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SUMMARY

A discrete framework for computing the global stability and sensitivity analysis to external perturbations for
any set of partial differential equations is presented. In particular, a complex-step approximation is used to
achieve near analytical accuracy for the evaluation of the Jacobian matrix. Sensitivity maps for the sensitivity
to base flow modifications and to a steady force are computed to identify regions of the flow field where an
input could have a stabilising effect. Four test cases are presented: (1) an analytical test case to prove the
theory of the discrete framework, (2) a lid-driven cavity at low Reynolds case to show the improved accuracy
in the calculation of the eigenvalues when using the complex-step approximation, (3) the 2D flow past a cir-
cular cylinder at just below the critical Reynolds number used to validate the methodology, and finally, (4)
the flow past an open cavity presented to give an example of the discrete method applied to a convectively
unstable case. The latter three (2—4) of the aforementioned cases were solved with the 2D compressible
Navier—Stokes equations using a Discontinuous Galerkin Spectral Element Method. Good agreement was
obtained for the validation test case, (3), with appropriate results in the literature. Furthermore, it is shown
that for the calculation of the direct and adjoint eigenmodes and their sensitivity maps to external pertur-
bations, the use of complex variables is paramount for obtaining an accurate prediction.

KEY WORDS: Navier—Stokes; discrete approach; linear stability analysis; structural sensitivity; sensitivity
to steady forcing; complex differentiation

1. INTRODUCTION

The dynamics of complex aerodynamic flows such as shear layers, cavities, wakes or detached
flows present unstable behaviours when some physical dependent parameter (e.g. Reynolds or Mach
number) surpasses a critical threshold. In these cases, unstable modes appear and their temporal
evolution drives the system dynamics to a new equilibrium configuration, sometimes called the
saturated regime. Linear stability analysis studies the appearance and evolution of these modes that
are related to parameters involved in the problem [1-3]. Although several examples of stability
analysis for different flows can be found in the literature, and are very well documented [4-9], the
prediction of the onset of unsteadiness or the characterization of unstable structures in complex 3D
geometries or at high Reynolds numbers is still an open problem.
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Recent studies [10, 11] are oriented towards the investigation of the sensitivity of the unstable
eigenmodes (i.e. growth rates and frequencies) to the introduction of perturbations in the base flow or
to external forces. The pioneering work of Strykowski and Sreenivasan [12] showed, experimentally,
that introducing a small object in the wake of a cylinder may delay the onset of unsteadiness, well
above the critical Reynolds, for the first bifurcation of Hopf type (at Reir ~ 47) [13, 14]. In a more
general framework, the introduction of a small perturbation in the flow (sucking or blowing, changes
to the equilibrium condition or introducing a small control object that acts as a steady force) can
have a stabilising or destabilising effect [15]. Sensitivity analysis identifies the regions of the flow
where introducing such a modification has the greatest effect on the stability of the flow. This could
be of importance to suppress laminar-turbulent transition, to enhance mixing (e.g. vortex generator
on a wing to keep boundary layer attached), to prevent the flow from detaching or even to provide
means for acoustic control [16, 17].

The numerical study of flow sensitivity relies on the use of adjoint eigenmodes [18, 19]. These
modes, which are eigensolutions of an adjoint system of equations, provide receptivity information
to external forcing [19, 20]. Sensitivity maps are provided by combining direct and adjoint modes.
The importance of adjoint modes and sensitivity maps, together with the mathematical machinery
required for the study of the sensitive flow regions to different parameters, has been studied by
different authors [8, 18-21]. In addition, these studies provide detailed reviews of the ‘state-of-the-
art’ techniques in linear stability analysis and sensitivity analysis, addressing the relevance that the
adjoint plays in the analysis of these problems, and also giving a comprehensive overview of the
aforementioned techniques and outlining the possibilities of linking sensitivity information with
open/closed loop control.

More precisely, the mathematical formulation and the numerical computation of sensitivities has
been detailed by Giannetti and Luchini [10], who showed that the structural sensitivity or ‘wave-
maker’ region may be obtained by combining (using a particular norm) the direct and adjoint
eigenmodes. More recently, Marquet et al. [22] formulated a method using a continuous approach
and Lagrange multipliers to obtain equations for the sensitivity fields for the incompressible Navier—
Stokes (NS) equations. In the continuous approach, the adjoint equations are derived from the direct
equations (i.e. continuous in space), which are then linearised. Subsequently, the continuous direct
and adjoint operators may be formed, and finally, these continuous operators are discretised. Further-
more, Meliga, Sipp and Chomaz [23] computed, also using the continuous framework, the sensitivity
to base flow modifications for axisymmetric flows in the compressible regime (subsonic). Meliga
et al. [24] also employ sensitivity analysis to identify the regions sensitive to a steady force with
the aim of using a small control cylinder to alter the shedding frequency aft a D-shaped cylinder
geometry.

An alternative is provided by the discrete approach, which is the focus of this paper. The discrete
approach requires first the numerical discretisation of the direct equations, which are subsequently
linearised to form the direct discrete operator. Chandler et al. [21] compared the discrete and the
continuous approach for the low Mach number equations for a low-density jet and showed that both
methods provide very similar results. On the one hand, the continuous approach, for this particular
case, showed a faster rate of convergence while requiring a less resolved mesh. On the other hand,
the discrete approach was found to be more straightforward to implement. Mettot et al. [25], inde-
pendently of the authors of this paper, developed a method using a discrete framework to compute
the sensitivity to base flow modifications and to steady forcing for high Reynolds number flows
with turbulence models using a second-order method for computing the Jacobian and the sensitivity
matrix. Additionally, they use finite volumes to discretise their governing equations. They further
apply this methodology for finding the regions to place a small control cylinder for stabilising the
flow past a D-shaped cylinder in [26]. We hereby extend the methodology of [25, 26] by using a
first-order complex-step approximation for the Jacobian and first order for the computation of the
sensitivity matrix. It will be shown that the method of the complex-step approximation is advan-
tageous in that it will obtain a higher degree of accuracy (near analytical) with a lower cost of
computational time.
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In this paper, a methodology to perform global stability and sensitivity analysis using a fully
discrete approach is presented. To the authors’ knowledge, this is the first such paper to compute
the Jacobian using complex variables for a fluid dynamics problem. Furthermore, this is the first
sensitivity analysis study to use a high-order spectral element method for the numerics. This study is
limited to modal analysis. Non-modal analysis [20], although undoubtedly important, is not within
the scope of this work. The discrete approach can be implemented into any kind of computational
fluid dynamics (CFD) solver, e.g. laminar or turbulent, or compressible or incompressible. It allows
for computing the direct and adjoint modes of the flow, either stable or not, and the sensitivity
formulation to these modes. Henceforth, this paper extends the discrete approaches of [21, 25, 26]
while also closely following the mathematical formulation of the continuous approach of [22] to
retrieve the sensitivity fields for a steady force and to base flow modifications.

