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Abstract In this paper we show how to accurately estimate the local trunca-
tion error of the Chebyshev spectral collocation method using ⌧ -estimation. This
method compares the residuals on a sequence of approximations with di↵erent
polynomial orders. First, we focus the analysis on one-dimensional scalar linear
and non-linear test cases to examine the accuracy of the estimation of the trun-
cation error. Then, we show the validity of the analysis for the incompressible
Navier-Stokes equations. First on the Kovasznay flow, where an analytical solution
is known, and finally in the Lid Driven Cavity. We demonstrate that this approach
yields a highly accurate estimation of the truncation error if the precision of the
approximations increases with the polynomial order.

Keywords spectral methods · ⌧ -estimation · truncation error · uncertainty
estimator
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1 INTRODUCTION

The estimation of numerical errors has been extensively used in numerical simula-
tion [28]. Numerical errors provide valuable information about the quality of the
solution [23,27]. Besides they are directly related to mesh adaptation [37,20]. One
can find di↵erent approaches to the estimation of numerical errors depending on
the numerical error of interest and the estimation method.

In recent years much work has been done on the estimation of the relative
discretization error associated with functional outputs. This family of methods
is called adjoint methodology and was first introduced by Venditti [34]. Adjoint

G. Rubio (Corresponding author), F. Fraysse, J. de Vicente and E. Valero
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methodology permits accurate grid-induced corrections, specially for hyperbolic
problems. However, its main drawback is its cost, as this approach requires the
solution of the dual problem and usually the explicit storage of an embedded grid.
In a high order context, this methodology has been recently used by Wang and
Mavriplis [36] to estimate the error and perform mesh adaptation in a Discon-
tinuous Galerkin (DG) method. Other authors have used this method to perform
adaptation also in a DG framework. Examples of this can be found in the work of
Leicht, Hartmann, Held and Prill [26][25].

A di↵erent approach, very attractive due to its low computational cost, is the
estimation of local errors. Moreover these methods provide an immediate strat-
egy to perform h-refinement or p-refinement depending on the rate of conver-
gence. Mavriplis [22,21] estimates the local discretization error by measuring the
norm/energy associated to the di↵erent modes. This method has been also used
in the last years by Casoni [10] in the scope of high order shock capturing schemes
or by Rosenberg et al. [13] in the development of a object-oriented geophysical
and astrophysical spectral-element adaptive refinement code. Also in the line of
the estimation of local errors is the work by Wasberg and Gottlieb [11] where
estimations of the local interpolation error are used to find optimal subdomain
decompositions. In this case a wave-like behavior of the solution is supposed in
the estimation, therefore it is only valid for problems whose solutions are mostly
homogeneous over the whole computational domain.

Another alternative is to estimate the local truncation error by means of ⌧ -
estimation, first introduced by Brandt [7]. This technique has been used by Berger
[3] in an adaptive Finite Di↵erences (FD) method for the computation of a two-
dimensional transonic NACA0012 Euler flow. Bernert [4] performed an extensive
analysis of the accuracy of the method, extended later by Fulton [15]. In recent
years Syrakos [33] successfully implemented ⌧ -estimation for Finite Volumes (FV)
discretization of the incompressible Navier-Stokes. More recently, Syrakos [32] also
studied the e�ciency of truncation error-based local refinement for the Navier-
Stokes equations. Fraysse et al. [14] have extended those previous analysis to FV
discretizations on any kind of meshes, with an interesting extension to ⌧ -estimation
using non-converged solutions. As can be seen, a lot of work has been done in the
context of ⌧ -estimation for low order methods. However, the authors are not aware
of any devoted to its extension to high order methods.

This paper is dedicated to the analysis of the truncation error and the extension
of the ⌧�estimation methodology to spectral collocation methods.

As a preliminary step, a review of the behavior of the discretization and trun-
cation errors in spectral collocation methods is made. Although the foundations of
spectral theory can be found in text books such as: Canuto, Hussaini, Quarteroni
and Zang [9], Boyd [6] or Kopriva [18] due to the minor di↵usion of high order in
contrast to low order methods, these expressions are not so commonly used and
known, and they play a definitive role in our analysis.

The present paper is organized as follows. First, in Sec. 2, the mathematical
formulation is derived, as well as the conditions to be fulfilled for an accurate esti-
mation of the local truncation error. In Sec. 3, the previous analysis performed in
Sec. 2 is validated and the truncation error for one-dimensional reference problems
is estimated. Finally, in Sec. 4, more realistic configurations are addressed. Two
reference problems in the Navier-Stokes equations are solved: the Kovasznay flow
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[19], where an analytical solution is known, and the Lid Driven Cavity, by far the
most used problem to test new algorithms in incompressible flows [16,8].

2 Mathematical Fundaments

In this section we formulate and solve the mathematical problem of the trunca-
tion error estimation for a collocation spectral method using ⌧ -estimation. In the
first subsection the mathematical problem is formulated. For the sake of self com-
pleteness of the paper we make a quick review of collocation spectral methods in
subsections 2.2 and 2.3. In 2.4 using the theory presented, we develop a method
for an accurate estimation of the truncation error. In Sec. 2.5 we show how to
extend the method to several dimensions and systems of equations. Finally in 2.6
we analyze the computational cost of the method.

2.1 Problem Formulation

We start our analysis by considering a Partial Di↵erential Equation (PDE)

Lu(x) = f(x) (1)

where L is the partial di↵erential operator, u(x) is the exact solution of the problem
and f(x) is the forcing term of the equation. For simplicity we consider x extended
over the domain [�1, 1].

Let us consider the spectral collocation discretization of order N of Eq. [1]

L
NuN = fN (2)

where LN is the discretized partial di↵erential operator using the collocation spec-
tral method, uN is the approximate solution and fN the approximate forcing term.
The PDE is discretized in a series of collocation points and solved there. The dis-
cretized PDE, Eq. [2], can be solved using an iterative method.

We define the current approximation of the solution (and not necessarily con-
verged)

ũN = uN
� ✏Nit (3)

where ✏Nit is the iteration error.

We recall that the corresponding local truncation error is defined as follows:

⌧N = L
Nu� fN (4)

the residual obtained by substituting the exact solution u(x) onto the discretized
PDE. Directly related to the local truncation error is the discretization error

✏N = u� uN (5)

which is the di↵erence between the exact solution of the problem u(x) and the
approximate solution uN (x). The relationship between the local truncation error
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and the discretization error is called the discrete discretization error transport
equation (DETE, see Roy [28]), and reads

⌧N = L
N ✏N (6)

for linear operators and

⌧N =
@LN

@uN

�����
uN

✏N +O((✏N )2) (7)

for non-linear operators.

