolated truncation ⌧̂N error convergence
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Fig. 3: Accuracy of the estimates of the truncation error ⌧N
P and the isolated truncation error ⌧̂N

P . The
coarse mesh is fixed N = 4 while the fine mesh varies P = 5, . . . , 14

Now, since we are interested in the convergence of the accuracy of the estimates with the number
of iterations, we fix the polynomial order for the coarse mesh, N = 4, and for the fine mesh, P = 6.
Approximations of the solution on the fine mesh with several tolerances (iteration error, ✏Pit) are used to
estimate the truncation error (3.27) and the isolated truncation error (3.30) on the coarse mesh. We show
the results for the truncation error and the isolated truncation error, respectively, in Figs. 4 and 5.

For the linear equation, without correction, the error in the estimate is the same order of magnitude
as the residual on the fine mesh. On the other hand, with the correction the problem is solved in the first
iteration. For the nonlinear problem without correction the error is, again, the same order of magnitude as
the residual. However, the error after the correction is applied is O

�
✏2it

�
. These results support (3.33-3.36).

It should be remarked that, without applying the correction term, the true values of both the truncation
and the isolated truncation error are masked by the iteration error. If the desired accuracy in the estimation
of the error is known, it is possible to use the residual on the fine mesh to know how many iterations are
required. These results support Remark 12.
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5.2 Two dimensional problems. Nonlinear advection equation

In this section we support the multidimensional analysis made in Sect. 3.1.3. Furthermore, we present an
application of the algorithms shown in Sect. 4 that supports the computational cost analysis.

We solve the two dimensional nonlinear advection equation

ut + uux + uuy = f (x, y) (x, y) 2 (0, 1)⇥ (0, 1) , (5.4)

where the source term f (x, y) is

f (x, y) =

✓
50

cosh2 (50 (y � 0.5))
+ cos (x� 0.5)

◆
(tanh (50 (y � 0.5)) + 2 + sin (x� 0.5)) , (5.5)

and appropriate Dirichlet boundary conditions so the exact solution for steady state ut = 0 is

u (x, y) = tanh (50 (y � 0.5)) + 2 + sin (x� 0.5) . (5.6)

The exact solution of this problem, Fig. 6, is anisotropic (it has larger gradients in the y direction than
in the x).
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Fig. 6: Exact solution for the nonlinear advection problem, (5.4)

5.2.1 Discretization, truncation and isolated truncation error

In this section we analyze the discretization, truncation and isolated truncation error for problem (5.4-5.6).
In Fig. 7 we show maps for the three errors for a polynomial order of [3 ⇥ 3] in each of the elements. In
Fig. 8 the same result is presented for a polynomial order of [3⇥ 8].

First it should be noticed that, as in Sect. 5.1.1, the discretization error is advected, whereas the
truncation and the isolated truncation error are contained in a narrow region where the function is more
di�cult to approximate.

As far as the rate of convergence is concerned, we exposed in Sect. 3.1.3 that for anisotropic problems
the truncation error, ⌧N , and the isolated truncation error, ⌧̂N , should retain the anisotropy. Therefore
in Fig. 9 we show the maximum value of the di↵erent errors in element k = 20, Fig. 6, for polynomial
orders N = [1, 10]. As can be seen, the rates of convergence are decoupled and are exponential in both
directions. In Fig. 10, we show sections of these plots for constant values of Nx or Ny where the exponential
convergence can be clearly seen.

5.2.2 A posteriori truncation error and isolated truncation error estimates

Here we show the convergence of the accuracy of the estimates of the truncation error and the isolated
truncation error with the polynomial order for problem (5.4-5.6). Remark 11 assumed that the errors in
the estimates are decoupled in each direction.

We estimate the truncation error and the isolated truncation error on coarse meshes N = [1-7 ⇥ 1-7]
using an approximate solution on a fine mesh P = [8⇥ 8].

First we solve the problem using a polynomial order of P = [8 ⇥ 8] in each element. Then we use this
solution to calculate estimates of the errors on each of the coarser meshes. We show the results, again for
element k = 20, in Fig. 11. It should be noticed that the error made in the estimates is almost constant, as
it is only a function of the discretization error on the fine mesh, which is constant. However, the relative
accuracy increases with P � N , as assumed in Remark 11. It is important to recall that the accuracy is
decoupled in each of the spatial dimensions.

5.2.3 Computational cost of Algorithms 1-3

In this section we test the performance of Algorithms 1, 2 and 3 developed in Sect. 4. The test problem is
the scalar nonlinear advection problem (5.4). We use (5.7) as initial condition,

f (x, y) = tanh (50 (y � 0.5))e�100x + sin (x� 0.5) e�100y + 2. (5.7)
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Fig. 7: Error maps for the 2D nonlinear advection equation with a polynomial order of [3⇥ 3]
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Fig. 9: Convergence of the errors for the 2D Nonlinear advection equation with di↵erent polynomial orders
for element k = 20

The initial condition satisfies the equation at the bottom and left boundaries, so that there are no
discontinuities between the initial condition and the inflow boundary condition.