The rest of the paper is organized as follows: Section 2 provides the mathematical formulation of
the discrete approach; certain details about the application of complex algebra to the computation
of function derivatives are included. Section 3 gives a description of the algorithms employed and
details their practical implementation. In Section 4, various test cases are included: an analytical test
case, lid-driven cavity, circular cylinder and an open cavity. The paper finalises with the conclusions
in Section 5.

2. MATHEMATICAL FORMULATION

In what follows, we consider a discretisation of a system of partial differential equations (PDE),
typically NS equations, in a computational mesh defined over the problem geometry. The method
is independent of the particular numerical scheme used to discretise the spatial derivatives of the
equations. However, in this paper, a Discontinuous Galerkin Spectral Element method has been used
(see details in Section 3.2). We consider the time varying system

dq
where q is a vector of dimension N (N = no. of grid points X no. of equations), which contains the
number of degrees of freedom for the problem, and F(q) is a vector of dimension N that defines the
numerical fluxes obtained by the discretisation of the continuous PDE in the computational mesh.
Linear stability analysis is charged with determining whether a small disturbance on some base
state (the base flow q) will become unstable. Hence, the flow is decomposed into a base flow (base
state) plus an infinitesimal perturbation (disturbance) such that ¢ = q + q’. Inserting this decom-
position into Equation (1) and then taking Taylor series about the base flow for the numerical fluxes
and neglecting second-order (q')? terms gives

dq' _ 0F(q)

!/
. 2
i oq |.9 )

q

It is assumed that a base flow or steady solution (q) that fulfils F(q) = 0 can be computed.
Now, we consider these perturbations in the form of normal modes ¢ = e°’, which, when
inserted into Equation (2), yields the following eigenvalue problem:

dF(q)
dq

oq =

Q= J@4d, 3)
q

where J(q) = al};—((:‘) _is herein referred to as the Jacobian matrix and q is the direct eigenmode of
) q
the complex eigenvalue, 0 = o, + 0;.

In this work, the Jacobian matrix is obtained following a discrete approach: the NS equations are
first discretised, Equation (1), and then linearised around a base flow, Equation (2). This approach
does not require the implementation of a new solver specifically written for the linear Navier—

Stokes equations, and any existing NS solver may be used for computation. However, the detailed
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Figure 1. Figure showing an example of the compact stencil used in Jacobian computation. The green
square indicates where the perturbation is applied, and the red squares indicate the elements to which the
information travels.

implementation of the Jacobian from the numerical scheme may be difficult. A practical alternative
is to obtain the Jacobian by numerically differentiating the numerical fluxes around the base flow by
using a finite difference approximation. Indeed, using Taylor series,

F(q+€k) =F(q) + ¢ _81;((1)
q

kK + O(e?), 4)
i

where k is a numerical disturbance (no physical relevance) used to evaluate the Jacobian and € is a
relatively small number. Neglecting order €2 terms and rearranging gives

F(q+ k) —F(@ _ F(q
€  0q

k~ J@k. 5)
q

From a practical implementation point of view, to calculate the jth column of the Jacobian,
the jth row of the k vector is set to 1, while the other rows are set to 0. This process is succes-
sively repeated for as many number of degrees of freedom of the matrix. The first-order formula,
Equation (5), requires the computation of N numerical fluxes, with N being the dimension of q.
In compact schemes, the perturbation introduced in an element will only affect a limited number of
elements (perturbation stencil). In order to reduce the computational cost, only the fluxes in the ele-
ments that are part of the stencil need be evaluated. An example of the stencil is given in Figure 1.
The numerical evaluation of the Jacobian is well established and is commonly used within the linear
stability CFD community [25, 27, 28], to name a few.

In addition, higher-order difference schemes for computing the Jacobian can improve the accu-
racy of the numerical Jacobian: these schemes have small numerical errors and can be easily
implemented but at the expense of additional computation of fluxes [29]. An alternative to improve
the accuracy of the Jacobian without sacrificing the computational cost is to use complex variables.

2.1. Complex-step derivative

The method for computing the Jacobian, Equation (5), is a forward first-order finite difference
approximation. To obtain accurate results, one needs to choose a value for the increment € that is
small enough such that the truncation error is not significant while remaining not too small to keep
round-off errors controlled when subtracting numbers that are almost equal.
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An efficient way to overcome these difficulties is to use complex variables for the computations.
The complex-step derivative approximation can be used to determine first derivatives providing near
analytic accuracy. Early work on obtaining derivatives via a complex-step approximation in order
to improve overall accuracy can be found in [30, 31].

The advantages of the complex-step derivative approach over a standard finite difference include
the following: (1) the Jacobian approximation is not subject to subtractive cancellations inherent to
round-off errors, (2) it can be used on discontinuous functions and (3) it is easy to implement in a
black-box manner, thereby making it applicable to general non-linear functions.