In addition to the exact expression for the local truncation error, we introduce
the next expression for the relative truncation error based on the low order relative
truncation error used by Fraysse et al. in [14]:

⌧N
N+P = L

N ũN+P
� fN + ÎNN+P (L

N+P ũN+P
� fN+P ) (8)

where ÎNN+P , the transfer operator of the iteration error, is defined as

ÎNN+P = L
NIN+P (L

N+P )
�1

(9)

for linear operators and

ÎNN+P =
@LN

@uN

�����
uN

INN+P

 
@LN+P

@uN+P

�����
uN+P

!�1

(10)

for non linear operators.

Our goal is to use ⌧N
N+P to estimate ⌧N . For the case in which the solution

is converged, uN+P = ũN+P and the second right hand side term of Eq. [8] can
be neglected. Most of the analysis presented in the following sections is performed
at convergence, and its extension to non-converged solutions is discussed in Sec.
3.1.3.

The following theorem provides the accuracy of the relative truncation error
⌧N
N+P as estimator of the exact truncation error ⌧N .

Theorem (Chebyshev Truncation Error Estimate) In the asymptotic range,
for functions u(x), f(x) analytic in [�1, 1] and with a regularity ellipse whose sum
of semi-axes equals e⌘ > 1, the following expression holds

⌧N
N+P = ⌧N +O((N + P )1/2N2le�(N+P )⌘) (11)

for linear opeartors and

⌧N
N+P = ⌧N +O(max((N + P )1/2N2le�(N+P )⌘),

⇣
✏N+P
it

⌘2
) (12)

for non-linear operators. In both cases l is the highest order of derivation in the
partial di↵erential operator.

The proof of this theorem can be found in Sec. 2.4. It should be noticed that
all the analysis have been made under the assumption of a value of P high enough
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so the formal rate of convergence can be supposed. Thus, this analysis is only
valid in the asymptotic range of convergence. It should be also noticed that in
the non-linear expression, Eq. [12], there are contributions from the iteration error
✏it (derived from the use of a non-converged solution) that can be neglected for
su�ciently converged solutions (so the error is dominated by the discretization
error in the fine mesh, instead of the iteration error).

For the demonstration of the previously introduced theorem, some theory re-
garding spectral methods theory is required. For the sake of self completeness we
present a quick review on spectral methods in Sec. 2.2. Using this theory we derive
upper bounds for the truncation error in Sec. 2.3, which to the authors’ knowl-
edge have not been explicitly derived before. Further information about spectral
methods can be found in [9], [6] or [18].

2.2 Quick review on spectral collocation method

We call interpolating polynomial of order N to the polynomial of the form:

INu(x) =
NX

k=0

u(xk)lk(x) (13)

where u(x) is the function being approximated and lk(x) the kth Lagrange polyno-
mial. The precision of the method is set by the position of the nodes xk. There is
a direct relation among the set of nodes and the spectral basis used. In this work,
we use the Chebyshev polynomials as the basis and the Chebyshev-Gauss-Lobatto
(CGL) nodes. Nevertheless, the extension of the analysis to other combination of
basis/nodes with spectral properties such as Fourier or Legendre is straightfor-
ward.

The interpolating polynomial is not exact for an arbitrary function u and a
finite order N . We define the interpolating error "Nu as the di↵erence between the
function u(x) and its interpolant of order N , INu(x).

"Nu (x) = u(x)� INu(x) (14)

It is important to make some remarks about Eq. [14]. Firstly the definition is
continuous. Secondly, it is observed that, according to the definition of Eq. [13],
"Nu (xn) = 0, which means that there is no error in the interpolation nodes. The
interpolation error, "Nu , should not be confused with the previously defined dis-
cretization error ✏N . The latter is the di↵erence between the exact solution and
the numerical solution of Eq. [2], while the former is the di↵erence between the
exact solution and its spectral interpolant.

In a spectral collocation method the interpolating polynomial is used to ap-
proximate the di↵erential operator. We present examples of this in Sec. 2.3. Under
several conditions, the convergence of the method is exponential, also known in
the literature as spectral convergence [9],[6],[18]. This means that, for a function
u(x), analytic in [�1, 1] and with a regularity ellipse whose sum of semi-axes equals
e⌘ > 1, in the asymptotic range of convergence (for N high enough) the following
holds:

||u(l)
� (INu)(l)||L1(�1,1)  C(⌘)N1/2N2le�N⌘ (15)
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where l is the derivation order. For non analytic functions in [�1, 1] the convergence
deteriorates and it is known as algebraic. On the other hand, for entire functions
the convergence of the method is even better and called super-geometric. In this
case the error goes as O(N�N ). Some authors [22] consider that both algebraic
convergence and super-geometric convergence can be approximately predicted by
exponential convergence with low or high values of ⌘.

Eq. [15] can be used to derive an expression which defines the behavior of the
local truncation error ⌧N , in an equivalent way as the behavior of the truncation
error in standard h schemes is O(hp), where h is a typical mesh size and p the
order of the scheme.

This upper bound depends both on the order of the interpolating polynomial
N (or what is the same, the order of the spectral collocation method) and the
order of the di↵erential operator being discretized.

Finally, it has to be noticed that the discretization error ✏N of any problem
solved using a spectral method is bounded as

||u� uN
||L1(�1,1) < C||u� INu||L1(�1,1)

||✏N ||L1(�1,1) < C||"Nu ||L1(�1,1)

(16)

The above equation states that the discretization error is at most a constant away
from the di↵erence between the solution and the best polynomial approximation
to the solution, which is a property of the spectral discretization [22]. We will use
this expression here after to relate ✏N and "Nu .

Although the formulation used in the analysis of the error is continuous, in
order to solve the numerical problem we need a discrete formulation of the problem.
This discrete formulation (known as collocation) is obtained by evaluating the
polynomial interpolants and its derivatives in the CGL nodes. For example, we
can construct an interpolation matrix operator of order N + P to transfer the
values of an unknown function f(x) from N +P CGL nodes to N CGL nodes by:

FN = INN+PF
N+P =

N+PX

k=0

f(xk)lk(xj) (17)

Where xj are the CGL nodes of order N and xk the CGL nodes of order
N + P . The continuous expressions derived in the paper are always applicable to
the discrete formulation, taking into account that the discrete formulation is no
more than the continuous formulation evaluated in some points.

Another remark should be done about the notation followed in this work. The
next two expressions are equivalent

L
NuN+P = L

NINN+Pu
N+P . (18)

In order to apply the discretized operator LN to a solution of di↵erent order uN+P ,
it is necessary to evaluate this solution in the CGL nodes of order N . In a discrete
fashion this evaluation is seen as the interpolation represented by INN+P . In this
work we usually use the left hand side notation for compactness. It should also be
noticed that the next convention for notation is followed:

fN = INf (19)
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this means that fN is the interpolating polynomial of order N of the function f .
In the next section we derive upper bounds for the local truncation error for

two one-dimensional reference di↵erential operators.