The three algorithms require the fine mesh solution P = [4⇥ 4] as an input. Furthermore, Algorithms
2 and 3 require a tolerance for the iteration error, which is set to 10�4. The tolerance is chosen depending
on the accuracy requirements of the estimates.

The first step of the three algorithms is to converge a solution on the fine mesh; however, di↵erent levels
of time-convergence are required. The first algorithm supposes that the solution is fully converged to steady
state, uP . The second and the third require that, for a tolerance of 10�4, the residual is R

P
�
ũP

�
= 10�2

and the residual is RP
�
ũP

�
= 10�4 respectively. In Fig. 12 we show the maximum value of the residual on

the fine mesh, RP
�
ũP

�
. It can be seen that 14000, 3000 and 8000 time steps are necessary for Algorithms

1, 2 and 3 (respectively).
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Fig. 10: Sections of Fig. 9 for constant values of Nx = 8 and Ny = 8
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Fig. 11: Convergence of the approximated errors for the 2D Nonlinear advection equation with di↵erent
polynomial orders for element k = 20. The errors are estimated using a fine mesh of P = [8⇥ 8]
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method [47]

In Fig. 13 we show the di↵erence between the estimated truncation errors on a N = [3⇥3] mesh follow-
ing Algorithm 2 (RP

�
ũP

�
= 10�2) and Algorithm 1 (with the completely converged solution). In Fig. 14

we show the di↵erence between the estimated truncation errors in a N = [3⇥3] mesh following Algorithm 3
(RP

�
ũP

�
= 10�4) and the estimated errors using Algorithm 1 (again, with the completely converged solu-

tion). The results support Remark 12, as the di↵erences between the three estimates are, at most, O
�
10�4

�
.

In Tab. 2 we show the time required to obtain the approximate solution on the fine mesh, ũP , the
evaluation of the first term on the RHS of the estimates (3.27) and (3.30) (a posteriori estimation), the
evaluation of the second term on the RHS of the estimates (3.27) and (3.30) (“correction” term) and the
total time to run Algorithms 1-3. Algorithm 2 is the cheapest while Algorithm 1 is the least. Algorithm 3
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Fig. 13: Accuracy of the estimated error maps for a residual of 10�2 with correction term
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Fig. 14: Accuracy of the estimated error maps for a residual of 10�4 without correction term

Table 2: Computational cost in time (s) of the three algorithms

Approximate solution A posteriori “Correction” term Total

Algorithm 1 42.00 0.02 0.00 42.02
Algorithm 2 9.00 0.02 0.38 9.40
Algorithm 3 24.00 0.02 0.00 24.02

Table 3: Computational cost in time (s) of the estimates

Step Time Algorithm

ũP = uP 42.0 1
ũP 9.0 2
ũP 24.0 3
RP

�
ũP

�
1.0⇥ 10�3 -

RN
�
ũP

�
2.0⇥ 10�3 1,2,3

✏Pit ⇡ @RP

@uP

�1
RP

�
ũP

�
3.6⇥ 10�1 2

@RN

@uN INP ✏Pit 3.0⇥ 10�3 2
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Table 4: Computational cost in time (s) of multiple estimates with “correction” term

Time per 1 estimate Time per (P � 1)Ndim estimates

⌧NP 3.65⇥ 10�1 4.05⇥ 10�1

⌧NP and ⌧̂NP 3.70⇥ 10�1 4.50⇥ 10�1

is cheaper than Algorithm 1 too. It should be noticed that the computation of the estimates, Algorithms
1-3, cost about the same as it costs to converge to the approximate solution on the fine mesh. These results
support (4.11-4.13).

In Tab. 3 we show a more detailed analysis of the computational cost of each step of Algorithms 1-3.
The results support (4.1-4.7).

In Tab. 4 we show the time required to estimate the the truncation error or the truncation error and
the isolated truncation error on any coarser mesh. Additionally we show the time required to estimate the
truncation error or the truncation error and the isolated truncation error on all the coarser meshes. As
assumed in Sect. 4.1.3, the cost to get one estimate is the same order of magnitude as the cost to estimate
the truncation error and the isolated truncation error on all the coarser meshes, N < P .

6 Conclusions

The ⌧ -estimation method of Brandt [6] has been successfully extended to the DGSEM. The extension ex-
ploits the characteristics of the method. One of the features of the DGSEM is the ability to estimate the
isolated truncation error. The isolated error is better for determining the error within an element, which
will be important for adaptation. Three algorithms to estimate the truncation error and the isolated trun-
cation error have been developed. Two of them are quasi-a priori in the sense that the fully time-converged
solution on the fine mesh is not required for the estimation of the error. The algorithms estimate both
errors on all the coarse meshes, which provides information about the anisotropy of the solution as well as
its rate of convergence in polynomial order. The truncation error estimates retain the spectral accuracy of
the DGSEM and cost about the same as calculating the solution.
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