The derivation of the complex-step derivative approximation is accomplished by approximating
a non-linear function with a complex variable using a Taylor series expansion:

f. d*fé

. df . .
vKX+lO==f&)+3;w——dﬂ-i—fxw3+€ﬁ7 (6)

taking the imaginary part of each term and neglecting higher-order €2 terms, we obtain the
approximation

ar _ Im[f()ec +ie)] + 0@, o

dx

where I m denotes the imaginary part.

Additional information can be found in [32], which shows that not only a wider range of step
sizes can be selected for the complex approach, but a higher level of precision can be achieved (near
to machine precision). On the downside, the use of this approach means that it is necessary to imple-
ment a complex version of the NS fluxes. However, modern computer languages (e.g. FORTRAN
90, C++, etc) enable the ease of implementation of these changes through function overloading or
template techniques.

2.2. Adjoint operator

The corresponding discrete adjoint matrix can also be calculated. First, an inner product for a pair
of continuous vectors, ¢ and d, is defined as

(€, d) :/ ¢ddQ = ¢*Md, ®)
Q

where * denotes the conjugate transpose, ¢ and d are the discretised version of ¢ and d in the
computational domain, €2, and M is the mass matrix associated to a spatial discretisation selected
for the discrete approach. For example, in our high-order Discontinuous Galerkin (DG) solver, the
mass matrix is diagonal (see Section 3.2).

A matrix, A, and its discrete adjoint, AT, can be related in the following expression:

(A¢,d) = (¢, ATd). ©)
Considering the definition of an inner product defined in Equation (8), we obtain

(Ac)*Md = ¢*MAtd,
c*A*Md = ¢*MA™d,
A*M = MAT,

M !A*M = AT,

(10)

an expression that relates the conjugate transpose of the Jacobian to its adjoint.
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Therefore, the standard direct and adjoint eigenvalue problems are given by

J@q =o0q, an

JT@a" =o0*q", (12)

where according to the definition of the adjoint Equation (10), J*(q) is the adjoint of the Jacobian
and 7 is the adjoint eigenmode.

2.3. Sensitivity maps

The interest for sensitivity analysis is how an eigenvalue will change, if at all, with some arbitrary
modification to the flow. In this work, we consider the sensitivity of the eigenvalue subject to a
modification of the base flow, §q, or steady forcing, dq¢. If Ao is defined as the variation of the
eigenvalue subjected to external perturbations, the following relation holds [22]

Ao = (V40.58). (13)

Aqo = (Vq0,8qs). (14)

The resulting sensitivity fields Vgo, Vg0, can be obtained following the method of Lagrangian
multipliers [20], which is aimed at maximising the change in the variable, o, subject to some
constraints. This approach is described by Marquet er al. [22] to derive the equations for the
sensitivity fields in a continuous approach. Here, we extend this analysis to a discrete approach.
The mathematical formulation details are given in Appendix A, and only the final results are
summarised here:

Vio =B (@. 94", (15)

Voo =37 = JT@)'B*@ 04" = 3T @) Vgo. (16)

Here, q* is the adjoint of the base flow, obtained from the solutions of Equation (16), and
B(q. q) is the sensitivity matrix, obtained through differentiating the Jacobian and direct mode
corresponding to the most unstable eigenvalue with respect to the base flow:

_ . 0J(@a)
B(q.q) = 9 (17)
q
Additionally, a normalization condition for the eigenmode  and its adjoint ¢ is obtained:
(@".4) =1 (18)

3. ALGORITHMS

The procedure for performing sensitivity analysis, when using a discrete approach, is summarised
here:

1. Calculate the base flow by solving a steady solution of system of PDEs, Equation (1).
Compute the Jacobian matrix using complex variables, Equation (7).

Compute the adjoint matrix, Equation (10).

Solve the direct and adjoint eigenvalue problems, Equations (11) and (12).

Normalize adjoint modes, Equation (18).

Compute the sensitivity matrix, Equation (17), and multiply with leading adjoint mode to get
sensitivity to base flow modifications, Equation (15).

7. Solve the system, Equation (16), to obtain the sensitivity to a steady force.

ANl e
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3.1. Implementation details

In order to implement the previous algorithms, a NS solver with the capability to compute the fluxes
using complex variables is necessary. Following Equation (7), the j th column of the Jacobian matrix
is obtained by computing

where the vector K is set to 1 in the jth row and to O in the other entries. The previous formula
includes an error of O(e2), and so it is expected that for € &~ 10~7, machine precision is obtained in
the computation of the Jacobian.

Following each computation of the jth column of the Jacobian matrix, only the non-zero values
that are part of the stencil are stored in the aptly named compressed sparse column format. With
this format, the matrix now comprises three vectors: a vector containing the cumulative number of
non-zeros per column that has a dimension equal to that of N + 1, a vector containing the row
index for each of the non-zero values that intuitively has a dimension equal to the number of non-
zeros and a vector containing the non-zero values of the Jacobian that again has the dimension equal
to the number of non-zeros of the problem. The number of non-zeros will depend on the number
nodes in the mesh, the number of equations being solved and the size of the stencil that is computed
for the jth column of the Jacobian matrix. For example, the number of degrees of freedom (N)
for the case of flow around a circular cylinder, described in Section 4.3, is equal to 64 000, which,
if formed explicitly in double precision, would require almost 31 GB of memory (64 000%). By
using the compressed sparse column format, the number of non-zeros reduces to 41 million, which
corresponds to a total memory, for all three vectors, of 0.61 GB.

It is evident that the number of non-zeros per row (note: the aforementioned vector contains the
number of non-zeros per column) for the Jacobian matrix is equal to the number of non-zeros per
column for the adjoint matrix. Thus, a simple algorithm is used to transpose the Jacobian to form
the adjoint matrix without explicitly forming the adjoint.