2.3 Local truncation error analysis

For illustration, in this section we derive the expressions which describe the be-
havior of the local truncation error in two reference problems. These problems are
representative for the one-dimensional case and their results can be extrapolated
to more complex scenarios.

– Linear case We consider the equation

uxx = f (20)

The problem is discretized by substituting uxx by the second derivative of the
interpolating polynomial of the unknown solution function (INuN )xx and f by
its interpolating polynomial INf . At this stage Dirichlet boundary conditions
are considered. The boundary conditions can be imposed by substituting two
equations for the exact value in the boundaries. More information about the
discretization and how to impose boundary conditions can be found in [35].
Finally Eq. [20] becomes

(INuN )xx = INf or (uN )xx = fN (21)

Which in a discrete formulation is

D2
NUN = FN (22)

where D2 is the derived interpolator evaluated in the CGL nodes, UN is the
approximated solution in the CGL nodes and FN is the forcing term in the
CGL nodes. The truncation error of the di↵erential operator is obtained by
substituting the real solution in the discretized problem, Eq. [21],

⌧N = (INu)xx � INf (23)

Contrary to the usual analysis in low order methods, we use a definition of ⌧N

in a continuos framework (with respect to the variable x). The discretization
appears in the order of the polynomial N . By using the definition of the inter-
polating polynomial error Eq. [14] and the PDE definition Eq. [20], it can be
deduced that

⌧N = uxx � ("Nu )xx � f + "Nf =

= �("Nu )xx + "Nf
(24)

And, by Eq. [15] and under the regularity assumptions defined above and for
the asymptotic range of convergence

||("Nu )xx||L1(�1,1)  C(⌘)N1/2N2⇥2e�N⌘ (l = 2) (25)

and
||"Nf ||L1(�1,1)  C(⌘)N1/2e�N⌘. (26)
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Finally, the value of ⌘ only depends on the position of the poles of f and u in
the complex plane. Thus, assuming that the position of the poles of f and u
are the same

||⌧N
||L1(�1,1)  C(⌘)N1/2N2⇥2e�N⌘. (27)

This formula describes the behavior of ⌧N in the asymptotic range of conver-
gence. As far as the discretization error is concerned, from Eq.[16] we know
that its behavior is the same as for the spectral interpolating polynomial. So
we can apply Eq. [15] under the assumptions already made there, to say that

||✏N ||L1  CN1/2e�N⌘. (28)

It is important to remark that this expression does not depend on the order of
the problem but only on the regularity of the present functions u(x) and f(x).
This is a remarkable di↵erence with low order methods, where the truncation
and discretization errors are of the same order of magnitude.

– Non-linear case The second problem considered is the steady state of the
forced Burgers equation:

uux � uxx = f. (29)

There are several ways to discretize the non-linear term. Further information
about the di↵erent methods which can be used can be found in [18]. We will
use the straightforward discretization

INu⇥ (INu)x � (INu)xx = INf (30)

Or in discrete form
UNDNU �D2

NUN = FN . (31)

As before, we are interested in the calculation of the truncation error. If we
use again the definition of the interpolating polynomial error Eq. [14] we have

⌧N = (u� "Nu )(ux � ("Nu )x)� (uxx � ("Nu )xx)� (f � "Nf ) (32)

and neglecting the O("Nu
2
) terms:

⌧N = �u("Nu )x � ux("
N
u )� ("Nu )xx + "Nf (33)

If we suppose that u and ux are O(1), we can use Eq. [15] to estimate the order
of magnitude of di↵erent terms involved, thus

||"Nu ||L1(�1,1)  C(⌘)N1/2e�N⌘

||("Nu )x||L1(�1,1)  C(⌘)N1/2N2⇥1e�N⌘

||("Nu )xx||L1(�1,1)  C(⌘)N1/2N2⇥2e�N⌘

||"Nf ||L1(�1,1)  C(⌘)N1/2e�N⌘

(34)

As before, we have supposed u and f have the same poles. Therefore in the
asymptotic range, the behavior of the truncation error ⌧N is

||⌧N
||L1(�1,1) = CN1/2N2⇥2e�N⌘ (35)

The same as before. As far as the discretization error is concerned, the result
is the same that for the linear case as Eq. [16] does not depend on the order or
the non-linearities of the problem solved, but only on the maximum derivative
of the di↵erential operator.
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In this section we have derived upper bounds for the local truncation error of
two one-dimensional operators, with three main conclusions. The first one is that
the truncation error for spectral methods depends on the regularity of the functions
involved in the problem (solution, forcing terms...). The second one states that the
local truncation error is directly related to the maximum order of derivation of the
di↵erential operator. The third one is that the discretization error only depends
on the regularity of the functions involved and the order of the method N .

With this, all the theory necessary for the proof of the Chebyshev truncation
error estimate theorem has been presented. The demonstration is presented in the
next section.

2.4 Chebyshev truncation error estimate

We are now in a position of proving the Chebyshev truncation error estimate the-
orem formulated in Sec. 2.1.

Proof: We make a distinction between linear and non-linear di↵erential oper-
ators, extending the analysis for non-converged solution.

– Linear case

– Converged solution

Firstly, we deduce the relation between the interpolant of order N for a
given function INu and the interpolant of order N of the interpolant of
order N + P of the same function IN (IN+Pu). This is:

IN (IN+Pu) = INu�

NX

k=0

"N+P
u (xk)lk(x) (36)

which can be easily seen by calculating the di↵erence between the two:

IN (IN+Pu)� INu =
NX

k=0

(IN+Pu(xk)� u(xk))lk(x)

= �

NX

k=0

"N+P
u (xk)lk(x) = �IN"N+P

u

(37)

For the case in which the solution is converged, uN+P = ũN+P and the
second right hand side term of Eq. [8] can be neglected. So, Eq. [8] reads:

⌧N
N+P = L

NuN+P
� fN =

= L
N (u� ✏N+P )� fN =

= L
Nu� fN

� L
N"N+P

u � L
N ✏N+P =

= ⌧N
� L

N"N+P
u � L

N ✏N+P

(38)

The term L
N"N+P

u appears because of the interpolation of the function u
from the N + P CGL nodes to the N CGL nodes. By Eq. [16] it can be
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seen that the last two terms are of the same order of magnitude, and using
Eq. [28] we can write

✏N+P

✏N
= O

 
(N + P )1/2

N1/2
e�P⌘

!

(39)

so

L
N ✏N+P =

⇣
L

N ✏N
⌘
O

 
(N + P )1/2

N1/2
e�P⌘

!

(40)

and, as ⌧N = L
N ✏N and ⌧N = O(N1/2N2`e�N⌘)

L
N ✏N+P = O

⇣
(N + P )1/2N2le�(N+P )⌘

⌘
(41)

finally
⌧N
N+P = ⌧N +O((N + P )1/2N2le�(N+P )⌘) (42)

– Non-converged solution

Let us decompose the approximate solution ũN+P such that ũN+P = u�

✏N+P
� ✏N+P

it .
The Eq. [8] can be written

⌧N
N+P = L

N (u� ✏N+P
� ✏N+P

it )� fN + ÎNN+P (L
N+P ũN+P

� fN+P ) =

= L
Nu� fN

� L
N"N+P

u � L
N ✏N+P

�

� L
N ✏N+P

it + ÎNN+P (L
N+P ũN+P

� fN+P ) =

= ⌧N
� L

N"N+P
u � L

N ✏N+P
� L

N ✏N+P
it +

+ ÎNN+P (L
N+P ũN+P

� fN+P )
(43)

Two new terms due to the non-convergence of the solution have appeared:
�L

N ✏N+P
it and ÎNN+P (L

N+P ũN+P
� fN+P ). If the solution is not con-

verged, those terms can be of the same order of magnitude of the local
truncation error. The transfer operator ÎNN+P is constructed in such a way
that those terms cancel out. Indeed, from the definition of the iteration
error (Eq. [3])

L
N+P ũN+P

� fN+P = L
N+P ✏N+P

it (44)

So in order to make those terms to cancel out

ÎNN+P (L
N+P ✏N+P

it ) = L
NINN+P ✏

N+P
it (45)

the following relation must be fulfilled

ÎNN+PL
N+P = L

NIN+P (46)

In this case, the expression for the truncation error estimation is

⌧N
N+P = ⌧N

� L
N"N+P

u � L
N ✏N+P (47)

which is the same obtained for the converged case, and so the error estima-
tion for the converged case also holds here

⌧N
N+P = ⌧N +O((N + P )1/2N2le�(N+P )⌘) (48)
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– Non-linear case

– Converged solution

As before,
⌧N
N+P = L

NuN+P
� fN

Similar to the linear case, if we decompose uN+P = u� ✏N+P , we obtain

⌧N
N+P = L

N (u� ✏N+P )� fN (49)

and linearizing

⌧N
N+P = L

Nu� fN
�

@LN

@uN

�����
uN+P

✏N+P
�

@LN

@uN

�����
uN+P

"N+P
u +O((✏N+P )2)

= ⌧N
�

@LN

@uN

�����
uN+P

✏N+P
�

@LN

@uN

�����
uN+P

"N+P
u +O((✏N+P )2).

(50)

Finally, we have to evaluate the order of magnitude of the two last terms.
If we use Eq. [28]

✏N+P

✏N
= O

 
(N + P )1/2

N1/2
e�P⌘

!

it can be written

@LN

@uN

�����
uN+P

✏N+P =

 
@LN

@uN

�����
uN+P

✏N
!

O

 
(N + P )1/2

N1/2
e�P⌘

!

. (51)

Now, using the relationship between the local truncation error and the

discretization error ⌧N = @LN

@uN

���
uN

✏N +O(✏2) the order of magnitude is

@LN

@uN

�����
uN+P

✏N+P = O

⇣
(N + P )1/2N2le�(N+P )⌘

⌘
(52)

from Eq. [16], the same is applicable to the other term. Therefore

⌧N
N+P = ⌧N +O

⇣
(N + P )1/2N2le�(N+P )⌘

⌘
. (53)

– Non-converged solution

For the non-converged case, by proceeding in an equivalent manner to the
linear analysis, assuming that ✏N+P

it << u

⌧N
N+P = ⌧N

�
@LN

@uN

�����
uN+P

✏N+P
�

@LN

@uN

�����
uN+P

"N+P
�

�
@LN

@uN

�����
uN+P

✏N+P
it + ÎNN+P ✏

N+P
it +O(max((✏N+P )2, (✏N+P

it )2)).

(54)
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Now, in contrast to the linear case, deriving a transfer operator which elim-
inates the remaining terms does not necessarily ensure that the estimation
will be accurate before any relaxation is performed. To perform the lin-
earization present in the equation we have supposed ✏N+P

it << u. Besides,
the error performed depends on (✏N+P

it )2.
The correct transfer operator to eliminate the new source of error is

ÎNN+P
@LN+P

@uN+P

�����
uN+P

=
@LN

@uN

�����
uN+P

INN+P (55)

And, the error for the truncation error estimate is

⌧N
N+P = ⌧N +Omax

✓
(N + P )1/2N2le�(N+P )⌘,

⇣
✏N+P
it

⌘2◆
. (56)

As in the local truncation error analysis, the result in the local truncation
error estimate is the same for both the linear and the non-linear operators, but
for the iteration error term. The precision of the estimation depends basically on
the accuracy of the approximated solution ũN+P .

2.5 Extension to several dimensions and systems of equations

The analysis performed does not make any assumptions about the spatial dimen-
sions of the problem, therefore the extension of the PDE to higher order space is
straightforward. However, there are some distinguishing features when the colloca-
tion method is applied to higher dimensional spaces which need to be pointed out.
For the sake of simplicity we limit our analysis to the two-dimensional problem.

The expansion to the two-dimensional problem decouples the problem in two
spatial dimensions and, as a consequence, the convergence of the method is inde-
pendent in both directions. So the convergence analysis can be made as a linear
combination of two one-dimensional cases, as follows:

||✏NxNy
||L1  CN1/2

x e�Nx⌘x + CN1/2
y e�Ny⌘y (57)

for the discretization error and

||⌧NxNy
||L1(�1,1)  CN1/2

x N2l
x e�Nx⌘x + CN1/2

y N2l
y e�Ny⌘y (58)

for the truncation error. This analysis allows di↵erent polynomial orders in each
direction (Nx 6= Ny). Furthermore, the method here described can be applied to
problems with di↵erent ratios of convergence in both spatial directions.

In a system of equations, as the number of equations and variables is increased,
so does the number of errors which play part in the analysis. There is one dis-
cretization error per variable and one truncation error per equation. Additionally
the convergence of each variable depends on its smoothness. For example in the
equation

du
dt

= v + ux

dv
dt

= u+ vx

(59)
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there are two discretization errors (✏u and ✏v) each one with its rate of convergence
(⌘u and ⌘v) and two truncation errors obtained of substituting the exact values of
u and v in both discretized equations. It can be easily seen that the behavior of
the truncation error in this case is driven by a combination of both variables, as
follows:

⌧N
u = O(N1/2e�N⌘v ) +O(N1/2N2e�N⌘u)

⌧N
v = O(N1/2e�N⌘u) +O(N1/2N2e�N⌘v )

(60)

All these aspects will be studied in the numerical experiments of Sec. 4 where
the method will be applied to the two-dimensional incompressible Navier-Stokes
equations.