The computation of the sensitivity matrix, B(q, q), is performed in the following way, since, the
only resource available is the NS fluxes F. Moreover, we have to keep in mind that an explicit
version of the Jacobian is not known, only its numerical values. From its definition, it follows that
B(q, q) is a linear function of ¢ = r + iqp and a non-linear function of q through the Jacobian
of F. Thus,

_ . 0J(9)q
B(@.q) = w (20)
q
can be decomposed into its real and imaginary parts:
_ . A= A 0UJ(@) L 0J(Q)4
B(q,q) = Br(q.q) +iB/(q,q) = ( (gléqR) + i ( (aq(_in). 21)
Additionally,
_. OF (@] .
J(@q = T@ q (22)
oq g

(for either the real or imaginary part of q) is simply the directional derivative of F(q) along q; thus,

F@+ e1d) — F(@
J@i = (q“lj) @ | o). 23)
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Therefore, neglecting order €; terms,

W@d 1 IF@
aq e aq

_0F@)
qte1q dq

q

1 R@
T

-J ((_1)) ; (24)
qte1q

where the definition of the Jacobian, Equation (3), has been used. The right-hand side expression
can be evaluated using complex variables, thus giving the following expression for the sensitivity
matrix:

B(@.d) = é [(lm(F(q + e;fnz + iek)) _J@) v (lm(F(q + €1 +iek) J@)] _

(25)

In a similar fashion to the computation of the Jacobian in Equation (19), Equation (25) is evaluated
by successively computing columns of B(q, q) by setting one row of vector k to 1 and the rest to
0. In the previous expression, only one column of the Jacobian J(q) is considered at each time,
although one can consider computing, in one iteration, all the non-interacting columns. Additionally,
the sensitivity matrix, B(q, q), or its conjugate transpose, need never be formed explicitly for the
calculation of Equations (15) and (16). From expression (10), it can be seen that Equation (15) can
be written explicitly as

Vego =M 'B*(q.aMg", (26)

where B*(q, q) is the conjugate transpose of the sensitivity matrix. It is a trivial task to multiply the
mass matrix, M, which, as mentioned in our DG approach, is diagonal, with the adjoint mode ¢ to
give a new vector d:

Vo =M'B*(q.9)d. 27)

Thus, by setting the first row of the k vector equal to 1 and the rest 0, we obtain the first column of
the sensitivity matrix, B(q, q). If we take the complex conjugate of this vector, we will get the first
row of the transpose of the sensitivity matrix, B*(q, q). By multiplying this row vector now with
the vector d, we obtain a scalar value. We proceed to multiply this with the first row of the inverse
of the mass matrix, M~!, which returns the first row of the sensitivity to base flow modifications
vector, Vgo.

The previous algorithm obtains first-order accuracy in €; and second-order accuracy in € and
requires three computations of the fluxes per grid node. Second-order precision in € can be easily
obtained by using a central difference scheme in Equation (23) but at the additional cost of a new
evaluation of the fluxes.

In Section 4, expressions (19) and (25) are first checked against a simple analytical test and then
applied to the lid-driven cavity flow, to the solution aft a circular cylinder and to an open cavity flow.

3.2. High-order Navier—Stokes solver

The computationally demanding nature of the NS solution, in the stability analysis context,
leads to the selection of high-order numerical schemes for the numerical discretisation of system
Equation (28). High-order methods (spectral type methods) have been extensively used in CFD due
to their accuracy and efficiency in the simulation of fluid flows. In particular, these methods are suit-
able for problems where high accuracy is required and, hence, are well suited to track the evolution
of small perturbations as in stability analysis.

The numerical scheme used in this work discretises the compressible NS equations following a
Discontinuous Galerkin Spectral Element Method (DGSEM [33]) for the spatial operators, coupled
with a time integration scheme of order 3. The DGSEM is a nodal collocation form of the dis-
continuous Galerkin method where the solution is approximated by a tensor product of Lagrange
polynomials and where inner products are evaluated using Gauss-Legendre quadrature [33, 34].
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A summary of the mathematical formulation of the DGSEM is now presented. The general 3D for-
mulation is detailed hereafter, but the test cases considered in this paper, which employ the DGSEM
method, are strictly 2D.

The NS equations constitute a system of PDEs that can be shortly written in vector form as

?)_(zl + V-F(q) =0, (28)
where q represents the vector of conservative variables and F(q) represents the 3D fluxes, including
convective and diffusive in the three coordinate directions.

To solve our set of equations in general 2D or 3D geometries, the original domain is divided into
non-overlapping hexahedral sub-domains, Eq, such that Q = )", E4. Inside each sub-domain, a
polynomial of degree, P, is used to approximate the unknowns and the fluxes, q, F; thus,

P P
q" = Z Q. k®ijk. F = Z F(qi,,6)®i,j k. (29)
i,j,k=0 i,j,k=0

where

®; ik = Li(x)L;j(y)Li(2)

is the tensor product of the Lagrange interpolant in the nodes i, j,k and q; ;i is the value of
the unknown in each computational node. In this work, the nodes in each direction follow a
Gauss-Legendre distribution, and the basis functions L ; j x) are taken as the Lagrange interpolant
at these nodes.

Reconsidering Equation (28), we obtain, at an element level, the following discretised equation:

P
YL g.pr =, (30)
ot
DGSEM makes use of the Garlekin weak form of the equations and a discontinuous treatment of
the interfaces and boundaries. Thus, Equation (30) is multiplied by a test function (the same function
as the basis for the Galerkin method) and integrated in the computational space, then the error is
forced to be orthogonal at each test function ®; ; & in a mesh element Eyq, yielding

aqP ..

(T,qa,-,j,k) +(V-FP @, ;1)E, =0, (i,j,k)=0,...,P,
Esd

with (a.b)g, = |, Ey ab d2, defining an inner product (typically the L, inner product). After

integrating by parts, we obtain

aqf -
(%,‘Di,/’,k) — (VO jk, FP)E, + /E ®; i xFF -ndS =0, (€19
Esd sd

where the third term (the surface integral) extends over the boundary dEy of the computational
element Eyy, with external pointing normal n. This boundary may lie at the interface between two
elements or at physical boundary conditions, and in both cases, the treatment is similar. Note that
all integrals in Equation (31) can be numerically evaluated using Gauss quadrature.