2.6 Actual costs of the estimation of truncation error by ⌧ -estimation

In this section the computational cost of the truncation error estimation by means
of ⌧�estimation is analyzed. The computational cost is highly dependent on the
consideration of the method as an a-posteriori or an a-priori error estimator (using
a converged or a non-converged solution for the estimation). If the method is used
as an a-priori error estimator, the inversion of the Jacobian matrix in the fine
mesh is required to treat the iteration error, which can be very expensive. So the
computational cost of this inversion should be added to the whole computational
cost of the algorithm. On the other hand, if the method is used as an a-posteriori
error estimator, the converged solution in the fine mesh should be computed. The
computational cost devoted to acquire a solution depends on the algorithm used
to integrate the equations, so in this analysis, we consider that the problem has
been already solved. Therefore only the cost of the estimation of the error per se

is considered.

The memory requirements of the a-posteriori ⌧�estimation method are negli-
gible since this method only involves an interpolation of the solution to a coarse
mesh, and the evaluation of this solution in the coarse operator. As far as the time
requirements are concerned, it is necessary to analyze the algorithm. According to
Eq. [8] the estimation of the truncation error by ⌧ -estimation involves:

1. The computation of the solution of the problem in a fine grid
2. The interpolation of the solution to a coarse grid
3. The calculation of the residual when using the interpolated solution in the

coarse discretized operator

The calculation of the residual (step three) involves several operations of com-
plexity O(N)2 entailing a computational cost of the same order of magnitude of
advancing one time step in an Euler explicit scheme. The interpolation of the
solution (step two) involves an operation of complexity O(N ⇥ (N + P )).

Therefore, once the solution has been obtained in the fine grid N + P (step
one), the computational cost of estimating the truncation error for a coarser grid
N is, at most, of the same order of magnitude of advancing one explicit time step.
Moreover beyond this point, with a insignificant e↵ort, an accurate estimation of
the truncation error for all the coarser meshes [1, N + P � 1] can be obtained. In
Section 4 the time cost of the method used in a real test case is shown.
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3 DETAILED ANALYSIS ON REFERENCE PROBLEMS

Here, we validate the previous expressions derived for the approximation of the
local truncation error, discretization error and the relative truncation error. The
validation is performed in a framework of one-dimensional linear and non-linear
problems, with particular focus on the non-converged solution.

3.1 One-dimensional problems

We consider the one-dimensional di↵usion (linear) and di↵usion-convection (non-
linear, Burger’s equation) equations with known exact solutions. Using those so-
lutions the exact values of both the local truncation error and the discretization
error can be computed.

The one-dimensional equations considered are

uxx = f1, uux � uxx = f2 (61)

with the following test functions:
8
>><

>>:

f1(x) = 384x9
⇣
2� x4

⌘4 + 288x5
⇣
2� x4

⌘3 + 24x⇣
2� x4

⌘2

u(�1) = uex(�1), u(1) = uex(1)

(62)

8
>>>>>>><

>>>>>>>:

f2(x) = �
384x9

⇣
2� x4

⌘4 �
288x5

⇣
2� x4

⌘3 �
24x⇣

2� x4
⌘2 +

4x3

0

B@
32x6

⇣
2� x4

⌘3 +
12x2

⇣
2� x4

⌘2

1

CA

⇣
2� x4

⌘2

u(�1) = uex(�1), u(1) = uex(1)
(63)

which have the following exact solution:

u =
4x3

(2� x4)2
. (64)

This function fulfills the premises of the Chebyshev truncation error estimate
formulated in Sec. 2.4. The function is analytic in the interval [�1, 1], but has a
pole outside this interval which makes the value of ⌘ = �0.606. The expression
to calculate the value of ⌘, being the position of the pole known can be found in
Boyd [6]. This low value of ⌘ produces a slow convergence (although spectral) so
we can analyze the di↵erent errors for a wide range of polynomial orders before
reaching the machine error. Additionaly, the value of ⌘ (and so the position of
the nearest pole to the interval [�1, 1]) is constant for u, f1 and f2 (which is the
usual case). Both equations have been solved using the spectral collocation method
described in the previous section. The steady state solution was reached using a
simple iterative Euler relaxation scheme.

We focus the analysis on the validation of the theoretical expressions derived
in the first section. We are specially interested in two aspects: the first one is the
behavior of the local truncation and discretization error in spectral collocation
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Fig. 1 Local truncation error and Discretiza-
tion error for the linear case. Validation of Eq.
[28] and Eq. [27]
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Fig. 2 Local truncation error and Discretiza-
tion error for the non-linear case. Validation of
Eq. [28] and Eq. [35]

methods. The second one is the validation of the local truncation error estima-
tion towards the relative truncation error. This estimation is analyzed for both
converged and non-converged solutions.

3.1.1 Local truncation and discretization error behavior

Firstly, we validate the expressions for the discretization and the truncation errors
(Eq. [28] and Eqs. [27] [35] respectively) derived in Sec. 2.3. Thus,

||✏N ||L1  CN1/2e�N⌘

||⌧N
||L1(�1,1)  CN1/2N2le�N⌘

As already explained, both expressions only depend on the order of the di↵erential
operator (`) and the regularity of the functions (⌘).

We have solved both problems for di↵erent orders of the method (di↵erent
values of N) and calculated the exact values of local truncation and discretization
errors. The results are shown in Figs. 1 and 2. The results obtained corroborate the
theory. Two comments should be done. The first one is related to the oscillations
seen in the curves. These are due to the modal nature of the method. When the
order of the method is increased, we add new points but also new interpolating
functions in order to solve the problem. When the introduced function is similar
to the function we are approximating (for example a pair basis function for a pair
approximated function) the decrease of the error is greater. Secondly, in the usual
scenario the discretization error behaves better than the local truncation error.
The N2l term makes the discretization error to be lower than the local truncation
error.

3.1.2 Local truncation error estimation - Converged solution

We check the validity of the Chebyshev truncation error estimate theorem derived
in Sec. 2.4. Eq. [11] and Eq. [12] read

⌧N
N+P = ⌧N +O((N + P )1/2N2le�(N+P )⌘)
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Fig. 3 Error in the truncation error estimation
for the linear case. Converged solution N = 13.
Validation of Eq. [11].

τN (N=15)
154(P+15)1/2e-(15+P)*0.606

τN+P
N -τN vs P 

||*
|| L

∞

10−6

10−4

10−2

1

102

P
0 5 10 15 20 25 30

Fig. 4 Error in the truncation error estimation
for the non-linear case. Converged solution N =
15. Validation of Eq. [12]

⌧N
N+P = ⌧N +O(max((N + P )1/2N2le�(N+P )⌘),

⇣
✏N+P
it

⌘2
)

valid for both converged and non-converged linear and non-linear operators re-

spectively. For the converged solution analysis presented here,
⇣
✏N+P
it

⌘2
= 0

In order to perform the validation, we have solved both the linear and the
non-linear problems for di↵erent values of P with a fixed N . Then, we have used
these solutions to calculate the relative truncation error ⌧N

N+P using its definition
of Eq. [8].

⌧N
N+P = L

N ũN+P
� fN + ÎNN+P (L

N+P ũN+P
� fN+P )

which for the converged case simplifies to:

⌧N
N+P = L

NuN+P
� fN

In order to do that, we have interpolated the solutions uN+P from the finer grids
N+P to the coarser grid N , using the spectral interpolant of order N+P . In Figs.
3 and 4 we have represented the di↵erence ||⌧N

� ⌧N+P
N ||L1 for a fixed value of

N and increasing P . The real magnitude of the error made in the approximation
has been compared to the one predicted by the theoretical analysis. The value of
⌧N for fixed N has also been represented.

In the linear case, Fig. 3, we have fixed the value of N = 13. Then we have
solved the problem using higher order N + P with P ranging from P = 1 to
P = 32. The behavior of the estimation error is the predicted but with periodical
oscillations of amplitudeN . These oscillations can be explained from the expression
of the relative truncation error for converged solutions, Eq. [38],

⌧N
N+P = ⌧N

� L
N"N+P

u + L
N ✏N+P

for the linear case and, Eq. [50]

⌧N
N+P = ⌧N

�
@LN

@uN

�����
uN+P

✏N+P
�

@LN

@uN

�����
uN+P

"N+P
u +O((✏N+P )2)
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for the non-linear case. In both equations there are terms in the error formula
depending on the exactitude of the solution of order N + P : ✏N+P and on the
accuracy of the interpolation of order N+P : "N+P . For P = kN with k = 1, 2, 3...,
the N + 1 interpolation nodes of IN coincide with the N + P + 1 interpolation
nodes of IN+P . This entails injection instead of interpolation and a consequent
diminution of the error. On the other hand, this error is also a↵ected by modal
e↵ects which means that, apart from the low frequency oscillation seen at each N
points, another high frequency oscillation is present depending on the quality of
the function added with the increase of N .

In the non-linear case, Fig. 4, the polynomial order has been fixed to N = 15
while P = [1, 29]. The same behavior as for the linear case can be seen here.

3.1.3 Local truncation error estimation - Non-converged solution

In this section we present the result of using a non-converged solution in the local
truncation error estimation.

In order to perform the validation, we have solved both the linear and the
non-linear problems for fixed values of N = 4 and P = 13 and di↵erent levels
of iteration error ✏Nit . Then we have used these solutions to calculate the relative
truncation error ⌧N

N+P using its definition Eq. [8].

⌧N
N+P = L

N ũN+P
� fN + ÎNN+P (L

N+P ũN+P
� fN+P )

We present some results concerning the non-converged solution in Figs. 5 and
6. In both cases the truncation error estimation is presented with and without
the correction term (second term of right hand side in Eq. [8]). This means, using
the transfer operator to eliminate the error made by the iteration error. In the
linear case, the truncation error estimation for the non-converged solution with
correction is the same that the converged solution after one iteration. For the
non-linear case, the decay rate of the error in the estimation is O((✏N+P

it )2), much
better than without correction where the decay rate is O(✏N+P

it ). In both cases
the result is the predicted by the theoretical analysis.

4 Numerical Experiments

The objective of this section is to validate the method in practical test cases. We
complete our study by performing an analysis of the estimation of the truncation
error on the two-dimensional incompressible Navier-Stokes equations.

Two di↵erent test cases are considered next: the Kovasznay flow and the Lid
Driven Cavity (LDC). The first test case has been chosen because it has an analyt-
ical solution which incorporates non-linear e↵ects. With this analytical solution in
hand it is possible to prove the accuracy of the method in this complex problem.
The second one is a test case whose main objective is to show how the method
should be used in a real problem and so, no quantitative result is intended. Both
test cases present smooth solutions, which is a requirement of the ⌧�estimation
method, in order to get accurate results.

The incompressible Navier-Stokes equations are solved using the artificial com-
pressibility method [12], [31]. The main idea underlying this approach is to perturb
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Fig. 5 Error in the truncation error estimation
for the linear case. Behavior with the number of
iterations for the non-converged case (with and
without correction). N = 4, P = 13. Validation
of Eq. [11]
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Fig. 6 Error in the truncation error estima-
tion for the non-linear case. Behavior with the
number of iterations for the non-converged case
(with and without correction) N = 4, P = 13.
Validation of Eq. [12]

the continuity equation by introducing a time derivative for the pressure in order
to obtain a system of equations easier to solve, as follows:

@u
@t

+ (u ·r)u = �rP +
1
Re

r
2
u (65)

"
@P
@t

+r · u = 0 (66)

As before, Chebyshev spectral collocation technique has been chosen for the
spatial discretization, while time advance has been performed using a semi-implicit
Euler scheme. This semi-implicit numerical scheme treats convection terms explic-
itly but pressure terms implicitly. This approach avoids to solve a non-linear prob-
lem in each time step while preserves the stability properties of implicit solvers.
The choice of an Euler method for time advancing is due to its simple implemen-
tation and its good stability properties when a steady solution is sought. This
method has already been used in [35].

4.1 Kovasznay flow

The Kovasznay flow [19] is an analytical solution of the 2D steady-state incom-
pressible Navier-Stokes equations that is similar to the laminar flow over a pe-
riodic array of cylinders. Since this flow incorporates non-linear e↵ects (unlike
Poiseuille flow), it is a good test for the full incompressible Navier-Stokes solution
algorithm[17], [1], [2] and [29]. The analytical solution has the form:

u(x, y) = 1� e�x cos (2⇡y)

v(x, y) =
�
2⇡

e�x sin (2⇡y)

p(x, y) =
1
2
(1� e2�x)

(67)
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Fig. 7 Kovasznay Flow velocity field, Eq. [67], for Re = 40

where � = Re
2 �

q
Re2

4 + 4⇡2. The velocity field for Re = 40 is shown in Fig. 7
The solution of the problem is analytic in the complex domain and so, the

convergence of the method is supposed to be super-geometric (it converges as
N�N ). However, as was stated in Sec. 2.2, even in this case it can be approximated
by a geometric rate of convergence (e�⌘N ) with a high value of ⌘.

Similar to the one-dimensional test cases of Sec. 3.1, we study the behavior of
the local truncation and discretization errors. We pay special attention to the im-
plications of the second dimension and the two extra equations/variables. Besides,
we validate the local truncation error estimation towards the relative truncation
error in a practical test case. It should be noticed that only converged solutions
are considered in the following, and thus, the influence of the iteration error is not
studied.