To obtain a solution over the complete discretised computational domain (2 = ), E), it is
necessary to sum all the element contributions:

aq® >
(T,d%,,,-,k) ~ (VOiu. F o+ ) / ;4 F"(n.q", g*)dS =0, (32)
Q Y
yel
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where I' denotes the set of internal edges in the mesh €2. In addition, note that we have replaced
F? with F*(n, %, q®) in the surface integral. F*(n, g, q®) represents the numerical flux between
two consecutive elements in the mesh (Left and Right). These numerical fluxes arise from the
discontinuous Galerkin setting, where we consider that each element is disconnected from the next
and hence contains a complete set of degrees of freedom to represent a polynomial of order P.

Taking into account the decomposition of the unknown in Equation (29) and the orthogonality of
the Lagrange basis in the Gauss nodes, the following expression is finally obtained for the integrals
of Equation (32):

aqz,] k

o A DuF A DV + D) =0, (k) =0, P, (33)

The discrete divergence (second term of the previous equation) is obtained after the numerical
integration of the second and third terms of Equation (32). Gauss quadrature is used to evaluate
these integrals, giving

P
L(X) x=1
DxFil’j,k = Fl*(xvyja Zk) - Z kdzm
iolx=0 -9
2% J(J’) ! ) 4
DyFt gk T =F7(xi.y.z0) —— Z ,mkd},m (34)
w,j y=0 =
m=0
L[ § Ly (5w
D.F; = F*(xi,y;.2) Z F} udim. with  dp , = =22
wk z=0 m=0 wm

In the previous expression, w, are the Gauss integration weights in directionn = x, y or z; L} (sp)
is the derivative of the Lagrange interpolant evaluate in the node s,, and F* are the interface fluxes.
These fluxes can be differentiated into viscous or inviscid. Computation of inviscid fluxes requires
taking into account the left and right values of the unknowns at each interface. Let us note that tak-
ing the average value of the unknowns q at the interface (equivalent to a central scheme) provides
a numerically unstable scheme when the convective terms dominate and is only recommended at
very low Reynolds numbers. For larger Re, an up-winding scheme should be used instead. The
most common way to introduce up-winding in the scheme is by solving the equivalent Riemann
problem at the interface. In the particular case of Euler equations (or inviscid NS), a different
Riemann solver has been already developed. In this work, a Roe Riemann solver has been used in
the computations [35].

The viscous fluxes require discretisations for elliptic type equations. A simple approach consists
of averaging the right and left viscous fluxes at the interface, but this solution has been proved
numerically unstable for implicit schemes. A more general framework for derivation and analysis
of discontinuous Galerkin methods for elliptic equations (e.g. interior penalty, Local Discontinuous
Galerkin, Bassi-Rebay) was derived in [36]. Additional information of this methodology can be
found in [33]. In our explicit time marching method, we use the Bassi-Rebay approach to calculate
the diffusive fluxes.

Once the numerical fluxes and associated Jacobian are obtained, the eigenvalues and eigenvectors
are computed using a shift and invert methodology to obtain the most unstable eigenvalue. This
methodology requires the computation of a lower upper (LU) factorisation of the Jacobian matrix
J(q), which is performed using the libraries for sparse matrices of MUMPS [37]. Subsequently, the
Arnoldi iteration is employed; a direct solver of MUMPS is used to build each column of the Krylov
subspace, and LAPACK [38] is used to recover the eigenvalues and corresponding eigenvectors. The
influence of the dimension of Krylov subspace used in the Arnoldi methods was assessed and finally
set to 1000 in all cases. Using this dimension for the Krylov subspace, no variations in the magnitude
of the most unstable eigenvalues were observed. Additionally, the computation of the sensitivity
to a steady force requires the solution of Equation (16), which is performed using the current LU
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factorisation of J(q) previously obtained with MUMPS. In this work, we have used MUMPS in
parallel. This entails writing an algorithm that splits the matrix onto each local processor. For larger
problems, where LU factorisation and direct solvers are impractical, the Krylov iterative methods
generalized minimal residual method (GMRES) and preconditioners (incomplete LU factorisation)
may be more appropriate, although this extension is not considered here.

4. TEST CASES

To prove the theory of the discrete framework and to show the accuracy of the methodology, a sim-
ple problem with analytical solution is presented. Subsequently, the lid-driven cavity problem is
presented for validation purposes. This applies the methodology to the compressible Navier—Stokes
equations but for a case where the dimension of the Jacobian is relatively small to compare the dif-
ference in eigenvalues when using (19) and (25). The NS flow aft a circular cylinder at Reynolds
number 45 and Mach number (Ma) of 0.2 is presented to give an example of a globally unstable
case. These results are compared with those of other authors [10, 22] to further validate the method-
ology and implementation. Finally, the flow past an open cavity is provided to give an example of a
convectively unstable case.

4.1. Analytical test case

Let us define the flux vector as

o
F(q) = | uw? |, (35)
oW
where
a= @ 0,wT. (36)

It may be easily checked that the analytical Jacobian and sensitivity matrices are given by the
following:

vou 0 42 @1 0
J@ = | w? 0 3uaw? |, B(q.4) = | 3w?§s 0 3w?§, + 6uwgs |, (37
0w 0 4 0>
where
4= (41.42.43)". (38)

The Jacobian and sensitivity matrices are then calculated using the algorithms detailed in the
previous section, subject to epsilon, € and €, values ranging from 10° to 10715, Results using
real and complex variables are compared. The relative error between the numerical and analytical
matrices are plotted in Figure 2.