4.1.1 Local truncation and discretization error behavior

The accuracy of the method depends, as in the one-dimensional case, on the quality
of the approximation of the solution. However in the two-dimensional case it is
necessary to decouple the accuracy of the approximation in x�component and
y�component, as it was explained in Sec. 2.5, as follows:

||✏NxNy
||L1  CN1/2

x e�Nx⌘x + CN1/2
y e�Ny⌘y

||⌧NxNy
||L1(�1,1)  CN1/2

x N2l
x e�Nx⌘x + CN1/2

y N2l
y e�Ny⌘y

Besides, as a result of dealing with a system of equations, one error per equation
(or per variable) should be taken into account. For example in this case, the
truncation error in the first momentum equation reads:

⌧N =
1
Re

O(N1/2N4e�N⌘u
x ) +O(N1/2N2e�N⌘p

x)+

O(N1/2N2e�N⌘u
x ) +O(N1/2N2e�N⌘u

y ).
(68)

The truncation error will be the sum of all the terms, and it will be driven by the
biggest one, which means the one with the lowest value of ⌘. Figs. 8 and 9 report
the behavior of the local truncation error and the discretization error for di↵erent
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Fig. 8 Local discretization error for the Kovasznay flow. Validation of Eq. [57]
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Fig. 9 Local truncation error for the Kovasznay flow. Validation of Eq. [58]

values of Nx and Ny. In this case the component of the error which belongs to the
y direction dominates for Nx = Ny. The reason of this is that the complexity of
the solution is higher in y direction than in x direction. It can be also seen that
the behavior in the three equations is similar.

In Sec. 2.5 it was stated that the convergence in each direction is independent
in a multidimensional problem, furthermore the convergence in each direction is
driven by the equations derived in the one dimensional analysis. In order to validate
this, the discretization error for the horizontal velocity (u) and the truncation error
in the first momentum equation, for fixed Nx >> Ny and Ny >> Nx, are shown
in Figs. 10 and 11 respectively. The behavior in these asymptotic cases is the same
as in the one-dimensional case, as predicted. Besides it is important to remark
that although the convergence of the method is super-geometric (due to the form
of the solution), it is well approximated by the geometric convergence with high
value of ⌘.

4.1.2 Local truncation error estimation

The behavior of our estimator is also similar to the one-dimensional case. In this
case, the problem has first been solved for Nx = 6 and Ny = 6. After that, we have
solved it again for Nx = 6+ Px and Ny = 6+ Py for Px 2 [1, 14] and Py 2 [1, 14].
Then, the higher order solution has been used to calculate the relative truncation
error according to the definition. The error made in the approximation can be seen
in Fig. 12.

As in the previous section, we have represented sections of Fig. 12 for di↵erent
fixed values of Px and Py. The result, which can be seen in Fig. 13, proves the
validity of the estimator for the 2D incompressible Navier-Stokes equations.
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Fig. 10 Local Discretization error for the hor-
izontal velocity u and fixed values of Nx and
Ny . Validation of Eq. [57]
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Fig. 11 Local exact truncation error for the
first momentum equation and fixed values of
Nx and Ny . Validation of Eq. [58]
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Fig. 12 Error in the truncation error estimation for the 2D linear case. Validation of Eq. [11]
in 2D.
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Fig. 13 Error in the truncation error estimation for the 2D linear case for fixed values of Nx

and Ny . Validation of Eq. [11] in 2D.

4.2 Lid Driven Cavity

The suitability of the method for the 2D incompressible Navier-Stokes equations
has been proved in Sec. 4.1 using the Kovasznay flow as test case. The objective
of this section is to present a practical case in which the method can be used. We
will pay special attention to describe the way the method should be used, the in-
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formation it provides as well as its computational cost. As before, only converged
solutions are considered in the following, and thus, the influence of the iteration
error is not studied.

The Lid Driven Cavity (LDC) is the most used benchmark problem for testing
new computational techniques for incompressible Navier Stokes solvers [16,8,5].
The test problem consists on a confined flow driven by one (usually the top)
moving wall. In the original LDC problem the velocity of the top wall is constant.
Unfortunately the abrupt change of the velocity from a non-zero constant value
(top lid) to zero (side walls) results in a discontinuous flow field. This is a big
drawback when used to test a spectral method because the order of convergence
is deteriorated due to the discontinuity [5]. Particularly the ⌧�estimation method
assumes an smooth solution of the problem. One can find di↵erent approaches in
the literature to adapt the LDC problem for spectral methods. Botella and Peyret
[5] separates the most singular part obtaining the solution of the LDC. However,
by far the most usual approach is to use the regularized driven cavity instead [24,
32,30,35], where the driving velocity is smoothed so that it vanishes (as well as its
derivatives to fulfill the continuity equation) at the corners. In particular we use
the same velocity distribution used in [32,17].

u(x) = �16x2(1� x)2 (69)

which fulfills the already mentioned requirements.

In this test case we solve the LDC problem in a fine mesh and use the obtained
solution to estimate the truncation error, towards ⌧�estimation method, in all the
coarser meshes. The estimations are used to analyze the accuracy of the obtained
solution and the optimum procedure to get more accurate results. Finally some
results are presented, using a more refined mesh, to validate the results of the fine
mesh. In Table 1 a summary of the test case is shown.

Reynolds Regularized velocity Fine mesh Coarse meshes Fine mesh (validation)
1000 �16x2(1� x)2 20⇥ 20 4/19⇥ 4/19 30⇥ 30

Table 1 Details on the test case of ⌧�estimation in the LDC

4.2.1 Results

The results of the test case are presented here. In Figs. 14 and 15 the resulting
solution in the 20⇥ 20 mesh is shown. In Fig. 16 the estimation of the truncation
error in the coarser meshes [4, 19] ⇥ [4, 19] for each equation (first momentum,
second momentum and continuity) is shown. In Fig. 17 the truncation error esti-
mation for the continuity equation and fixed Ny = 19 and variable Nx and fixed
Nx = 19 with variable Ny is shown. In Fig. 18 the truncation error estimation
for the continuity equation obtained using the 20⇥ 20 and the 30⇥ 30 meshes is
shown. As before, fixed values of Ny are used.

These results provide significant information about the problem solved. First
important aspect, shown in Fig. 16, reveals that the complexity of the problem
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Fig. 16 Truncation Error estimation in the first moment equation, second momentum and
continuity equations

is similar for the two spacial directions and the rate of convergence for all the
equations is similar. This result contrasts with the one seen for the Kovasznay
flow (Figs. 8, 9 and 12) where the complexity of the problem is higher in the
y component. As the convergence of the method is independent in each spacial
dimension, it is useful to analyze the results for Nx or Ny constant, in order to
estimate these rates of convergence. An example of this estimation is shown in Fig.
17. Finally the accuracy of the solution in the 20⇥ 20 mesh can be approximated
extrapolating the results in the coarser meshes. Beyond this point, if the obtained
solution is not accurate enough, the polynomial order could be increased by using
the estimation of the truncation error for each polynomial order.

Only with a validation purpose, di↵erent truncation error estimations using
di↵erent fine meshes (20 ⇥ 20 and 30 ⇥ 30) are shown in Fig. 18. It should be
remarked that this step is not required by the method.

4.2.2 Computational cost

In Sec. 2.6 the memory and time requirements of the method were analyzed.
As it was exposed, the memory requirements of the method are negligible when
used as an a-posteriori method. As far as the time requirements is concerned, the
procedure is cheap, compared to the cost of finding an approximate solution of the
Navier-Stokes equations.
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Fig. 18 Sectioned views of the Truncation Er-
ror estimation using di↵ernent fine meshes for
the continuity equation

In Table 2 we show a comparison between the time devoted to solve the prob-
lem and to perform the truncation error estimation. The latter is defined as the
time consumed in the estimation of the truncation error in all the coarser meshes.
Of course, these results depend on the numerical method used to integrate the
equation and also on the Reynolds and polynomial order (through the CFL). In
any case the time spent in the truncation error estimation is small compared to
the one spent in solving the problem.

Polynomial Order (N + P ) Solve flow ⌧
Nx⇥Ny
Nx+Px⇥Ny+Py

No of estimations

10x10 55.6 s 0.9 s 1.59% 36
20x20 494.3 s 8.2 s 1.63% 256
30x30 2585.9 s 36.7 s 1.40% 676

Table 2 Time cost of solving the CFD problem compared to the truncation error estimation.
These results where obtained in a MacBook Pro with a 2.4 GHz Intel Core 2 Duo processor
and 4 GB of RAM memory.

5 CONCLUSIONS

Accurate estimations of the local truncation error have been successfully extended
from low order methods to Chebyshev spectral collocation method. Conditions
to ensure accurate estimations have been derived and verified numerically on the
scalar Poisson equation, the Burgers equation and on the incompressible Navier-
Stokes equations. In this approach, a converged solution is not assumed; thus, an
analysis of the accuracy of the estimation has been performed within the iteration
process to the steady state. The results demonstrated that for linear problems,
it is possible to perform an accurate estimation at the first iteration and yields a
robust a priori error estimator. For non-linear problems or if no special attention is
provided, then the estimation is accurate as long as the magnitude of the iteration
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error remains lower than the truncation error, although a method to mitigate the
e↵ect of the iteration error in the non-linear case have been derived. With an
accurate estimation of the local truncation error in hand, several applications are
natural, such as mesh generation and adaptation.

Acknowledgements

This research is supported by the European project ANADE (PINT-GA-2011-
289428). Furthermore, the authors would like to thank Professor David A. Kopriva
for his support, and for many invaluable discussions.

References

1. A. Ozcelikkale, C.S.: Least-squares spectral element solution of incompressible navier
stokes equations with adaptive refinement. Journal of Computational Physics 231, 3755–
3769 (2012)

2. B. Cockburn, G.K., Tzau, D.: The local discontinuous galerkin method for the oseen
equations. Mathematics of Computation 73, 569593 (2003)

3. Berger, M.J.: Adaptive finite di↵erence methods in fluid dynamics. Tech. rep., New York:
Courant Institute of Mathematical Sciences, New York University (1987)

4. Bernert, K.: ⌧ -extrapolation-theoretical foundation, numerical experiment, and application
to navier-stokes equations. Siam Journal on Scientific Computing 18, 460–478 (1997)

5. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Com-
puters & Fluids 27(4), 421 – 433 (1998). DOI 10.1016/S0045-7930(98)00002-4. URL
http://www.sciencedirect.com/science/article/pii/S0045793098000024

6. Boyd, J.: Chebyshev and Fourier spectral methods. Springer (1989)
7. Brandt, A., Livne, O.: Multigrid Techniques: 1984 Guide with Applications to Fluid Dy-

namics. SIAM (1984)
8. Burggraf, O.R.: Analytical and numerical studies of the structure of steady separated

flows. Journal of Fluid Mechanics 24, 113–151. DOI 10.1017/S0022112066000545. URL
http://dx.doi.org/10.1017/S0022112066000545

9. C. Canuto M.Y. Hussaini, A.Q., Zang, T.: Spectral Methods in Fluid Dynamics. Springer-
Verlag (1989)

10. Casoni, E.: Shock capturing for discontinuous galerkin methods. Ph.D. thesis, Universitat
Politcnica de Catalunya (2011)

11. C.E. Wasberg, D.G.: Optimal decomposition of the domain in spectral methods for wave-
like phenomena. SIAM J Sci Comput 22(2), 617632 (2000)

12. Chorin, A.J.: A numerical method for solving incompressible flow problems. J. Comp.
Phys. 2 (1967)

13. D. Rosenberg A. Fournier, P.F., Pouquet, A.: Geophysicalastrophysical spectral-element
adaptive refinement (gaspar): Object-oriented h-adaptive fluid dynamics simulation. Jour-
nal of Computational Physics 215(1), 59 – 80 (2006). DOI 10.1016/j.jcp.2005.10.031. URL
http://www.sciencedirect.com/science/article/pii/S0021999105004791

14. Fraysse, F., De Vicente, J., Valero, E.: The estimation of truncation error by ⌧ -estimation
revisited. Journal of Computational Physics 231, pp. 3457–3482 (2012)

15. Fulton, S.R.: On the accuracy of multigrid truncation error estimates. Electronic transac-
tions on numerical analysis 15, 29–37 (2003)

16. Ghia, U., Ghia, K., Shin, C.: High-re solutions for incompressible flow using the navier
stokes equations and a multigrid method. Journal of Computational Physics 48(3), 387 –
411 (1982). DOI 10.1016/0021-9991(82)90058-4. URL http://www.sciencedirect.com/
science/article/pii/0021999182900584

17. Kondaxakis, D., Tsangaris, S.: A weak legendre collocation spectral method for the so-
lution of the incompressible navier stokes equations in unstructured quadrilateral sub-
domains. Journal of Computational Physics 192(1), 124 – 156 (2003). DOI 10.
1016/S0021-9991(03)00350-4. URL http://www.sciencedirect.com/science/article/
pii/S0021999103003504

http://www.sciencedirect.com/science/article/pii/S0045793098000024
http://dx.doi.org/10.1017/S0022112066000545
http://www.sciencedirect.com/science/article/pii/S0021999105004791
http://www.sciencedirect.com/science/article/pii/0021999182900584
http://www.sciencedirect.com/science/article/pii/0021999182900584
http://www.sciencedirect.com/science/article/pii/S0021999103003504
http://www.sciencedirect.com/science/article/pii/S0021999103003504


26 G. Rubio et al.

18. Kopriva, D.A.: Implementing Spectral Methods for Partial Di↵erential Equations: Algo-
rithms for Scientists and Engineers. Scientific Computation. Springer Science+Business
Media B.V. (2009)

19. Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc.
44, 5862 (1948)
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