If we arbitrarily take 1072 as the maximum allowable error, which is acceptable, and examine
Figure 2, the following observations and conclusions can be drawn:

1. Figure 2(a): Calculating the Jacobian with real variables using a first-order approach restricts
the choice of € to a narrow range 107> to 10~!!. Using a second-order central difference
approach for the numerical evaluation of the Jacobian enables more flexibility in the choice of
epsilon, but a second-order approach is more computationally expensive because it requires
the calculation the fluxes twice.

2. Figure 2(b): Calculating the Jacobian with the complex-step approximation gives acceptable
results for any value of epsilon smaller than 10725, Furthermore, error that levels out at
machine precision (~ 107!) can be obtained for e = 1077.
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Figure 2. Comparison of numerical and analytical Jacobian, (a) and (b), and sensitivity matrix, (c) and (d),

for test case Equation (37) as a function of €, Equation (19), and €, Equation (25). The sensitivity matrices

computed in (c) and (d) are computed using the € value in the corresponding Jacobian calculation (real or
complex) that gives lowest relative error. The sensitivity matrix is calculated using Equation (25).

3. Figure 2(c): Using a first-order method, with real variables and the epsilon value, €, held at
its optimal value from Figure 2(a) (10~8), for the calculation of the sensitivity matrix B(q, §)
gives an acceptable result only when a value of epsilon, €, equal to 1072 is selected. In
addition, it can be seen that little improvement on relative error and the range of acceptable
epsilon, €1, values is achieved by moving to a second-order method (¢ = 1078).

4. Figure 2(d): A first-order method with the complex-step approximation for the sensitivity
matrix enables a greater range of epsilon, €}, values (1072 to 1071%) with improved accuracy.

It is evident that for the calculation of both the Jacobian and sensitivity matrix that the complex-
step approximation method is more robust and more accurate with fewer flux evaluations. This
alone warrants the use of this method, but if one wishes to achieve an ‘acceptable’ solution for the
sensitivity matrix, it becomes paramount that the complex-step approximation method is selected.

4.2. Lid-driven cavity: choice for € and €1

The effect of the choice of epsilon values for the high-order compressible NS solver will now be
explored. It was shown in Section 4.1 and in [39] that for € >~ 107 the relative error reduces to
machine precision when using the complex-step derivative approximation. The lid-driven cavity is
run with the following conditions: Re = 200, Ma = 0.2, four quadrilateral elements each with
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Figure 3. Comparison of first-order, second-order and first-order complex-step approximation methods for
the numerical differentiation of the fluxes to calculate the Jacobian. The relative error for the two most
unstable eigenvalues are shown for the lid-driven cavity case.

P = 8. A base flow is obtained, and then the Jacobian is computed using a first-order method,
Equation (5), a second-order method (see [25]), and a complex-step approximation, Equation (7).
Figure 3 shows relative error of the two most unstable eigenvalues for the three aforementioned
methods with varying epsilon, €. It is assumed that the true values for the eigenvalues are calculated
with Equation (7) using € = 10715, and these are then used as the reference values when calculat-
ing the relative error. From Figure 3, it can be seen that the first-order complex-step approximation
method converges at € = 107 for a relative error of 10~!°. Furthermore, both the first-order and
second-order methods initially decrease (truncation error is decreasing) to a relative error of ~ 1078
for epsilon, €, ranging from 107 to 10~7. The relative error begins to increase (round-off error
becomes significant) for € > 1077. Close inspection of € values ranging from 10~! to 1073 reveals
that the first-order and second-order methods converge with slopes of 1 and 2, respectively. The
complex-step approximation method converges with a gradient of 2, and significantly, but unlike
the second-order method, it only requires one evaluation of the fluxes. Furthermore, in our imple-
mentation, the cost for one computation is comparable between the real and complex formulations.
Indeed, the complex approximation provides greater accuracy whilst having a lower computational
cost.

The choice of €; is more challenging. Mettot et al. [25] present a value of €; = (5x107%)(|q|+1)
based on the work of [28, 40]. This value corresponds well with the optimal value for €; given
for the analytical case in Figure 2(d). There is only a necessity to tune €; to reduce the error in
Equation (25) because the Jacobian, J(q), is computed to near analytical accuracy. For the rest of
this paper, we take € = 1071% and ¢; = (5 x 107%)(|q| + 1).

4.3. Flow around a circular cylinder at Re = 45

The flow aft a circular cylinder is studied for Re = 45 (below critical Reynolds number). This prob-
lem, studied by several authors (see Table I), shows a Hopf bifurcation at the at Re. ~ 47. Above
this, a global instability (Kdrmdn vortex street) develops. We have chosen Re = 45 to compare the
accuracy of our methodology with other authors’ work in the literature [22, 25]. Contrary to other
authors [10, 22, 41], the compressible NS are used in this study; therefore, in order to reproduce
previous results and for validation purposes, the Mach number is set to 0.2, being a compromise
between numerical accuracy and compressible effects.

After a preliminary study for the convergence of the solution (not shown), the final mesh is
composed of 640 quadrilateral elements with polynomials of order P = 4. As the state vector
is composed of four variables, the number of degrees of freedom (/) for the problem is 64 000
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Table I. Numerical comparison of the non-dimensional frequency
of the least stable eigenvalue for the circular test case.

Frequency (f = 5L)

Marquet et al. [22] Re = 46.8 ~0.116
Giannetti and Luchini [10] Re = 45 ~0.1177

Ferrer et al. [41] Re = 45 ~0.118

Current study Re = 45 ~0.118
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Figure 4. Overview of the dimensions and boundary conditions for (a) cylinder and (b) open cavity.

(a) (b)

Figure 5. Cylinder base flow fields; (a) pu and (b) pv.

(No of DoF = 640x (P+1)? x No of Equations), where the number of equations is set to 4 (2D NS
compressible equations).

The base flow is a steady solution (F(q) = 0) and is computed by time marching the unsteady
solver (third-order Runge—Kutta method) until convergence. The computational domain and outline
of the boundary conditions is given in Figure 4. Figure 5 shows the base flow fields for pu and pv.
The symmetric and stable recirculation bubble can be seen aft of the cylinder (5(a)). The concentra-
tion of elements in the region local to the cylinder is also visible in this figure. For this base flow, the
Jacobian and its eigenvalues are computed following the procedures described in previous sections.
We are only concerned with the least stable eigenmode (the one that defines the onset of unsteadi-
ness). Finally, the frequency associated to the least stable perturbation is compared in Table I against
solutions provided by other authors, validating our methodology and analysis.



SENSITIVITY ANALYSIS: A DISCRETE APPROACH

-5

X

Figure 7. The real part of the cylinder adjoint eigenmode fields; (a) (pu)™T and (b) (ov)T.

Figure 6 shows the real part of the direct eigenmodes associated to the least stable eigenvalue for
the pu (left) and pv (right) components of velocity. The pu eigenmode is antisymmetric about the
centreline (y = 0), whereas the pv eigenmode is symmetric about the same line. Both show similar
structures to that of the Karman vortex street, which is present at Reynolds numbers close to the
critical value.

Similarly, Figure 7 shows the real part of the adjoint velocities, (ou)™* (left) and (pv)™ (right).
As expected, but contrariwise to the direct eigenmode, the structures of interest for the adjoint are
located upstream of the cylinder [19]. The structural sensitivity of the flow can be calculated using
the dot product of the velocity components of the direct and adjoint eigenmodes (||||.|[G ™) and
is shown in Figure 8. According to these results, the maximum sensitivity region (also called the
wavemaker) occurs at the centre of the two distorted ovals at (x = 2.5 and y = £0.5), namely the
region of flow where small modifications produce the larger variations in the eigenvalues. Despite
the use of the compressible NS equations, a quantitative and qualitative agreement is obtained with
the results of other authors [10, 22, 41]. The boundary conditions for the adjoint matrix are auto-
matically applied in the discrete framework when solving the system, Equation (12), as stated by
[10]. Furthermore, it is also clear from Figure 8 that the wavemaker is far enough from the inlet
and farfield boundaries and therefore the influence of boundary conditions is minimised for this
absolutely unstable flow case.
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Figure 8. Structural sensitivity ||@|. || || for the circular cylinder at Re = 45.

(@ 2

Figure 9. Sensitivity to a steady force; (a) real part, Vg0, and (b) imaginary part, Vq,0;, for the circular
cylinder part.

Finally, Figure 9 shows the real (upper) and imaginary (lower) part of the sensitivity to a steady
force, Vg,0. The results are in excellent agreement with the sensitivity maps published by Marquet
et al. [22]. Three main regions are identified where the flow is most sensitive: (1) one diameter to
two diameters downstream of the cylinder along y = 0, (2) very close (downstream) the cylinder at
plus 45° from y = 0 and (3) very close (downstream) the cylinder at —45° from y = 0.

Moreover, Figure 9 gives us the regions of the flow where inputting a steady force would have
the greatest effect or, to be more specific, the greatest drift in eigenvalue and, hence, stabilise or
destabilise the flow. By examining Figure 9(a), it can be delineated that inputting a steady force at
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(x =1,y = 0) and orientated upstream (opposite direction to the flow) would decrease the growth
rate, 0, and subsequently stabilise the flow. It can be seen in Figure 9(b) that the same force would
result in an increase in the frequency, o;.

4.4. Open cavity flow at Re = 1400

To further validate the method, a convectively unstable case is presented. For a system to be con-
vectively unstable, the instabilities must grow in space but not in time. The open cavity is chosen to
demonstrate the methodology in the context of a convectively unstable flow. The open cavity flow
shows a global instability inside the cavity, while a convective instability develops upstream of the
cavity. The discretised computational domain can be seen in Figure 4 with the corresponding bound-
ary conditions. The inflow boundary condition is computed by solving the Blasisus boundary layer
equations based on the Reynolds number, Re, and a desired boundary layer thickness, ®;pe;. The
Reynolds number, Re = % = 1400 (based on the cavity depth, D, free-stream velocity, U,
and kinematic viscosity, v) and dimensionless boundary layer thickness, @, = % = 0.0337, are
both given as a function of the cavity depth, D. The computational mesh comprises 394 quadrilat-
eral elements, each with P = 4. The problem has been extensively studied by de Vicente [3] and
Mesegur et al. [42], who show that convective stability of the system is strongly dependent on the
outflow boundary condition. Their work is used for validating the base flow at Re = 1400. The out-
flow boundary condition does not affect the frequency, o;, but can affect the growth rate, o, of the
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Figure 10. Open cavity base flow fields at Re = 1400; (a) pu and (b) pv.
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S
Figure 11. The eigenvalue spectrum for flow past an open cavity at Re = 1400. The circled eigenvalue
corresponds to the first Rossiter mode.
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system because the outflow boundary condition can modify the spatial growth of the disturbance for
this convectively unstable case.

The base flow fields, pu and pv, for the open cavity can be seen in Figure 10. These agree well
with other studies in the literature [3, 42].

Figure 11 shows the eigenvalue spectrum computed for the open cavity. The eigenvalue that
corresponds to the first Rossiter mode is selected. This corresponds to the eigenvalue that is circled
in Figure 11. In this case, this is not the most unstable eigenvalue but it is known from [42—44] that
as the Reynolds number increases the growth rate, o,, for this eigenvalue will eventually become
positive. We achieve a frequency of f = 0.236, and Table II compares this result with other studies.
It can be seen that relatively good agreement has been achieved. The eigenmodes corresponding to
this eigenvalue are shown in Figure 12. A structure similar to a Tollmien—Schlichting wave, present
in boundary layer flows, can be seen for both pu and pv. The adjoint modes can be seen in Figure 13.

Table II. Numerical comparison of the non-dimensional
frequency of the least stable eigenvalue for the flow past
an open cavity.

Frequency (f = 5L)

Messeguar et al. [42] ~0.25
Rowley et al. [43] ~0.26
Current study ~0.24

® [

Figure 13. The real part of the open cavity adjoint eigenmode fields; (a) (pu)T and b) (pov)T.
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These modes give information about the most receptive regions, and, as would be expected, these
are found just upstream of the cavity.

Figure 14 shows the structural sensitivity for flow past an open cavity. It can be seen that the
‘wavemaker’ region is located just upstream of the leading edge of the cavity. This is the region just
before the boundary layer detaches, so it is intuitive that this would be the wavemaker. Figure 15
shows the sensitivity of the open cavity to the base flow modifications, Vgo. It can be seen that for
both the growth rate, V4o, and the frequency, Vgo;, the region of the flow that is most sensitive is
located just upstream of the cavity. This indicates here that a base flow perturbation could have a
stabilising effect on the wave that can be seen in Figure 12 for pu and pv. Figure 16 shows the sen-
sitivity to a steady force, V0. Contrariwise to Figure 15, Figure 16 indicates that putting a steady
force inside the cavity will have the greatest stabilising effect. There is also a region downstream of
the leading edge of the cavity where a force could also be put to have the same effect.

5. CONCLUSION

This paper has presented a general numerical methodology for conducting sensitivity and stability
analysis. Although the method could be applied to any PDE containing a spatial operator and a
time derivative, in this paper, it has been investigated for the compressible NS equations. It was
found that it is insufficient to use a standard finite difference approximation to obtain an accurate
sensitivity matrix when analysing a small problem with an analytical solution. To overcome this
problem, the method of complex-step approximation has been used and has shown to provide a far
superior prediction of the sensitivity matrix at a reduced computational cost. It was also shown for
the lid-driven cavity case that near analytic accuracy can be achieved for Jacobian calculation when
using complex variables. The method has been validated using the flow past a circular cylinder at
a Reynolds number below critical Reynolds number. Good quantitative and qualitative agreement
has been found with published data for the same test case, where the continuous approach was used
together with the incompressible NS equations. The sensitivity maps correctly show the regions of
the flow that are most sensitive when subjected to a steady force. Flow past an open cavity was also
presented to give an example of a convectively unstable case. The proposed method also agrees well
in the prediction of the eigenvalues with other authors for this case. The discrete approach offers
advantages over the continuous approach:

1. The adjoint base flow equations do not need to be computed. This is the case for the continuous
approach, but this is achieved for the discrete approach with Equation (10).

2. If a continuous approach was opted for, then to compute the sensitivity to a steady force, the
NS equations (condensed form of Equation (1)) would need to be recomputed but with an
extra source term, V(-,G, inserted.

3. Near to analytic accuracy is achieved for the Jacobian matrix when employing complex
variables.

The application of this methodology to more complex models, including turbulence models and
highly compressible flows, is straightforward and may give valuable information of the regions of
the flow where the applications of a small perturbation can produce the maximum output.

APPENDIX A: DERIVATION OF SENSITIVITY FIELDS

A.1 Sensitivity to a steady force

The discrete mathematical formulation of the sensitivity of a given eigenvalue (eigenmode) to the
introduction of a steady force in the flow is derived herein.
From the steady solution of Equation (1), we consider a forcing term g,

F(@ =qr. (A.T)
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and would like to obtain information about the flow field, where a perturbation would give the
greatest drift in the eigenvalues. Thus, it makes sense to use the method of Lagrangian multipliers,
where we maximise the change in the eigenvalue, Ao, subject to some physical constraints. The
Lagrangian functional reads

L((_l’ o, (,i’ qr, q+9 q+) =0+ <(i+, J((i)(l - CH/D - ((_]+, F((i) - (If)s (A2)

where the complex Lagrangian multipliers, ™ and q*, are the adjoint eigenmodes and adjoint base
flow, respectively. The constraints are the direct eigenvalue problem, Equation (11), and the steady
NS equations with a forcing term, Equation (A.1). Equation (A.2) is differentiated with respect to
the state variable, (q, 0, q). The derivative with respect to the adjoint variables provides the initial
eigenvalue and the NS equations. Derivation with respect to (q, o, q) gives

L

504 = (@, J@ —oDhéq) =0, (A3)

= (J@ —oD*q".8q) =0, (A4)

J"@at = 04", (A.5)
g—i&r =80 +(§", —80Iq) = 0, (A.6)
=80 —80(q".1q) = 0, (A7)

@.a) =1, (A.8)

JL (J(q)q
sada= <q+, (J(—q.)q)8<1> —(a*.J@sq) =0, (A.9)
q 0q
BY@ da*.s9) — JT@aqt.sq) =0, (A.10)
J"@a" =BT (@ @4a+. (A.11)

Three equations are recovered from this method: the adjoint eigenvalue problem, Equation (A.5), a
normalization condition, Equation (A.8), and an equation relating the adjoint eigenmode with the
adjoint base flow, Equation (A.11).

The gradient of the Lagrangian with respect to a steady force ¢ is

oL _
3—3% =(q". 8qp). (A.12)
qr

Assuming that the gradient of the Lagrangian with respect to a steady force and the gradient of
o with respect to a steady force are equal, then the shift in eigenvalue, Equation (14), can be
rewritten as

oL
Ao = (Vq0,8qr) = 8—qf8qf, (A.13)

providing the sensitivity to a steady force as

Vo =q7. (A.14)
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A.2 Sensitivity to base flow modifications

The Lagrangian functional for sensitivity to base flow modifications is

L(@.0.4.4%) =0+ (7. J@4a + 09). q). (A.15)

Differentiating the Lagrangian functional with respect to q, we obtain

= (B¥(@.@4".8q) = (V40.5q). (A.17)

Hence, the sensitivity to base flow modifications is

Vio =B (@.9)q". (A.18)
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